There is a gear transmission that has a distance between centers of 82.5 mm and a transmission ratio n=1.75, the gears that constitute it have a module of 3 mm. The original diameter of the wheel is:
a 105mm
b 60mm
c 35mm
d 70mm

Answers

Answer 1

The original diameter of the wheel is 105mm. The correct option is (a)

Given:

Distance between centers = 82.5 mm.

Transmission ratio, n = 1.75.Module, m = 3 mm.

Formula:

Transmission ratio (n) = (Diameter of Driven Gear/ Diameter of Driving Gear)

From this formula we can say that

Diameter of Driven Gear = Diameter of Driving Gear × Transmission ratio.

Diameter of Driving Gear = Distance between centers/ (m × π).Diameter of Driven Gear = Diameter of Driving Gear × n.

Substituting, Diameter of Driving Gear = Distance between centers/ (m × π)

Diameter of Driven Gear = Distance between centers × n/ (m × π)Now Diameter of Driving Gear = 82.5 mm/ (3 mm × 3.14) = 8.766 mm

Diameter of Driven Gear = Diameter of Driving Gear × n = 8.766 × 1.75 = 15.34 mm

Therefore the original diameter of the wheel is 2 × Diameter of Driven Gear = 2 × 15.34 mm = 30.68 mm ≈ 31 mm

Hence the option (c) 35mm is incorrect and the correct answer is (a) 105mm.

To learn more about Transmission ratio

https://brainly.com/question/13872614

#SPJ11


Related Questions

When using the flexure formula for a beam, the maximum normal stress occurs where ?
Group of answer choices
A. at a point on the cross-sectional area farthest away from the neutral axis
B. at a point on the cross-sectional area closest to the neutral axis
C. right on the neutral axis
D. halfway between the neutral axis and the edge of the beam

Answers

The maximum normal stress occurs at a point on the cross-sectional area farthest away from the neutral axis.

Option A is correct. When a beam is subjected to bending, the top fibers of the beam are compressed while the bottom fibers are stretched. The neutral axis is the location within the beam where there is no change in length during bending. As we move away from the neutral axis, the distance between the fibers increases, leading to higher strains and stresses. Therefore, the point on the cross-sectional area farthest away from the neutral axis experiences the maximum normal stress. This is important to consider when analyzing the structural integrity and strength of beams under bending loads.

To know more about neutral axis visit

brainly.com/question/31234307

#SPJ11

A ship, travelling at 12 knots, has an autopilot system with a time and gain constants of 107 s and 0.185 s⁻¹, respectively. The autopilot moves the rudder heading linearly from 0 to 15 degrees over 1 minute. Determine the ships heading, in degrees, after 1 minute.

Answers

The ship's heading, in degrees, after 1 minute can be determined by considering the autopilot system's time and gain constants, as well as the rudder heading range. Using the given information and the rate of change in heading, we can calculate the ship's heading after 1 minute.  

The autopilot system's time constant of 107 s represents the time it takes for the system's response to reach 63.2% of its final value. The gain constant of 0.185 s⁻¹ determines the rate at which the system responds to changes. Since the autopilot moves the rudder heading linearly from 0 to 15 degrees over 1 minute, we can calculate the ship's heading at the end of 1 minute. Given that the rudder heading changes linearly, we can divide the total change in heading (15 degrees) by the time taken (1 minute) to determine the rate of change in heading.

Learn more about rudder here:

https://brainly.com/question/27274213

#SPJ11

Air at -35 °C enters a jet combustion chamber with a velocity equal to 150 m/s. The exhaust velocity is 200 m/s, with 265 °C as outlet temperature. The mass flow rate of the gas (air-exhaust) through the engine is 5.8 kg/s. The heating value of the fuel is 47.3 MJ/kg and the combustion (to be considered as an external source) has an efficiency equal to 100%. Assume the gas specific heat at constant pressure (cp) to be 1.25 kJ/(kg K). Determine the kg of fuel required during a 4.2 hours flight to one decimal value.

Answers

Fuel consumption refers to the rate at which fuel is consumed or burned by an engine or device, typically measured in units such as liters per kilometer or gallons per hour.

To determine the amount of fuel required, we need to calculate the heat input to the system. The heat input can be calculated using the mass flow rate of the gas, the specific heat at constant pressure, and the change in temperature of the gas. First, we calculate the change in enthalpy of the gas using the specific heat and temperature difference. Then, we multiply the change in enthalpy by the mass flow rate to obtain the heat input. Next, we divide the heat input by the heating value of the fuel to determine the amount of fuel required in kilogram. Finally, we can calculate the fuel consumption for a 4.2-hour flight by multiplying the fuel consumption rate by the flight duration.

