It is required to transmit torque 537 N.m of from shaft 6 cm in diameter to a gear by a sunk key of length 70 mm. The permissible shear stress is 60 MN/m. and the crushing stress is 120MN/m². Find the dimension of the key.
The dimension of the key can be calculated using the following formulae.
Torque, T = 537 N-m diameter of shaft, D = 6 cm Shear stress, τ = 60 MN/m Crushing stress, σc = 120 MN/m²Length of the key, L = 70 mm Key width, b = ?.
Radius of shaft, r = D/2 = 6/2 = 3 cm.
Let the length of the key be 'L' and the width of the key be 'b'.
Also, let 'x' be the distance of the centre of gravity of the key from the top of the shaft. Let 'P' be the axial force due to the key on the shaft.
Now, we can write the equation for the torque transmission by key,T = P×x = (τ/2)×L×b×x/L+ (σc/2)×b×L×(D-x)/LAlso, the area of the key, A = b×L.
Therefore, the shear force acting on the key is,Fs = T/r = (2T/D) = (2×537)/(3×10⁻²) = 3.58×10⁵ N.
From the formula for shear stress,τ = Fs/A.
Therefore, A = Fs/τ= 3.58×10⁵/60 × 10⁶= 0.00597 m².
Hence, A = b×L= 5.97×10⁻³ m²L/b = A/b² = 0.00597/b².
From the formula for crushing stress,σc = P/A= P/(L×b).
Therefore, P = σc×L×b= 120×10⁶×L×b.
Therefore, T = P×x = σc×L×b×x/L+ τ/2×b×(D-x).
Therefore, 537 = 120×10⁶×L×b×x/L+ 30×10⁶×b×(3-x).
Therefore, 179 = 40×10⁶×L×x/b² + 10×10⁶×(3-x).
Therefore, 179b² + 10×10⁶b(3-x) - 40×10⁶Lx = 0.
Since the key dimensions should be small, we can take Lx = 0 and solve for b.
Therefore, 179b² + 30×10⁶b - 0 = 0.
Solving the quadratic equation, we get the key width, b = 46.9 mm (approx).
Therefore, the dimension of the key is 70 mm × 46.9 mm (length × width).
Hence, the dimension of the key is 70 mm × 46.9 mm.
To know more about diameter visit:
https://brainly.com/question/32968193
#SPJ11
Explain briefly the advantages" and "disadvantages of the "Non ferrous metals and alloys" in comparison with the "Ferrous alloys (15p). Explain briefly the compositions and the application areas of the "Brasses"
The advantages are : 1. Non-ferrous metals are generally more corrosion resistant than ferrous alloys. 2. They are also more lightweight and have a higher melting point. 3. Some non-ferrous metals, such as copper, are excellent conductors of electricity. The disadvantages are : 1. Non-ferrous metals are typically more expensive than ferrous alloys. 2. They are also more difficult to machine and weld. 3. Some non-ferrous metals, such as lead, are toxic.
Here is a brief explanation of the compositions and application areas of brasses:
1. Brasses are copper-based alloys that contain zinc.
2. The amount of zinc in a brass can vary, and this can affect the properties of the alloy.
3. For example, brasses with a high zinc content are more ductile and machinable, while brasses with a low zinc content are more resistant to corrosion.
4. Brasses are used in a wide variety of applications, including:
Electrical connectors
Plumbing fixtures
Musical instruments
Jewelry
Coins
To learn more about Plumbing fixtures click here : brainly.com/question/30001133
#SPJ11
A centrifugal pump may be viewed as a vortex, where the 0.4m diameter impeller, rotates within a 1m diameter casing at a speed of 200 rpm.
Determine
The circumferential velocity, in m/s at a radius of 0.45 m
A centrifugal pump may be viewed as a vortex.
It consists of an impeller that rotates within a casing.
The impeller's diameter is 0.4m and rotates within a 1m diameter casing at a speed of 200rpm.
To determine the circumferential velocity, use the formula provided below:
Formula:
Circumferential velocity (v) = 2π x Radius (r) x Rotational Speed (N) / 60
Given:
Radius (r) = 0.45 m
Rotational speed
(N) = 200 rpm
Diameter of impeller = 0.4m
Diameter of casing = 1m
Solution:
Circumference of the impeller= π
diameter= π x 0.4 m
= 1.2566 m
Therefore,
Circumferential velocity (v) = 2π x Radius (r) x Rotational Speed (N) / 60
= (2 x π x 0.45 m x 200 rpm) / 60
= (0.1414 x 200) m/s
= 28.28 m/s
Therefore, the circumferential velocity at a radius of 0.45 m is 28.28 m/s.
To know more about Rotational visit:
https://brainly.com/question/1571997
#SPJ11
Using sketches, describe the carburisation process for steel
components?
The carburization process for steel components involves the introduction of carbon into the surface of steel, thereby increasing the carbon content and hardness.
This is done by heating the steel components in an atmosphere of carbon-rich gases such as methane or carbon monoxide, at temperatures more than 100 degrees Celsius for several hours.
Step 1: The steel components are placed in a carburizing furnace.
Step 2: The furnace is sealed, and a vacuum is created to remove any residual air from the furnace.
Step 3: The furnace is then filled with a carbon-rich atmosphere. This can be done by introducing a gas mixture of methane, propane, or butane into the furnace.
Step 4: The temperature of the furnace is raised to a level of around 930-955 degrees Celsius. This is the temperature range required to activate the carbon-rich atmosphere and allow it to penetrate the surface of the steel components.
Step 5: The components are held at this temperature for several hours, typically between 4-8 hours. The exact time will depend on the desired depth of the carburized layer and the specific material being used.
To know more about carburization visit:
https://brainly.com/question/33291700
#SPJ11
A load is mounted on a spring with a spring constant of 324Nm^(-1) and confined to move only vertically, as shown in Figure 3. The wheels which guide the mass can be considered to be frictionless.
The load has a mass, m=4kg, which includes a motor causing the mass to be driven by a force, F = 8 sin wt given in newtons.
Write the inhomogeneous differential equation that describes the system above. Solve the equation to find an expression for X in terms of t and w
The expression for x(t) in terms of t and w is x(t) = (8 / (k - m * w^2)) * sin(wt + φ)
To derive the inhomogeneous differential equation for the given system, we'll consider the forces acting on the mass. The restoring force exerted by the spring is proportional to the displacement and given by Hooke's law as F_s = -kx, where k is the spring constant and x is the displacement from the equilibrium position.
The force due to the motor is given as F = 8 sin(wt).
Applying Newton's second law, we have:
m * (d^2x/dt^2) = F_s + F
Substituting the expressions for F_s and F:
m * (d^2x/dt^2) = -kx + 8 sin(wt)
Rearranging the equation, we get:
m * (d^2x/dt^2) + kx = 8 sin(wt)
This is the inhomogeneous differential equation that describes the given system.