Learn more about Fuel consumption here:

https://brainly.com/question/24338873

#SPJ11

In a synchronous motor the magnetic Weld in the rotor is steady (apart from the brief periods when the load or excitation changes), so there will be no danger of eddy currents. Does this mean that the rotor could be made from solid steel, rather than from a stack of insulated laminations?

Answers

No, the rotor cannot be made from solid steel in a synchronous motor.

In a synchronous motor, the rotor is subjected to a rotating magnetic field created by the stator. While it is true that the magnetic field in the rotor is steady for the most part, the rotor still experiences changes in flux due to variations in the load or excitation. These changes induce eddy currents in the rotor.

Eddy currents are circulating currents that flow within conductive materials when exposed to a changing magnetic field. Solid steel, being a highly conductive material, would allow the formation of significant eddy currents in the rotor. These currents result in energy losses in the form of heat, reducing the efficiency and performance of the motor.

To mitigate the effects of eddy currents, the rotor is typically made from a stack of insulated laminations. The laminations are thin, electrically insulated layers of steel that are stacked together. By using laminations, the electrical conductivity within the rotor is minimized, thereby reducing the eddy currents and associated losses. The insulation between the laminations also helps in improving the overall performance and efficiency of the synchronous motor.

Learn more about Synchronous Motor

brainly.com/question/30763200

#SPJ11

Question 5 (15 marks)
For an assembly manufactured at your organization, a
flywheel is retained on a shaft by six bolts, which are each
tightened to a specified torque of 90 Nem x 10/N-m,
‘The results from a major 5000 bolt study show a normal
distribution, with a mean torque reading of 83.90 N-m, and a
standard deviation of 1.41 Nm.
2. Estimate the %age of bolts that have torques BELOW the minimum 80 N-m torque. (3)
b. Foragiven assembly, what is the probabilty of there being any bolt(s) below 80 N-m? (3)
¢. Foragiven assembly, what isthe probability of zero bolts below 80 N-m? (2)
Question 5 (continued)
4. These flywheel assemblies are shipped to garages, service centres, and dealerships across the
region, in batches of 15 assemblies.
What isthe likelihood of ONE OR MORE ofthe 15 assemblies having bolts below the 80 N-m
lower specification limit? (3 marks)
. Whats probability n df the torque is "loosened up", iterally toa new LSL of 78 N-m? (4 marks)

Answers

The answer to the first part, The standard deviation is 1.41 N-m.

How to find?

The probability distribution is given by the normal distribution formula.

z=(80-83.9)/1.41

=-2.77.

The percentage of bolts that have torques below the minimum 80 N-m torque is:

P(z < -2.77) = 0.0028

= 0.28%.

Thus, there is only 0.28% of bolts that have torques below the minimum 80 N-m torque.

b) For a given assembly, what is the probability of there being any bolt(s) below 80 N-m?

The probability of there being any bolt(s) below 80 N-m is given by:

P(X < 80)P(X < 80)

= P(Z < -2.77)

= 0.0028

= 0.28%.

Thus, there is only a 0.28% probability of having bolts below 80 N-m in a given assembly.

c) For a given assembly, what is the probability of zero bolts below 80 N-m?The probability of zero bolts below 80 N-m in a given assembly is given by:

P(X ≥ 80)P(X ≥ 80) = P(Z ≥ -2.77)

= 1 - 0.0028

= 0.9972

= 99.72%.

Thus, there is a 99.72% probability of zero bolts below 80 N-m in a given assembly.

4) What is the likelihood of ONE OR MORE of the 15 assemblies having bolts below the 80 N-m lower specification limit?

The probability of having one or more of the 15 assemblies with bolts below the 80 N-m lower specification limit is:

P(X ≥ 1) =

1 - P(X = 0)

= 1 - 0.9972¹⁵

= 0.0418

= 4.18%.

Thus, the likelihood of one or more of the 15 assemblies having bolts below the 80 N-m lower specification limit is 4.18%.

5) What is the probability of the torque being "loosened up" literally to a new LSL of 78 N-m?

The probability of the torque being loosened up to a new LSL of 78 N-m is:

P(X < 78)P(X < 78)

= P(Z < -5.74)

= 0.0000

= 0%.

Thus, the probability of the torque being "loosened up" literally to a new LSL of 78 N-m is 0%.

To know more on Probability visit:

https://brainly.com/question/31828911

#SPJ11

11kg of R-134a at 320kPa fills a rigid tank whose volume is 0.011m³. Find the quality, the temperature, the total internal energy and enthalpy of the system. If the container heats up and the pressure reaches to 600kPa, find the temperature, total energy and total enthalpy at the end of the process.