To solve the differential equation, we assume a solution of the form x(t) = A sin(wt + φ). Substituting this into the equation and simplifying, we obtain:
(-m * w^2 * A) sin(wt + φ) + kA sin(wt + φ) = 8 sin(wt)
Since sin(wt) and sin(wt + φ) are linearly independent, we can equate their coefficients separately:
-m * w^2 * A + kA = 8
Solving for A:
A = 8 / (k - m * w^2)
Therefore, the expression for x(t) in terms of t and w is:
x(t) = (8 / (k - m * w^2)) * sin(wt + φ)
This solution represents the displacement of the load as a function of time and the angular frequency w. The phase constant φ depends on the initial conditions of the system.
For more such questions on expression,click on
https://brainly.com/question/14469911
#SPJ8
A cylindrical specimen of some metal alloy 10 mm in diameter is stressed elastically in tension. A force of 10,000 N produces a reduction in specimen diameter of 2 × 10^-3 mm. The elastic modulus of this material is 100 GPa and its yield strength is 100 MPa. What is the Poisson's ratio of this material?
A cylindrical specimen of some metal alloy 10 mm in diameter is stressed elastically in tension.A force of 10,000 N produces a reduction in specimen diameter of 2 × 10^-3 mm.
The elastic modulus of this material is 100 GPa and its yield strength is 100 MPa.Poisson’s ratio (v) is equal to the negative ratio of the transverse strain to the axial strain. Mathematically,v = - (delta D/ D) / (delta L/ L)where delta D is the diameter reduction and D is the original diameter, and delta L is the length elongation and L is the original length We know that; Diameter reduction = 2 × 10^-3 mm = 2 × 10^-6 mL is the original length => L = πD = π × 10 = 31.42 mm.
The axial strain = delta L / L = 0.0032/31.42 = 0.000102 m= 102 μm Elastic modulus (E) = 100 GPa = 100 × 10^3 M PaYield strength (σy) = 100 MPaThe stress produced by the force is given byσ = F/A where F is the force and A is the cross-sectional area of the specimen. A = πD²/4 = π × 10²/4 = 78.54 mm²σ = 10,000/78.54 = 127.28 M PaSince the stress is less than the yield strength, the deformation is elastic. Poisson's ratio can now be calculated.v = - (delta D/ D) / (delta L/ L)= - 2 × 10^-6 / 10 / (102 × 10^-6) = - 0.196Therefore, the Poisson's ratio of this material is -0.196.
To know more about thermal conduction visit:
brainly.com/question/33285621
#SPJ11
A ship, travelling at 12 knots, has an autopilot system with a time and gain constants of 107 s and 0.185 s⁻¹, respectively. The autopilot moves the rudder heading linearly from 0 to 15 degrees over 1 minute. Determine the ships heading, in degrees, after 1 minute.
The ship's heading, in degrees, after 1 minute can be determined by considering the autopilot system's time and gain constants, as well as the rudder heading range. Using the given information and the rate of change in heading, we can calculate the ship's heading after 1 minute.
The autopilot system's time constant of 107 s represents the time it takes for the system's response to reach 63.2% of its final value. The gain constant of 0.185 s⁻¹ determines the rate at which the system responds to changes. Since the autopilot moves the rudder heading linearly from 0 to 15 degrees over 1 minute, we can calculate the ship's heading at the end of 1 minute. Given that the rudder heading changes linearly, we can divide the total change in heading (15 degrees) by the time taken (1 minute) to determine the rate of change in heading.
Learn more about rudder here:
https://brainly.com/question/27274213
#SPJ11
Air at -35 °C enters a jet combustion chamber with a velocity equal to 150 m/s. The exhaust velocity is 200 m/s, with 265 °C as outlet temperature. The mass flow rate of the gas (air-exhaust) through the engine is 5.8 kg/s. The heating value of the fuel is 47.3 MJ/kg and the combustion (to be considered as an external source) has an efficiency equal to 100%. Assume the gas specific heat at constant pressure (cp) to be 1.25 kJ/(kg K). Determine the kg of fuel required during a 4.2 hours flight to one decimal value.
Fuel consumption refers to the rate at which fuel is consumed or burned by an engine or device, typically measured in units such as liters per kilometer or gallons per hour.
To determine the amount of fuel required, we need to calculate the heat input to the system. The heat input can be calculated using the mass flow rate of the gas, the specific heat at constant pressure, and the change in temperature of the gas. First, we calculate the change in enthalpy of the gas using the specific heat and temperature difference. Then, we multiply the change in enthalpy by the mass flow rate to obtain the heat input. Next, we divide the heat input by the heating value of the fuel to determine the amount of fuel required in kilogram. Finally, we can calculate the fuel consumption for a 4.2-hour flight by multiplying the fuel consumption rate by the flight duration.
Learn more about Fuel consumption here:
https://brainly.com/question/24338873
#SPJ11
Which statement is not correct about heat convection for external flow?
A. The flow pattern over the tube bundle is different from the single tube.
B. The same correlation for the Nusselt number can be used for cylinders and spheres.
C. The flow pattern over the tube bundle with aligned (in-line) configuration is different from that with staggered configuration.
D. The fluid thermophysical properties are usually evaluated at the film temperature, which is the average of the surface and the mainstream temperatures.
A statement which not correct about heat convection for external flow is The same correlation for the Nusselt number can be used for cylinders and spheres.
The correct option is B)
What is heat convection?Heat convection is a mechanism in which thermal energy is transferred from one place to another by moving fluids, including gases and liquids. Heat transfer occurs in fluids through advection or forced flow, natural convection, or radiation.
Convection in external flow is caused by forced flow over an object. The fluid moves over the object, absorbing heat and carrying it away. The rate at which heat is transferred in forced flow depends on the velocity of the fluid, the thermodynamic and transport properties of the fluid, and the size and shape of the object
.The Nusselt number can be calculated to understand the relationship between heat transfer, fluid properties, and object characteristics. However, the same Nusselt number correlation cannot be used for both cylinders and spheres since the flow pattern varies significantly. This is why option B is not correct.
As a result, option B, "The same correlation for the Nusselt number can be used for cylinders and spheres," is not correct about heat convection for external flow.
Learn more about convection at
https://brainly.com/question/9535726
#SPJ11
Design a driven-right leg circuit , and show all resistor values. For 1 micro amp of 60 HZ current flowing through the body,the common mode voltage should be reduced to 2mv. the circuit should supply no more than 5micro amp when the amplifier is saturated at plus or minus 13v
The driven-right leg circuit design eliminates the noise from the output signal of a biopotential amplifier, resulting in a higher SNR.
A driven-right leg circuit is a physiological measurement technology. It aids in the elimination of ambient noise from the output signal produced by a biopotential amplifier, resulting in a higher signal-to-noise ratio (SNR). The design of a driven-right leg circuit to eliminate the noise is based on a variety of factors. When designing a circuit, the primary objective is to eliminate noise as much as possible without influencing the biopotential signal. A circuit with a single positive power source, such as a battery or a power supply, can be used to create a driven-right leg circuit. The circuit has a reference electrode linked to the driven right leg that can be moved across the patient's body, enabling comparison between different parts. Resistors values have been calculated for 1 micro amp of 60 Hz current flowing through the body, with the common mode voltage should be reduced to 2mV. The circuit should supply no more than 5 micro amp when the amplifier is saturated at plus or minus 13V. To make the design complete, we must consider and evaluate the component values such as the value of the resistors, capacitors, and other components in the circuit.
Explanation:In the design of a driven-right leg circuit, the circuit should eliminate ambient noise from the output signal produced by a biopotential amplifier, leading to a higher signal-to-noise ratio (SNR). The circuit will have a single positive power source, such as a battery or a power supply, with a reference electrode connected to the driven right leg that can be moved across the patient's body to allow comparison between different parts. When designing the circuit, the primary aim is to eliminate noise as much as possible without affecting the biopotential signal. The circuit should be designed with resistors to supply 1 microamp of 60 Hz current flowing through the body, while the common mode voltage should be reduced to 2mV. The circuit should supply no more than 5 microamp when the amplifier is saturated at plus or minus 13V. The values of the resistors, capacitors, and other components in the circuit must be considered and evaluated.
To know more about circuit visit:
brainly.com/question/12608516
#SPJ11
An inductor L, resistor R, of value 52 and resistor R. of value 102 are connected in series with a voltage source of value V(t) = 50 cos cot. If the power consumed by the R, resistor is 10 W. calculate the power factor of the circuit. [5 Marks]
Resistance of R1, R = 52 Ω
Resistance of R2, R = 102 Ω
Voltage source, V(t) = 50 cos (ωt)
Power consumed by R1, P = 10 W
We know that the total power consumed by the circuit is given as, PT = PR1 + PR2 + PL Where, PL is the power consumed by the inductor. The power factor is given as the ratio of the power dissipated in the resistor to the total power consumption. Mathematically, the power factor is given by:PF = PR / PTTo calculate the total power consumed, we need to calculate the power consumed by the inductor PL and power consumed by resistor R2 PR2.
First, let us calculate the impedance of the circuit. Impedance, Z = R + jωL
Here, j = √(-1)ω
= 2πf = 2π × 50
= 100πR
= 52 Ω
Inductive reactance, XL = ωL
= 100πL
Therefore, Z = 52 + j100πL
The real part of the impedance represents the resistance R, while the imaginary part represents the inductive reactance XL. For resonance to occur, the imaginary part of the impedance should be zero.
Hence, 50πL = 102L
= 102 / 50π
Now, we can calculate the power consumed by the inductor, PL = I²XL Where I is the current through the inductor.
Therefore, the power factor of the circuit is 0.6585.
To know more about Resistance visit:
https://brainly.com/question/29427458
#SPJ11
As an energy engineer, has been asked from you to prepare a design of Pelton turbine in order to establish a power station worked on the Pelton turbine on the Tigris River. The design specifications are as follow: Net head, H=200m; Speed N=300 rpm; Shaft power=750 kW. Assuming the other required data wherever necessary.
To design a Pelton turbine for a power station on the Tigris River with the specified parameters, the following design considerations should be taken into account:
Net head (H): 200 m
Speed (N): 300 rpm
Shaft power: 750 kW
To calculate the water flow rate, we need to know the specific speed (Ns) of the Pelton turbine. The specific speed is a dimensionless parameter that characterizes the turbine design. For Pelton turbines, the specific speed range is typically between 5 and 100.
We can use the formula:
Ns = N * √(Q) / √H
Where:
Ns = Specific speed
N = Speed of the turbine (rpm)
Q = Water flow rate (m³/s)
H = Net head (m)
Rearranging the formula to solve for Q:
Q = (Ns² * H²) / N²
Assuming a specific speed of Ns = 50:
Q = (50² * 200²) / 300²
Q ≈ 0.444 m³/s
The bucket diameter is typically determined based on the specific speed and the water flow rate. Let's assume a specific diameter-speed ratio (D/N) of 0.45 based on typical values for Pelton turbines.
D/N = 0.45
D = (D/N) * N
D = 0.45 * 300
D = 135 m
The number of buckets can be estimated based on experience and typical values for Pelton turbines. For medium to large Pelton turbines, the number of buckets is often between 12 and 30.
Let's assume 20 buckets for this design.
To design a Pelton turbine for the specified power station on the Tigris River with a net head of 200 m, a speed of 300 rpm, and a shaft power of 750 kW, the recommended design parameters are:
Water flow rate (Q): Approximately 0.444 m³/s
Bucket diameter (D): 135 m
Number of buckets: 20
Further detailed design calculations, including the runner blade design, jet diameter, nozzle design, and turbine efficiency analysis, should be performed by experienced turbine designers to ensure optimal performance and safety of the Pelton turbine in the specific application.
To know more about turbine, visit;
https://brainly.com/question/11966219
#SPJ11
A cantilever beam has length 24 in and a force of 2000 lbf at the free end. The material is A36/. For a factor of safety of 2, find the required cross section dimensions of the beam. The cross section can be assumed as square, rectangular, pipe or I-beam.
The formula for the shear stress in a cantilever beam subjected to a transverse force can be used to find the required cross-section dimensions for the beam.The formula is; τmax = VQ/ItWhere;V = the maximum force (2000 lbs.)Q = the first moment of the area around the neutral axis.
I = the moment of inertia.The maximum shear stress for A36 steel is 20,000 psi. For a factor of safety of 2, this value can be doubled to 40,000 psi.So,τmax = VQ/It = 40000 psi.The dimensions of the beam can be found using the shear stress equation and the bending moment equation.
Mmax = PL/4 = 2000 lbs. × 24 in./4 = 12000 in. lbs.τmax = Mmax*c/I = 40000 psiThe required cross-section dimensions of the beam can be found as follows;For a square beam;a = b ⇒ c = a / √6P = 12000 lbs.
[tex]Q = b × h × h / 2 = a × a × a / 2√3h = a/√3I = a^4/12c = I × τmax / b × h²a = (6 × P / (τmax × h²))^(1/4).[/tex]
For a rectangular beam;
[tex]a < b ⇒ c = a / √6P = 12000 lbs.Q = b × h × h / 2 = a × b × b / 2h = √(2a / 3)I = ab^3/12c = I × τmax / b × h²a = (6 × P / (τmax × h² × b))^(1/3) × b^2/3.[/tex]
For a pipe;a = b and D = 2rP = 12000 lbs.τavg = P/ (2A - a²) = 40000 psiThe diameter of the pipe can be found using the following equation;
[tex]r = (P/2τavg)(D² - d²)/D²d = D - 2ta = πr² - πr²/4A = πr²D = 2r(1 + (4a²/(πr^2))^(1/2)).[/tex]
For an I-beam;the required dimensions can be found by assuming that the beam is an equivalent rectangular beam and then using the above rectangular beam formula. In the equivalent rectangular beam, the width of the flanges is equal to the thickness of the web multiplied by a factor of 1.2 to 1.5. The thickness of the web is taken as the distance between the midpoints of the flanges.
From the above, we can conclude that the cross-section dimensions of a square beam, rectangular beam, pipe, and I-beam can be found.