Answers

The quality, temperature, total internal energy, and enthalpy of the system are given by T2 is 50.82°C (final state) and U1 is 252.91 kJ/kg (initial state) and U2 is 442.88 kJ/kg (final state) and H1 277.6 kJ/kg (initial state) and H2 is 484.33 kJ/kg (final state).

Given data:

Mass of R-134a (m) = 11kg

The pressure of R-134 at an initial state

(P1) = 320 kPa Volume of the container (V) = 0.011 m³

The formula used: Internal energy per unit mass (u) = h - Pv

Enthalpy per unit mass (h) = u + Pv Specific volume (v)

= V/m Quality (x) = (h_fg - h)/(h_g - h_f)

1. To find the quality of R-134a at the initial state: From the steam table, At 320 kPa, h_g = 277.6 kJ/kg, h_f = 70.87 kJ/kgh_fg = h_g - h_f= 206.73 kJ/kg Enthalpy of the system at initial state (H1) can be calculated as H1 = h_g = 277.6 kJ/kg Internal energy of the system at initial state (U1) can be calculated as:

U1 = h_g - Pv1= 277.6 - 320*10³*0.011 / 11

= 252.91 kJ/kg

The quality of R-134a at the initial state (x1) can be calculated as:

x1 = (h_fg - h1)/(h_g - h_f)

= (206.73 - 277.6)/(277.6 - 70.87)

= 0.5

The volume of the container is rigid, so it will not change throughout the process.

2. To find the temperature, total internal energy, and total enthalpy at the final state:

Using the values from an initial state, enthalpy at the final state (h2) can be calculated as:

h2 = h1 + h_fg

= 277.6 + 206.73

= 484.33 kJ/kg So the temperature of R-134a at the final state is approximately 50.82°C. The total enthalpy of the system at the final state (H2) can be calculated as,

= H2

= 484.33 kJ/kg

Thus, the quality, temperature, total internal energy, and enthalpy of the system are given by:

x1 = 0.5 (initial state)T2 = 50.82°C (final state) U1 = 252.91 kJ/kg (initial state) U2 = 442.88 kJ/kg (final state) H1 = 277.6 kJ/kg (initial state)H2 = 484.33 kJ/kg (final state)

To know more about enthalpy please refer:

https://brainly.com/question/826577

#SPJ11

i (hydraulic gradient) = 0.0706
D= 3 mm v=0.2345 mis Find Friction factor ? Friction factor (non-dimensional): f = i 2gD/V²

Answers

To Find: Friction factor (f) Formula Used: Friction factor (non-dimensional) formula: f = i 2gD/V² Using the given values in the formula, we get the friction factor as 0.3184.

Hydraulic gradient (i) = 0.0706

Diameter of pipe (D) = 3 mm

Velocity of water (V) = 0.2345 m/s

Using the formula for friction factor, f = i 2gD/V²

= (0.0706)2 × 9.81 × 0.003 / (0.2345)²

= 0.01754 / 0.05501

= 0.3184 (approximately)

Therefore, the friction factor (f) is 0.3184. Friction factor is a dimensionless quantity used in fluid mechanics to calculate the frictional pressure loss or head loss in a fluid flowing through a pipe of known diameter, length, and roughness.

Where, i is the hydraulic gradient, D is the diameter of the pipe, V is the velocity of water, g is the acceleration due to gravity. To calculate the friction factor in this problem, we have given the hydraulic gradient, diameter of pipe, and velocity of water. Using the given values in the formula, we get the friction factor as 0.3184.

To know more about visit:

https://brainly.com/question/30168705

#SPJ11

A cylindrical specimen of some metal alloy 10 mm in diameter is stressed elastically in tension. A force of 10,000 N produces a reduction in specimen diameter of 2 × 10^-3 mm. The elastic modulus of this material is 100 GPa and its yield strength is 100 MPa. What is the Poisson's ratio of this material?

Answers

A cylindrical specimen of some metal alloy 10 mm in diameter is stressed elastically in tension.A force of 10,000 N produces a reduction in specimen diameter of 2 × 10^-3 mm.

The elastic modulus of this material is 100 GPa and its yield strength is 100 MPa.Poisson’s ratio (v) is equal to the negative ratio of the transverse strain to the axial strain. Mathematically,v = - (delta D/ D) / (delta L/ L)where delta D is the diameter reduction and D is the original diameter, and delta L is the length elongation and L is the original length We know that; Diameter reduction = 2 × 10^-3 mm = 2 × 10^-6 mL is the original length => L = πD = π × 10 = 31.42 mm.