To know more about shear stress :
brainly.com/question/12910262
#SPJ11
A connecting rod of length /= 11.67in has a mass m3 = 0.0234blob. Its mass moment of inertia is 0.614 blob-in². Its CG is located 0.35/ from the crank pin, point A. A crank of length r= 4.132in has a mass m₂ = 0.0564blob. Its mass moment of inertia about its pivot is 0.78 blob-in². Its CG is at 0.25r from the main pin, O₂. The piston mass= 1.012 blob. The thickness of the cylinder wall is 0.33in, and the Bore (B) is 4in. The gas pressure is 500psi. The linkage is running at a constant speed 1732rpm and crank position is 37.5°. If the crank has been exact static balanced with a mass equal to me and balance radius of r, what is the inertia force on the Y-direction?
The connecting rod's mass moment of inertia is 0.614 blob-in², and its mass m3 is 0.0234blob.
Its CG is located 0.35r from the crank pin, point A.
The crank's length is r = 4.132in, and its mass is m₂ = 0.0564blob, and its CG is at 0.25r from the main pin, O₂.
The thickness of the cylinder wall is 0.33in, and the Bore (B) is 4in.
The piston mass is 1.012 blob.
The gas pressure is 500psi.
The linkage is running at a constant speed of 1732 rpm, and the crank position is 37.5°.
If the crank is precisely static balanced with a mass equal to me and a balanced radius of r, the inertia force on the Y-direction will be given as;
I = Moment of inertia of the system × Angular acceleration of the system
I = [m3L3²/3 + m2r2²/2 + m1r1²/2 + Ic] × α
where,
Ic = Mass moment of inertia of the crank about its pivot
= 0.78 blob-in²m1
= Mass of the piston
= 1.012 blob
L = Length of the connecting rod
= 11.67 inr
1 = Radius of the crank pin
= r
= 4.132 inm
2 = Mass of the crank
= 0.0564 blob
α = Angular acceleration of the system
= (2πn/60)²(θ2 - θ1)
where, n = Engine speed
= 1732 rpm
θ2 = Final position of the crank
= 37.5° in radians
θ1 = Initial position of the crank
= 0° in radians
Substitute all the given values into the above equation,
I = [(0.0234 x 11.67²)/3 + (0.0564 x 4.132²)/2 + (1.012 x 4.132²)/2 + 0.614 + 0.0564 x r²] x (2π x 1732/60)²(37.5/180π - 0)
I = [0.693 + 1.089 + 8.464 + 0.614 + 0.0564r²] x 41.42 x 10⁶
I = 3.714 + 5.451r² × 10⁶ lb-in²-sec²
Now, inertia force along the y-axis is;
Fy = Iω²/r
Where,
ω = Angular velocity of the system
= (2πn/60)
where,
n = Engine speed
= 1732 rpm
Substitute all the values into the above equation;
Fy = [3.714 + 5.451r² × 10⁶] x (2π x 1732/60)²/r
Fy = (7.609 x 10⁹ + 1.119r²) lb
To know more about velocity visit:
https://brainly.com/question/30559316
#SPJ11
Steam enters the high-pressure turbine of a steam power plant that operates on the ideal reheat Rankine cycle at 6 MPa and 500°C and leaves as saturated vapor. Steam is then reheated to 400°C before it expands to a pressure of 10 kPa. Heat is transferred to the steam in the boiler at a rate of 6 × 104 kW. Steam is cooled in the condenser by the cooling water from a nearby river, which enters the condenser at 7°C. Show the cycle on a T-s diagram with respect to saturation lines, and determine (a) the pressure at which reheating takes place, (b) the net power output and thermal efficiency, and (c) the minimum mass flow rate of the cooling water required. mains the same
a) Pressure at which reheating takes place The given steam power plant operates on the ideal reheat Rankine cycle. Steam enters the high-pressure turbine at 6 MPa and 500°C and leaves as saturated vapor.
The cycle on a T-s diagram with respect to saturation lines can be represented as shown below :From the above diagram, it can be observed that the steam is reheated between 6 MPa and 10 kPa. Therefore, the pressure at which reheating takes place is 10 kPa .
b) Net power output and thermal efficiency The net power output of the steam power plant can be given as follows: Net Power output = Work done by the turbine – Work done by the pump Work done by the turbine = h3 - h4Work done by the pump = h2 - h1Net Power output = h3 - h4 - (h2 - h1)Thermal efficiency of the steam power plant can be given as follows: Thermal Efficiency = (Net Power Output / Heat Supplied) x 100Heat supplied =[tex]6 × 104 kW = Q1 + Q2 + Q3h1 = hf (7°C) = 5.204 kJ/kgh2 = hf (10 kPa) = 191.81 kJ/kgh3 = hg (6 MPa) = 3072.2 kJ/kgh4 = hf (400°C) = 2676.3 kJ/kgQ1 = m(h3 - h2) = m(3072.2 - 191.81) = 2880.39m kJ/kgQ2 = m(h4 - h1) = m(26762880.39m - 2671.09m = 209.3m x 100= [209.3m / (2880.39m + 2671.09m)] x 100= 6.4 %c)[/tex]
Minimum mass flow rate of the cooling water required Heat rejected by the steam to the cooling water can be given as follows: Q rejected = mCpΔTwhere m is the mass flow rate of cooling water, Cp is the specific heat capacity of water, and ΔT is the temperature difference .Qrejected = Q1 - Q2 - Q3 = 209.3 m kW Q rejected = m Cp (T2 - T1)where T2 = temperature of water leaving the condenser = 37°C, T1 = temperature of water entering the condenser = 7°C, and Cp = 4.18 kJ/kg K Therefore, m = Qrejected / (Cp (T2 - T1))= 209.3 x 103 / (4.18 x 30)= 1.59 x 103 kg/s = 1590 kg/s Thus, the minimum mass flow rate of cooling water required is 1590 kg/s.
To know more about saturated vapor visit:
brainly.com/question/32499566
#SPJ11
8. Newton's law for the shear stress is a relationship between a) Pressure, velocity and temperature b) Shear stress and velocity c) Shear stress and the shear strain rate d) Rate of shear strain and temperature 9. A liquid compressed in cylinder has an initial volume of 0.04 m² at 50 kg/cm' and a volume of 0.039 m² at 150 kg/em' after compression. The bulk modulus of elasticity of liquid is a) 4000 kg/cm² b) 400 kg/cm² c) 40 × 10³ kg/cm² d) 4 x 10 kg/cm² 10. In a static fluid a) Resistance to shear stress is small b) Fluid pressure is zero c) Linear deformation is small d) Only normal stresses can exist 11. Liquids transmit pressure equally in all the directions. This is according to a) Boyle's law b) Archimedes principle c) Pascal's law d) Newton's formula e) Chezy's equation 12. When an open tank containing liquid moves with an acceleration in the horizontal direction, then the free surface of the liquid a) Remains horizontal b) Becomes curved c) Falls down on the front wall d) Falls down on the back wall 13. When a body is immersed wholly or partially in a liquid, it is lifted up by a force equal to the weight of liquid displaced by the body. This statement is called a) Pascal's law b) Archimedes's principle c) Principle of flotation d) Bernoulli's theorem 14. An ideal liquid a) has constant viscosity b) has zero viscosity c) is compressible d) none of the above. 15. Units of surface tension are a) J/m² b) N/kg c) N/m² d) it is dimensionless 16. The correct formula for Euler's equation of hydrostatics is DE = a) a-gradp = 0 b) a-gradp = const c) à-gradp- Dt 17. The force acting on inclined submerged area is a) F = pgh,A b) F = pgh,A c) F = pgx,A d) F = pgx,A
The correct answers for the fluid mechanics problems are:
(c) Shear stress and the shear strain rate.
(a) 4000 kg/cm².
(b) Fluid pressure is zero.
(c) Pascal's law.
(a) Remains horizontal.
(b) Archimedes's principle.
b) has zero viscosity
(c) N/m².
∇·p = g
(b) F = pg[tex]h_{p}[/tex]A
How to interpret Fluid mechanics?8) Newton's law for the shear stress states that the shear stress is directly proportional to the velocity gradient.
Thus, Newton's law for the shear stress is a relationship between c) Shear stress and the shear strain rate .
9) Formula for Bulk modulus here is:
Bulk modulus =∆p/(∆v/v)
Thus:
∆p = 150 - 50 = 100 kg/m²
∆v = 0.040 - 0.039 = 0.001
Bulk modulus = 100/(0.001/0.040)
= 4000kg/cm²
10) In a static fluid, it means no motion as it is at rest and as such the fluid pressure is zero.
11) Pascal's law says that pressure applied to an enclosed fluid will be transmitted without a change in magnitude to every point of the fluid and to the walls of the container.
12) When an open tank containing liquid moves with an acceleration in the horizontal direction, then the free surface of the liquid a) Remains horizontal
13) When a body is immersed wholly or partially in a liquid, it is lifted up by a force equal to the weight of liquid displaced by the body. This statement is called b) Archimedes's principle
14) An ideal fluid is a fluid that is incompressible and no internal resistance to flow (zero viscosity)
15) Surface tension is also called Pressure or Force over the area. Thus:
The unit of surface tension is c) N/m²
16) The correct formula for Euler's equation of hydrostatics is:
∇p = ρg
17) The force acting on inclined submerged area is:
F = pg[tex]h_{p}[/tex]A
Read more about Fluid Mechanics at: https://brainly.com/question/31174575
#SPJ4
Find the best C(z) to match the continuous system C(s)
• finding a discrete equivalent to approximate the differential equation of an analog
controller is equivalent to finding a recurrence equation for the samples of the control
• methods are approximations! no exact solution for all inputs
• C(s) operates on complete time history of e(t)
To find the best C(z) to match the continuous system C(s), we need to consider the following points:• Finding a discrete equivalent to approximate the differential equation of an analog controller is equivalent to finding a recurrence equation for the samples of the control.
The methods are approximations, and there is no exact solution for all inputs.• C(s) operates on a complete time history of e(t).Therefore, to convert a continuous-time transfer function, C(s), to a discrete-time transfer function, C(z), we use one of the following approximation techniques: Step Invariant Method, Impulse Invariant Method, or Bilinear Transformation.
The Step Invariant Method is used to convert a continuous-time system to a discrete-time system, and it is based on the step response of the continuous-time system. The impulse invariant method is used to convert a continuous-time system to a discrete-time system, and it is based on the impulse response of the continuous-time system.
To know more about continuous visit:
https://brainly.com/question/31523914
#SPJ11
ie lbmol of pentane gas (C₅H₁₂) reacts with the theoretical amount of air in a closed, rigid tank. Initially, the reactants are at 77°F, 1 m. After complete combustion, the temperature in the tank is 1900°R. Assume air has a molar analysis of 21% O₂ and 79% N₂. Determine the heat transfer, in Btu. Q = i Btu
The heat transfer, Q, can be calculated using the equation:
Q = ΔHc + ΔHg. To determine the heat transfer in Btu for the given scenario, we need to calculate the heat released during the combustion of pentane and the subsequent increase in temperature of the gases in the tank.
Where ΔHc is the heat released during combustion and ΔHg is the heat gained by the gases in the tank due to the increase in temperature. To calculate ΔHc, we need to determine the moles of pentane reacted and the heat of combustion per mole of pentane. Since pentane reacts with air, we also need to consider the moles of oxygen available in the air. The heat of combustion of pentane can be obtained from reference sources. To calculate ΔHg, we can use the ideal gas law and the given initial and final temperatures, along with the molar analysis of air, to determine the change in enthalpy. By summing up ΔHc and ΔHg, we can obtain the total heat transfer, Q, in Btu. It's important to note that the actual calculations involve several steps and equations, including stoichiometry, enthalpy calculations, and gas laws. The specific values and formulas needed for the calculations are not provided in the question, so an exact numerical result cannot be determined without that information.
Learn more about stoichiometry here:
https://brainly.com/question/28780091
#SPJ11
SUBJECT: INTRODUCTION TO FUZZY/NEURAL SYSTEM
Implement E-OR function using McCulloch-Pitts Neuron?
You have implemented the E-OR function using a McCulloch-Pitts neuron.
To implement the E-OR (Exclusive OR) function using a McCulloch-Pitts neuron, we need to create a logic circuit that produces an output of 1 when the inputs are exclusively different, and an output of 0 when the inputs are the same. Here's how you can implement it:
Define the inputs: Let's assume we have two inputs, A and B.
Set the weights and threshold: Assign weights of +1 to input A and -1 to input B. Set the threshold to 0.
Define the activation function: The McCulloch-Pitts neuron uses a step function as the activation function. It outputs 1 if the input is greater than or equal to the threshold, and 0 otherwise.
Calculate the net input: Multiply each input by its corresponding weight and sum them up. Let's call this value net_input.
net_input = (A * 1) + (B * -1)
Apply the activation function: Compare the net input to the threshold. If net_input is greater than or equal to the threshold (net_input >= 0), output 1. Otherwise, output 0.
Output = 1 if (net_input >= 0), else 0.
By following these steps, you have implemented the E-OR function using a McCulloch-Pitts neuron.
to learn more about E-OR function.
https://brainly.com/question/31499369?referrer=searchResults
) A symmetrical compound curve consists of left transition (L-120m), circular transition (R=340m), and right transition curve. Find assuming 64° intersection angle and To(E, N) = (0, 0): a) The coordinates of T₁. b) The deflection angle and distance needed to set T2 from T1. c) The coordinates of T2. (4%) (6%) (4%) 3) Given: a mass diagram as shown below with 0.85 grading factor applied to cut
A symmetrical compound curve is made up of a left transition curve, a circular transition curve, and a right transition curve. Given the intersection angle of 64 degrees and a point To(E,N)=(0,0), the coordinates of T1, the deflection angle, and distance needed to set T2 from T1, as well as the coordinates of T2, are to be found
To find the coordinates of T1, we first need to calculate the length of the circular curve and the lengths of both the transition curves. Lt = 120 m (length of left transition curve)
To find the deflection angle and distance needed to set T2 from T1, we first need to calculate the length of the right transition curve. Lt = 120 m (length of left transition curve)
Lr = 5.94 m (length of the circular curve)
Ln = Lt + Lr (total length of left transition curve and circular curve)
Ln = 120 + 5.94
= 125.94 mRr
= 340 m (radius of the circular curve)γ
= 74.34 degrees (central angle of the circular curve)y
= 223.4 m (ordinate of the circular curve).