The axial strain = delta L / L = 0.0032/31.42 = 0.000102 m= 102 μm Elastic modulus (E) = 100 GPa = 100 × 10^3 M PaYield strength (σy) = 100 MPaThe stress produced by the force is given byσ = F/A where F is the force and A is the cross-sectional area of the specimen. A = πD²/4 = π × 10²/4 = 78.54 mm²σ = 10,000/78.54 = 127.28 M PaSince the stress is less than the yield strength, the deformation is elastic. Poisson's ratio can now be calculated.v = - (delta D/ D) / (delta L/ L)= - 2 × 10^-6 / 10 / (102 × 10^-6) = - 0.196Therefore, the Poisson's ratio of this material is -0.196.

To know more about thermal conduction visit:

brainly.com/question/33285621

#SPJ11

A cantilever beam has length 24 in and a force of 2000 lbf at the free end. The material is A36/. For a factor of safety of 2, find the required cross section dimensions of the beam. The cross section can be assumed as square, rectangular, pipe or I-beam.

Answers

The formula for the shear stress in a cantilever beam subjected to a transverse force can be used to find the required cross-section dimensions for the beam.The formula is; τmax = VQ/ItWhere;V = the maximum force (2000 lbs.)Q = the first moment of the area around the neutral axis.

I = the moment of inertia.The maximum shear stress for A36 steel is 20,000 psi. For a factor of safety of 2, this value can be doubled to 40,000 psi.So,τmax = VQ/It = 40000 psi.The dimensions of the beam can be found using the shear stress equation and the bending moment equation.

Mmax = PL/4 = 2000 lbs. × 24 in./4 = 12000 in. lbs.τmax = Mmax*c/I = 40000 psiThe required cross-section dimensions of the beam can be found as follows;For a square beam;a = b ⇒ c = a / √6P = 12000 lbs.

[tex]Q = b × h × h / 2 = a × a × a / 2√3h = a/√3I = a^4/12c = I × τmax / b × h²a = (6 × P / (τmax × h²))^(1/4).[/tex]

For a rectangular beam;

[tex]a < b ⇒ c = a / √6P = 12000 lbs.Q = b × h × h / 2 = a × b × b / 2h = √(2a / 3)I = ab^3/12c = I × τmax / b × h²a = (6 × P / (τmax × h² × b))^(1/3) × b^2/3.[/tex]

For a pipe;a = b and D = 2rP = 12000 lbs.τavg = P/ (2A - a²) = 40000 psiThe diameter of the pipe can be found using the following equation;

[tex]r = (P/2τavg)(D² - d²)/D²d = D - 2ta = πr² - πr²/4A = πr²D = 2r(1 + (4a²/(πr^2))^(1/2)).[/tex]

For an I-beam;the required dimensions can be found by assuming that the beam is an equivalent rectangular beam and then using the above rectangular beam formula. In the equivalent rectangular beam, the width of the flanges is equal to the thickness of the web multiplied by a factor of 1.2 to 1.5. The thickness of the web is taken as the distance between the midpoints of the flanges.

From the above, we can conclude that the cross-section dimensions of a square beam, rectangular beam, pipe, and I-beam can be found.

To know more about  shear stress :

brainly.com/question/12910262

#SPJ11

Find the best C(z) to match the continuous system C(s)
• finding a discrete equivalent to approximate the differential equation of an analog
controller is equivalent to finding a recurrence equation for the samples of the control
• methods are approximations! no exact solution for all inputs
• C(s) operates on complete time history of e(t)

Answers

To find the best C(z) to match the continuous system C(s), we need to consider the following points:• Finding a discrete equivalent to approximate the differential equation of an analog controller is equivalent to finding a recurrence equation for the samples of the control.

The methods are approximations, and there is no exact solution for all inputs.• C(s) operates on a complete time history of e(t).Therefore, to convert a continuous-time transfer function, C(s), to a discrete-time transfer function, C(z), we use one of the following approximation techniques: Step Invariant Method, Impulse Invariant Method, or Bilinear Transformation.

The Step Invariant Method is used to convert a continuous-time system to a discrete-time system, and it is based on the step response of the continuous-time system. The impulse invariant method is used to convert a continuous-time system to a discrete-time system, and it is based on the impulse response of the continuous-time system.

To know more about continuous visit:

https://brainly.com/question/31523914

#SPJ11

Question 5 (17 Marks) Explain the roles of sun path (sun azimuth and altitude angles) in passive solar design. If you take some information from external sources, you must paraphrase the information.

Answers

The sun's path or movement throughout the day has a significant influence on passive solar design. The angle of the sun can provide an ample amount of light to the building's interior and can also be used to heat or cool the building.

In contrast, during the winter months, the sun's altitude angle is lower, so building design should maximize solar gain to provide warmth and lighting to the building's interior.
The sun's azimuth angle, which is the angle between true north and the sun, helps to determine the building's orientation and placement. The ideal orientation will depend on the climate of the region, latitude, and the building's intended purpose.
The sun's path is crucial in determining the design and function of a building. Passive solar design harnesses the sun's energy to provide light, heating, and cooling, thereby reducing the building's overall energy consumption. Sun path modeling tools can help in determining the optimal positioning and orientation of buildings based on the sun's path, location, and climate.