To know more about compound visit:
https://brainly.com/question/14117795
#SPJ11
2. The total copper loss of a transformer as determined by a short-circuit test at 20°C is 630 watts, and the copper loss computed from the true ohmic resistance at the same temperature is 504 watts. What is the load loss at the working temperature of 75°C?
Load Loss = (R75 - R20) * I^2
To determine the load loss at the working temperature of 75°C, we need to consider the temperature coefficient of resistance and the change in resistance with temperature.
Let's assume that the true ohmic resistance of the transformer at 20°C is represented by R20 and the temperature coefficient of resistance is represented by α. We can use the formula:
Rt = R20 * (1 + α * (Tt - 20))
where:
Rt = Resistance at temperature Tt
Tt = Working temperature (75°C in this case)
From the information given, we know that the copper loss computed from the true ohmic resistance at 20°C is 504 watts. We can use this information to find the value of R20.
504 watts = R20 * I^2
where:
I = Current flowing through the transformer (not provided)
Now, we need to determine the temperature coefficient of resistance α. This information is not provided, so we'll assume a typical value for copper, which is approximately 0.00393 per °C.
Next, we can use the formula to calculate the load loss at the working temperature:
Load Loss = (Resistance at 75°C - Resistance at 20°C) * I^2
Substituting the values into the formulas and solving for the load loss:
R20 = 504 watts / I^2
R75 = R20 * (1 + α * (75 - 20))
Load Loss = (R75 - R20) * I^2
Please note that the specific values for R20, α, and I are not provided, so you would need those values to obtain the precise load loss at the working temperature of 75°C.
to learn more about coefficient of resistance.
https://brainly.com/question/9793655
#SPJ11
i (hydraulic gradient) = 0.0706
D= 3 mm v=0.2345 mis Find Friction factor ? Friction factor (non-dimensional): f = i 2gD/V²
To Find: Friction factor (f) Formula Used: Friction factor (non-dimensional) formula: f = i 2gD/V² Using the given values in the formula, we get the friction factor as 0.3184.
Hydraulic gradient (i) = 0.0706
Diameter of pipe (D) = 3 mm
Velocity of water (V) = 0.2345 m/s
Using the formula for friction factor, f = i 2gD/V²
= (0.0706)2 × 9.81 × 0.003 / (0.2345)²
= 0.01754 / 0.05501
= 0.3184 (approximately)
Therefore, the friction factor (f) is 0.3184. Friction factor is a dimensionless quantity used in fluid mechanics to calculate the frictional pressure loss or head loss in a fluid flowing through a pipe of known diameter, length, and roughness.
Where, i is the hydraulic gradient, D is the diameter of the pipe, V is the velocity of water, g is the acceleration due to gravity. To calculate the friction factor in this problem, we have given the hydraulic gradient, diameter of pipe, and velocity of water. Using the given values in the formula, we get the friction factor as 0.3184.
To know more about visit:
https://brainly.com/question/30168705
#SPJ11
Assume a 4800 nT/min geomagnetic storm disturbance hit the United States. You are tasked with estimating the economic damage resulting from the storm. a. If there were no power outages, how much impact (in dollars) would there be in the United States just from the "value of lost load?" Explain the assumptions you are making in your estimate. [ If you are stuck, you can assume 200 GW of lost load for 10 hours and a "value of lost load" of $7,500 per MWh.] b. If two large power grids collapse and 130 million people are without power for 2 months, how much economic impact would that cause to the United States? Explain the assumptions you are making in your estimate.
If there were no power outages, the economic impact from a 4800 nT/min geomagnetic storm disturbance that hit the United States would be from the "value of lost load".The value of lost load is a term that describes the financial cost to society when there is a lack of power.
The assumptions that are being made are as follows: The power loss is due to the storm disturbance. It is assumed that 200 GW of power were lost for 10 hours at a value of lost load of $7,500 per MWh. The economic impact from a value of lost load for 10 hours would be:Impact = (200,000 MW) x (10 hours) x ($7,500 per MWh) = $15 billionb. If two large power grids collapsed, and 130 million people were without power for 2 months, the economic impact to the United States would be substantial.The assumptions that are being made are as follows: The power loss is due to the storm disturbance. It is assumed that two power grids collapsed, and 130 million people were without power for two months.
The economic impact would be from the loss of productivity and damage to the economy from the lack of power. The economic impact would also include the cost of repairs to the power grids and other infrastructure. Some estimates have put the economic impact at over $1 trillion.
To know more about geomagnetic storm visit:
https://brainly.com/question/17131865
#SPJ11
Question 5 (15 marks)
For an assembly manufactured at your organization, a
flywheel is retained on a shaft by six bolts, which are each
tightened to a specified torque of 90 Nem x 10/N-m,
‘The results from a major 5000 bolt study show a normal
distribution, with a mean torque reading of 83.90 N-m, and a
standard deviation of 1.41 Nm.
2. Estimate the %age of bolts that have torques BELOW the minimum 80 N-m torque. (3)
b. Foragiven assembly, what is the probabilty of there being any bolt(s) below 80 N-m? (3)
¢. Foragiven assembly, what isthe probability of zero bolts below 80 N-m? (2)
Question 5 (continued)
4. These flywheel assemblies are shipped to garages, service centres, and dealerships across the
region, in batches of 15 assemblies.
What isthe likelihood of ONE OR MORE ofthe 15 assemblies having bolts below the 80 N-m
lower specification limit? (3 marks)
. Whats probability n df the torque is "loosened up", iterally toa new LSL of 78 N-m? (4 marks)
The answer to the first part, The standard deviation is 1.41 N-m.
How to find?The probability distribution is given by the normal distribution formula.
z=(80-83.9)/1.41
=-2.77.
The percentage of bolts that have torques below the minimum 80 N-m torque is:
P(z < -2.77) = 0.0028
= 0.28%.
Thus, there is only 0.28% of bolts that have torques below the minimum 80 N-m torque.
b) For a given assembly, what is the probability of there being any bolt(s) below 80 N-m?
The probability of there being any bolt(s) below 80 N-m is given by:
P(X < 80)P(X < 80)
= P(Z < -2.77)
= 0.0028
= 0.28%.
Thus, there is only a 0.28% probability of having bolts below 80 N-m in a given assembly.
c) For a given assembly, what is the probability of zero bolts below 80 N-m?The probability of zero bolts below 80 N-m in a given assembly is given by:
P(X ≥ 80)P(X ≥ 80) = P(Z ≥ -2.77)
= 1 - 0.0028
= 0.9972
= 99.72%.
Thus, there is a 99.72% probability of zero bolts below 80 N-m in a given assembly.
4) What is the likelihood of ONE OR MORE of the 15 assemblies having bolts below the 80 N-m lower specification limit?
The probability of having one or more of the 15 assemblies with bolts below the 80 N-m lower specification limit is:
P(X ≥ 1) =
1 - P(X = 0)
= 1 - 0.9972¹⁵
= 0.0418
= 4.18%.
Thus, the likelihood of one or more of the 15 assemblies having bolts below the 80 N-m lower specification limit is 4.18%.
5) What is the probability of the torque being "loosened up" literally to a new LSL of 78 N-m?
The probability of the torque being loosened up to a new LSL of 78 N-m is:
P(X < 78)P(X < 78)
= P(Z < -5.74)
= 0.0000
= 0%.
Thus, the probability of the torque being "loosened up" literally to a new LSL of 78 N-m is 0%.
To know more on Probability visit:
https://brainly.com/question/31828911
#SPJ11
11kg of R-134a at 320kPa fills a rigid tank whose volume is 0.011m³. Find the quality, the temperature, the total internal energy and enthalpy of the system. If the container heats up and the pressure reaches to 600kPa, find the temperature, total energy and total enthalpy at the end of the process.
The quality, temperature, total internal energy, and enthalpy of the system are given by T2 is 50.82°C (final state) and U1 is 252.91 kJ/kg (initial state) and U2 is 442.88 kJ/kg (final state) and H1 277.6 kJ/kg (initial state) and H2 is 484.33 kJ/kg (final state).
Given data:
Mass of R-134a (m) = 11kg
The pressure of R-134 at an initial state
(P1) = 320 kPa Volume of the container (V) = 0.011 m³
The formula used: Internal energy per unit mass (u) = h - Pv
Enthalpy per unit mass (h) = u + Pv Specific volume (v)
= V/m Quality (x) = (h_fg - h)/(h_g - h_f)
1. To find the quality of R-134a at the initial state: From the steam table, At 320 kPa, h_g = 277.6 kJ/kg, h_f = 70.87 kJ/kgh_fg = h_g - h_f= 206.73 kJ/kg Enthalpy of the system at initial state (H1) can be calculated as H1 = h_g = 277.6 kJ/kg Internal energy of the system at initial state (U1) can be calculated as:
U1 = h_g - Pv1= 277.6 - 320*10³*0.011 / 11
= 252.91 kJ/kg
The quality of R-134a at the initial state (x1) can be calculated as:
x1 = (h_fg - h1)/(h_g - h_f)
= (206.73 - 277.6)/(277.6 - 70.87)
= 0.5
The volume of the container is rigid, so it will not change throughout the process.
2. To find the temperature, total internal energy, and total enthalpy at the final state:
Using the values from an initial state, enthalpy at the final state (h2) can be calculated as:
h2 = h1 + h_fg
= 277.6 + 206.73
= 484.33 kJ/kg So the temperature of R-134a at the final state is approximately 50.82°C. The total enthalpy of the system at the final state (H2) can be calculated as,
= H2
= 484.33 kJ/kg
Thus, the quality, temperature, total internal energy, and enthalpy of the system are given by:
x1 = 0.5 (initial state)T2 = 50.82°C (final state) U1 = 252.91 kJ/kg (initial state) U2 = 442.88 kJ/kg (final state) H1 = 277.6 kJ/kg (initial state)H2 = 484.33 kJ/kg (final state)
To know more about enthalpy please refer:
https://brainly.com/question/826577
#SPJ11
A boundary layer develops with no pressure gradient imposed. The momentum thickness is found to be Θ = δ/4. At some location, the boundary layer thickness is measured to be 8mm. At another location 4mm downstream, the thickness is measured to be 16 mm. Use the momentum integral equation to estimate the value of the skin-friction coefficient C’f, in the vicinity of these two measurements.
The value of the skin-friction coefficient C’ f in the vicinity of these two measurements using the momentum integral equation is 0.0031.
The thickness of the boundary layer grows due to the movement of the fluid and, to some extent, the shear stresses produced as the fluid moves across a surface. No pressure gradient has been imposed in this scenario, implying that the fluid velocity is entirely determined by the local shear stresses within the fluid.
According to the question, Θ = δ/4, where Θ is the momentum thickness. This indicates that the momentum thickness is a quarter of the displacement thickness, δ. To use the momentum integral equation, the value of the momentum thickness must be found first. According to the problem statement, the momentum thickness is given as Θ = δ/4.
To know more coefficient visit:-
https://brainly.com/question/16546282
#SPJ11
When using the flexure formula for a beam, the maximum normal stress occurs where ?
Group of answer choices
A. at a point on the cross-sectional area farthest away from the neutral axis
B. at a point on the cross-sectional area closest to the neutral axis
C. right on the neutral axis
D. halfway between the neutral axis and the edge of the beam
The maximum normal stress occurs at a point on the cross-sectional area farthest away from the neutral axis.
Option A is correct. When a beam is subjected to bending, the top fibers of the beam are compressed while the bottom fibers are stretched. The neutral axis is the location within the beam where there is no change in length during bending. As we move away from the neutral axis, the distance between the fibers increases, leading to higher strains and stresses. Therefore, the point on the cross-sectional area farthest away from the neutral axis experiences the maximum normal stress. This is important to consider when analyzing the structural integrity and strength of beams under bending loads.
To know more about neutral axis visit
brainly.com/question/31234307
#SPJ11
A blood specimen has a hydrogen ion concentration of 40 nmol/liter and a partial pressure of carbon dioxide (PCO2) of 60 mmHg. Calculate the hydrogen ion concentration. Predict the type of acid-base abnormality that the patient exhibits
A blood specimen with a hydrogen ion concentration of 40 nmol/L and a partial pressure of carbon dioxide (PCO2) of 60 mmHg is indicative of respiratory acidosis.
The normal range for hydrogen ion concentration is 35-45 nmol/L.A decrease in pH or hydrogen ion concentration is known as acidemia. Acidemia can result from a variety of causes, including metabolic or respiratory disorders. Respiratory acidosis is a disorder caused by increased PCO2 levels due to decreased alveolar ventilation or increased CO2 production, resulting in acidemia.
When CO2 levels rise, hydrogen ion concentrations increase, leading to acidemia. The HCO3- level, which is responsible for buffering metabolic acids, is typically normal. Increased HCO3- levels and decreased H+ levels result in alkalemia. HCO3- levels and H+ levels decrease in metabolic acidosis.
To know more about Ion Concentration visit-
https://brainly.com/question/33056891
#SPJ11
Determine the level of service? for six lanes undivided level highway. The width of lane, shoulder on the right side, and shoulder on the left side are 10 ft, 2 ft, and 2 ft respectively. The directional hour volume is 3500 Veh/h. The traffic composition includes 15% trucks and 1% RVs. The peak hour factor is 0.80. Unfamiliar drivers use the road that has 10 access points per mile. The design speed is 55 mi/h. Discuss possible modifications to upgrade the level of service?
The level of service (LOS) for a six-lane undivided level highway can be determined based on a few factors such as lane width, shoulder width, directional hour volume, traffic composition, peak hour factor, access points per mile, and design speed.
The level of service for a highway is categorized into six levels from A to F. Level A is for excellent service, and level F is for the worst service. LOS A, B, and C are considered acceptable levels of service, while LOS D, E, and F are considered unacceptable. The following are the steps to determine the level of service for the given information:
Step 1: Calculate the flow rate (q)
The flow rate is calculated by multiplying the directional hour volume by the peak hour factor.
q = 3500 x 0.80 = 2800 veh/h
Step 2: Calculate the capacity (C)
The capacity of a six-lane undivided highway is calculated using the following formula:
C = 6 x (w/12) x r x f
Where w is the width of each lane, r is the density of traffic, and f is the adjustment factor for lane width and shoulder width.