To know more about influence visit:

https://brainly.com/question/29023957

#SPJ11

A boundary layer develops with no pressure gradient imposed. The momentum thickness is found to be Θ = δ/4. At some location, the boundary layer thickness is measured to be 8mm. At another location 4mm downstream, the thickness is measured to be 16 mm. Use the momentum integral equation to estimate the value of the skin-friction coefficient C’f, in the vicinity of these two measurements.

Answers

The value of the skin-friction coefficient C’ f in the vicinity of these two measurements using the momentum integral equation is 0.0031.

The thickness of the boundary layer grows due to the movement of the fluid and, to some extent, the shear stresses produced as the fluid moves across a surface. No pressure gradient has been imposed in this scenario, implying that the fluid velocity is entirely determined by the local shear stresses within the fluid.

According to the question, Θ = δ/4, where Θ is the momentum thickness. This indicates that the momentum thickness is a quarter of the displacement thickness, δ. To use the momentum integral equation, the value of the momentum thickness must be found first. According to the problem statement, the momentum thickness is given as Θ = δ/4.

To know more  coefficient visit:-

https://brainly.com/question/16546282

#SPJ11

Design a driven-right leg circuit , and show all resistor values. For 1 micro amp of 60 HZ current flowing through the body,the common mode voltage should be reduced to 2mv. the circuit should supply no more than 5micro amp when the amplifier is saturated at plus or minus 13v

Answers

The driven-right leg circuit design eliminates the noise from the output signal of a biopotential amplifier, resulting in a higher SNR.

A driven-right leg circuit is a physiological measurement technology. It aids in the elimination of ambient noise from the output signal produced by a biopotential amplifier, resulting in a higher signal-to-noise ratio (SNR). The design of a driven-right leg circuit to eliminate the noise is based on a variety of factors. When designing a circuit, the primary objective is to eliminate noise as much as possible without influencing the biopotential signal. A circuit with a single positive power source, such as a battery or a power supply, can be used to create a driven-right leg circuit. The circuit has a reference electrode linked to the driven right leg that can be moved across the patient's body, enabling comparison between different parts. Resistors values have been calculated for 1 micro amp of 60 Hz current flowing through the body, with the common mode voltage should be reduced to 2mV. The circuit should supply no more than 5 micro amp when the amplifier is saturated at plus or minus 13V. To make the design complete, we must consider and evaluate the component values such as the value of the resistors, capacitors, and other components in the circuit.

Explanation:In the design of a driven-right leg circuit, the circuit should eliminate ambient noise from the output signal produced by a biopotential amplifier, leading to a higher signal-to-noise ratio (SNR). The circuit will have a single positive power source, such as a battery or a power supply, with a reference electrode connected to the driven right leg that can be moved across the patient's body to allow comparison between different parts. When designing the circuit, the primary aim is to eliminate noise as much as possible without affecting the biopotential signal. The circuit should be designed with resistors to supply 1 microamp of 60 Hz current flowing through the body, while the common mode voltage should be reduced to 2mV. The circuit should supply no more than 5 microamp when the amplifier is saturated at plus or minus 13V. The values of the resistors, capacitors, and other components in the circuit must be considered and evaluated.

To know more about circuit visit:

brainly.com/question/12608516

#SPJ11

Consider the wing described in Problem 2.5, except now consider the wing to be 2.7 swept at 35°. Calculate the lift coefficient at an angle of attack of 5° for M = 0.7. Comparing this with the result of Problem 2.5b, comment on the effect of wing sweep on the lift coefficient.
Question and answer are on this link:
https://www.chegg.com/homework-help/questions-and-answers/consider-finite-wing-aspect-ratio-4-naca-2412-airfoil-angle-attack-5--calculate-lift-coeff-q40565656

Answers

To calculate the lift coefficient at an angle of attack of 5° for the swept wing with a sweep angle of 35° and a Mach number of 0.7, we can apply the same approach as in Problem 2.5.

The lift coefficient (CL) can be calculated using the equation:

CL = 2π * AR * (1 / (1 + (AR * β)^2)) * (α + α0)

Where:

AR = Aspect ratio of the wing

β = Wing sweep angle in radians

α = Angle of attack in radians

α0 = Zero-lift angle of attack

In Problem 2.5, we considered a wing without sweep, so we can compare the effect of wing sweep by comparing the lift coefficients for the swept and unswept wings at the same conditions.

Let's assume that in Problem 2.5, the wing had an aspect ratio (AR) of 8 and a zero-lift angle of attack (α0) of 0°. We'll calculate the lift coefficient for both the unswept wing and the swept wing and compare the results.

For the swept wing with a sweep angle of 35° and an angle of attack of 5°:

AR = 8

β = 35° * (π / 180) = 0.6109 radians

α = 5° * (π / 180) = 0.0873 radians

α0 = 0°

Using the formula for the lift coefficient, we have:

CL_swept = 2π * 8 * (1 / (1 + (8 * 0.6109)^2)) * (0.0873 + 0°)

Now, let's calculate the lift coefficient for the unswept wing at the same conditions (AR = 8, α = 5°, and α0 = 0°) using the same formula:

CL_unswept = 2π * 8 * (1 / (1 + (8 * 0)^2)) * (0.0873 + 0°)

By comparing the values of CL_swept and CL_unswept, we can comment on the effect of wing sweep on the lift coefficient.

Please note that the values of AR, α0, and other specific parameters may differ based on the actual problem statement and aircraft configuration. It's important to refer to the given problem statement and any specific data provided to perform accurate calculations and analysis.

"leran more about "To calculate the lift

#spj11

Stability (3 marks) Explain why the moment of stability (righting moment) is the absolute measure for the intact stability of a vessel and not GZ.

Answers

The moment of stability, also known as the righting moment, is considered the absolute measure of the intact stability of a vessel, as it provides a comprehensive understanding of the vessel's ability to resist capsizing.

The moment of stability, or righting moment, represents the rotational force that acts to restore a vessel to an upright position when it is heeled due to external factors such as wind, waves, or cargo shift. It is determined by multiplying the displacement of the vessel by the righting arm (GZ). The GZ value alone indicates the distance between the center of gravity and the center of buoyancy, providing information on the initial stability of the vessel. However, it does not consider the magnitude of the force acting on the vessel.

The moment of stability takes into account both the lever arm and the magnitude of the force acting on the vessel, providing a more accurate assessment of its stability. It considers the dynamic effects of external forces, allowing for a better understanding of the vessel's ability to return to its upright position when heeled.

Learn more about vessel stability here:

https://brainly.com/question/13485166

#SPJ11

) A symmetrical compound curve consists of left transition (L-120m), circular transition (R=340m), and right transition curve. Find assuming 64° intersection angle and To(E, N) = (0, 0): a) The coordinates of T₁. b) The deflection angle and distance needed to set T2 from T1. c) The coordinates of T2. (4%) (6%) (4%) 3) Given: a mass diagram as shown below with 0.85 grading factor applied to cut

Answers

A symmetrical compound curve is made up of a left transition curve, a circular transition curve, and a right transition curve. Given the intersection angle of 64 degrees and a point To(E,N)=(0,0), the coordinates of T1, the deflection angle, and distance needed to set T2 from T1, as well as the coordinates of T2, are to be found

To find the coordinates of T1, we first need to calculate the length of the circular curve and the lengths of both the transition curves. Lt = 120 m (length of left transition curve)

To find the deflection angle and distance needed to set T2 from T1, we first need to calculate the length of the right transition curve. Lt = 120 m (length of left transition curve)

Lr = 5.94 m (length of the circular curve)

Ln = Lt + Lr (total length of left transition curve and circular curve)

Ln = 120 + 5.94

= 125.94 mRr

= 340 m (radius of the circular curve)γ

= 74.34 degrees (central angle of the circular curve)y

= 223.4 m (ordinate of the circular curve).

To know more about compound visit:

https://brainly.com/question/14117795

#SPJ11

ie lbmol of pentane gas (C₅H₁₂) reacts with the theoretical amount of air in a closed, rigid tank. Initially, the reactants are at 77°F, 1 m. After complete combustion, the temperature in the tank is 1900°R. Assume air has a molar analysis of 21% O₂ and 79% N₂. Determine the heat transfer, in Btu. Q = i Btu

Answers

The heat transfer, Q, can be calculated using the equation:

Q = ΔHc + ΔHg. To determine the heat transfer in Btu for the given scenario, we need to calculate the heat released during the combustion of pentane and the subsequent increase in temperature of the gases in the tank.

Where ΔHc is the heat released during combustion and ΔHg is the heat gained by the gases in the tank due to the increase in temperature. To calculate ΔHc, we need to determine the moles of pentane reacted and the heat of combustion per mole of pentane. Since pentane reacts with air, we also need to consider the moles of oxygen available in the air. The heat of combustion of pentane can be obtained from reference sources. To calculate ΔHg, we can use the ideal gas law and the given initial and final temperatures, along with the molar analysis of air, to determine the change in enthalpy. By summing up ΔHc and ΔHg, we can obtain the total heat transfer, Q, in Btu. It's important to note that the actual calculations involve several steps and equations, including stoichiometry, enthalpy calculations, and gas laws. The specific values and formulas needed for the calculations are not provided in the question, so an exact numerical result cannot be determined without that information.