C = 6 x (10/12) x (2800/60) x 0.89 = 1480 veh/h
Step 3: Calculate the density (k)
The density of traffic is calculated using the following formula:
k = q/v
Where v is the speed of the vehicle.
v = 55 mph = 55 x 1.47 = 80.85 ft/s
k = 2800/3600 x 80.85 = 62.65 veh/mi
Step 4: Calculate the LOS
The LOS is calculated using the Highway Capacity Manual (HCM) method.
LOS = f(k, C)
From the HCM table, it can be determined that the LOS for a six-lane undivided highway with the given information is D.
Possible modifications to upgrade the level of service:
1. Widening the shoulder on the right side and the left side from 2 ft to 4 ft. This can increase the adjustment factor (f) from 0.89 to 0.91, which can improve the capacity (C) and the LOS.
2. Reducing the number of access points per mile from 10 to 6. This can decrease the density of traffic (k), which can improve the LOS.
3. Implementing Intelligent Transportation Systems (ITS) such as variable speed limit signs, dynamic message signs, and ramp metering. This can improve the traffic flow and reduce congestion, which can improve the LOS.
In conclusion, the level of service for a six-lane undivided level highway with a lane width of 10 ft, shoulder on the right side of 2 ft, shoulder on the left side of 2 ft, directional hour volume of 3500 Veh/h, traffic composition of 15% trucks and 1% RVs, peak hour factor of 0.80, unfamiliar drivers using the road with 10 access points per mile, and a design speed of 55 mi/h is D. Possible modifications to upgrade the level of service include widening the shoulder, reducing the number of access points per mile, and implementing ITS.
To learn more about lane width visit:
brainly.com/question/1131879
#SPJ11
Question 1 Tony Stark designed a new type of large wind turbine with blade span diameters of 10 m which is capable of converting 95 percent of wind energy to shaft work. Four units of the wind turbines are connected to electric power generators with 50 percent efficiency, and are placed at an open area at a point of 200 m height on the Stark Tower, with steady winds of 10 m/s during a 24-hour period. Taking the air density as 1.25 kg/m?, 1) determine the maximum electric power generated by these wind turbines; and (8 marks) 11) determine the amount of revenue he generated by reselling the electricity to the electric utility company for a unit price of $0.11/kWh. (3 marks) [Total: 25 marks]
The maximum electric power generated is 273546.094 W. The amount of revenue generated is $2696075.086.
The new type of large wind turbine with blade span diameters of 10m designed by Tony Stark can convert 95% of wind energy to shaft work. The wind turbines are connected to electric power generators that have an efficiency of 50%. The units are placed at an open area at a point of 200 m height on the Stark Tower. During a 24-hour period, the steady winds are at 10 m/s. The air density is 1.25 kg/m3.1. Calculation of maximum electric power generated
P = 0.5 × density × A × v3 × CpWhereP = power
A = 0.25πd2 = 0.25π × 102 = 78.54 m2v = 10 m/s
Cp = 0.95
density = 1.25 kg/m3
Therefore, P = 0.5 × 1.25 × 78.54 × (10)3 × 0.95= 273546.094 W
The maximum electric power generated is 273546.094 W.2. Calculation of the amount of revenue generated
Revenue = P × t × c Where
P = 273546.094 Wt = 24 h/day × 365 day/year = 8760 h/yearc = 0.11 $/kWh
Therefore,Revenue = 273546.094 × 8760 × 0.11 = $2696075.086
To know more about power visit:
brainly.com/question/29575208
#SPJ11
Problem # 1 [35 Points] Vapor Compression Refrigeration System Saturated vapor enters the compressor at -10oC. The temperature of the liquid leaving the liquid leaving the condenser be 30oC. The mass flow rate of the refrigerant is 0.1 kg/sec. Include in the analysis the that the compressor has an isentropic efficiency of 85%. Determine for the cycle [a] the compressor power, in kW, and [b] the refrigeration capacity, in tons, and [c] the COP. Given: T1 = -10oC T3 = 30oC nsc = 85% Find: [a] W (kW) x1 = 100% m = 0.1 kg/s [b] Q (tons) [c] COP Schematic: Process Diagram: Engineering Model: Property Data: h1 = 241.35 kJ/kg h2s = 272.39 kJ/kg h3 = 91.48 kJ/kg
Problem # 2 [35 Points] Vapor Compression Heat Pump System Saturated vapor enters the compressor at -5oC. Saturated vapor leaves the condenser be 30oC. The mass flow rate of the refrigerant is 4 kg/min. Include in the analysis the that the compressor has an isentropic efficiency of 85%. Determine for the cycle [a] the compressor power, in kW, and [b] the heat pump system capacity, in kW, and [c] the COP. Given: T1 = -5oC T3 = 30oC nsc = 85% Find: [a] W (kW) x1 = 100% x3 = 0% m = 4.0 kg/min [b] Q (kW) [c] COP Schematic: Process Diagram: Engineering Model: Property Data: h1 = 248.08 kJ/kg h2s = 273.89 kJ/kg h4 = 81.9 kJ/kg
Problem # 3 [30 Points] Gas Turbine Performance Air enters a turbine at 10 MPa and 300 K and exits at 4 MPa and to 240 K. Determine the turbine work output in kJ/kg of air flowing [a] using the enthalpy departure chart, and [b] assuming the ideal gas model. Given: Air T1 = 300 K T2 = 240 K Find: w [a] Real Gas P1 = 10 MPA P2 = 4 MPa [b] Ideal Gas System Schematic: Process Diagram: Engineering Model: Property Data: ______T A-1 _____T A-23 __ Figure A-4 MW = 28.97 kg/kmol h1* = 300 kJ/kg ∆h1/RTc = 0.5 Tc = 133 K h2* = 240.2 kJ/kg ∆h2/RTc = 0.1 Pc = 37.7 bar R = 8.314 kJ/kmol∙K
Problem #1: (a) The compressor power for the vapor compression refrigeration cycle can be determined by using the specific enthalpy values at the compressor inlet and outlet, along with the mass flow rate of the refrigerant.
For problem #1, the compressor power can be calculated as the difference in specific enthalpy between the compressor inlet (state 1) and outlet (state 2), multiplied by the mass flow rate. The refrigeration capacity is calculated using the heat absorbed in the evaporator, which is the product of the mass flow rate and the specific enthalpy change between the evaporator inlet (state 4) and outlet (state 1). The COP is obtained by dividing the refrigeration capacity by the compressor power.
For problem #2, the calculations are similar to problem #1, but the heat pump system capacity is determined by the heat absorbed in the evaporator (state 4) rather than the refrigeration capacity. The COP is obtained by dividing the heat pump system capacity by the compressor power. In problem #3, the turbine work output is determined by using either the enthalpy departure chart or the ideal gas model. The enthalpy departure chart allows for more accurate calculations, considering real gas properties. However, the ideal gas model assumes an isentropic process and simplifies the calculations based on the temperature and pressure change between the turbine inlet (state A-1) and outlet (state A-23).
Learn more about compressor from here:
https://brainly.com/question/31672001
#SPJ11