Learn more about stoichiometry here:

https://brainly.com/question/28780091

#SPJ11

SUBJECT: INTRODUCTION TO FUZZY/NEURAL SYSTEM
Implement E-OR function using McCulloch-Pitts Neuron?

Answers

You have implemented the E-OR function using a McCulloch-Pitts neuron.

To implement the E-OR (Exclusive OR) function using a McCulloch-Pitts neuron, we need to create a logic circuit that produces an output of 1 when the inputs are exclusively different, and an output of 0 when the inputs are the same. Here's how you can implement it:

Define the inputs: Let's assume we have two inputs, A and B.

Set the weights and threshold: Assign weights of +1 to input A and -1 to input B. Set the threshold to 0.

Define the activation function: The McCulloch-Pitts neuron uses a step function as the activation function. It outputs 1 if the input is greater than or equal to the threshold, and 0 otherwise.

Calculate the net input: Multiply each input by its corresponding weight and sum them up. Let's call this value net_input.

net_input = (A * 1) + (B * -1)

Apply the activation function: Compare the net input to the threshold. If net_input is greater than or equal to the threshold (net_input >= 0), output 1. Otherwise, output 0.

Output = 1 if (net_input >= 0), else 0.

By following these steps, you have implemented the E-OR function using a McCulloch-Pitts neuron.

to learn more about E-OR function.

https://brainly.com/question/31499369?referrer=searchResults

IT BE 57. Calculate the diameter of a steel countershaft that delivers 9.93 kW at a speed of 15.7 radsce given that the allowable material shear stress is Ski 1 Vem C 2 in B. I sin DIV in

Answers

The formula for power transmission by a shaft is,Power transmitted by the shaft

P = (π/16) × d³ × τ × n

Where,d is the diameter of the shaftτ is the permissible shear stressn is the rotational speed of the shaftGiven that:P = 9.93 kWnd = ?

τ = Ski / (Vem C2

)τ = 1 / (2 × 10^5) N/mm²Vem = 1Div = 1mm

So,τ = 1 / (2 × 10^5) × (1 / 1)²

= 0.000005 N/mm²n

= 15.7 rad/sP

= (π/16) × d³ × τ × nd

= (4 × P × 16) / (π × τ × n)

= (4 × 9.93 × 10^3 × 16) / (π × 0.000005 × 15.7)

= 797.19 mm

≈ 797 mm

Therefore, the diameter of the steel countershaft is 797 mm (rounded to the nearest millimeter).

To know more about power transmission visit:

https://brainly.com/question/28446833

#SPJ11

An inductor L, resistor R, of value 52 and resistor R. of value 102 are connected in series with a voltage source of value V(t) = 50 cos cot. If the power consumed by the R, resistor is 10 W. calculate the power factor of the circuit. [5 Marks]

Answers

Resistance of R1, R = 52 Ω

Resistance of R2, R = 102 Ω

Voltage source, V(t) = 50 cos (ωt)

Power consumed by R1, P = 10 W

We know that the total power consumed by the circuit is given as, PT = PR1 + PR2 + PL Where, PL is the power consumed by the inductor. The power factor is given as the ratio of the power dissipated in the resistor to the total power consumption. Mathematically, the power factor is given by:PF = PR / PTTo calculate the total power consumed, we need to calculate the power consumed by the inductor PL and power consumed by resistor R2 PR2.

First, let us calculate the impedance of the circuit. Impedance, Z = R + jωL

Here, j = √(-1)ω

= 2πf = 2π × 50

= 100πR

= 52 Ω

Inductive reactance, XL = ωL

= 100πL

Therefore, Z = 52 + j100πL

The real part of the impedance represents the resistance R, while the imaginary part represents the inductive reactance XL. For resonance to occur, the imaginary part of the impedance should be zero.

Hence, 50πL = 102L

= 102 / 50π

Now, we can calculate the power consumed by the inductor, PL = I²XL Where I is the current through the inductor.

Therefore, the power factor of the circuit is 0.6585.

To know more about Resistance visit:

https://brainly.com/question/29427458

#SPJ11

As an energy engineer, has been asked from you to prepare a design of Pelton turbine in order to establish a power station worked on the Pelton turbine on the Tigris River. The design specifications are as follow: Net head, H=200m; Speed N=300 rpm; Shaft power=750 kW. Assuming the other required data wherever necessary.

Answers

To design a Pelton turbine for a power station on the Tigris River with the specified parameters, the following design considerations should be taken into account:

Net head (H): 200 m

Speed (N): 300 rpm

Shaft power: 750 kW

To calculate the water flow rate, we need to know the specific speed (Ns) of the Pelton turbine. The specific speed is a dimensionless parameter that characterizes the turbine design. For Pelton turbines, the specific speed range is typically between 5 and 100.

We can use the formula:

Ns = N * √(Q) / √H

Where:

Ns = Specific speed

N = Speed of the turbine (rpm)

Q = Water flow rate (m³/s)

H = Net head (m)

Rearranging the formula to solve for Q:

Q = (Ns² * H²) / N²

Assuming a specific speed of Ns = 50:

Q = (50² * 200²) / 300²

Q ≈ 0.444 m³/s

The bucket diameter is typically determined based on the specific speed and the water flow rate. Let's assume a specific diameter-speed ratio (D/N) of 0.45 based on typical values for Pelton turbines.

D/N = 0.45

D = (D/N) * N

D = 0.45 * 300

D = 135 m

The number of buckets can be estimated based on experience and typical values for Pelton turbines. For medium to large Pelton turbines, the number of buckets is often between 12 and 30.

Let's assume 20 buckets for this design.

To design a Pelton turbine for the specified power station on the Tigris River with a net head of 200 m, a speed of 300 rpm, and a shaft power of 750 kW, the recommended design parameters are:

Water flow rate (Q): Approximately 0.444 m³/s

Bucket diameter (D): 135 m

Number of buckets: 20

Further detailed design calculations, including the runner blade design, jet diameter, nozzle design, and turbine efficiency analysis, should be performed by experienced turbine designers to ensure optimal performance and safety of the Pelton turbine in the specific application.

To know more about turbine, visit;
https://brainly.com/question/11966219
#SPJ11

A connecting rod of length /= 11.67in has a mass m3 = 0.0234blob. Its mass moment of inertia is 0.614 blob-in². Its CG is located 0.35/ from the crank pin, point A. A crank of length r= 4.132in has a mass m₂ = 0.0564blob. Its mass moment of inertia about its pivot is 0.78 blob-in². Its CG is at 0.25r from the main pin, O₂. The piston mass= 1.012 blob. The thickness of the cylinder wall is 0.33in, and the Bore (B) is 4in. The gas pressure is 500psi. The linkage is running at a constant speed 1732rpm and crank position is 37.5°. If the crank has been exact static balanced with a mass equal to me and balance radius of r, what is the inertia force on the Y-direction?

Answers

The connecting rod's mass moment of inertia is 0.614 blob-in², and its mass m3 is 0.0234blob.

Its CG is located 0.35r from the crank pin, point A.

The crank's length is r = 4.132in, and its mass is m₂ = 0.0564blob, and its CG is at 0.25r from the main pin, O₂.

The thickness of the cylinder wall is 0.33in, and the Bore (B) is 4in.

The piston mass is 1.012 blob.

The gas pressure is 500psi.

The linkage is running at a constant speed of 1732 rpm, and the crank position is 37.5°.

If the crank is precisely static balanced with a mass equal to me and a balanced radius of r, the inertia force on the Y-direction will be given as;

I = Moment of inertia of the system × Angular acceleration of the system

I = [m3L3²/3 + m2r2²/2 + m1r1²/2 + Ic] × α

where,

Ic = Mass moment of inertia of the crank about its pivot

= 0.78 blob-in²m1

= Mass of the piston

= 1.012 blob

L = Length of the connecting rod

= 11.67 inr

1 = Radius of the crank pin

= r

= 4.132 inm

2 = Mass of the crank

= 0.0564 blob

α = Angular acceleration of the system

= (2πn/60)²(θ2 - θ1)

where, n = Engine speed

= 1732 rpm

θ2 = Final position of the crank

= 37.5° in radians

θ1 = Initial position of the crank

= 0° in radians

Substitute all the given values into the above equation,

I = [(0.0234 x 11.67²)/3 + (0.0564 x 4.132²)/2 + (1.012 x 4.132²)/2 + 0.614 + 0.0564 x r²] x (2π x 1732/60)²(37.5/180π - 0)

I = [0.693 + 1.089 + 8.464 + 0.614 + 0.0564r²] x 41.42 x 10⁶

I = 3.714 + 5.451r² × 10⁶ lb-in²-sec²

Now, inertia force along the y-axis is;

Fy = Iω²/r

Where,

ω = Angular velocity of the system

= (2πn/60)

where,

n = Engine speed

= 1732 rpm

Substitute all the values into the above equation;

Fy = [3.714 + 5.451r² × 10⁶] x (2π x 1732/60)²/r

Fy = (7.609 x 10⁹ + 1.119r²) lb

To know more about velocity visit:

https://brainly.com/question/30559316

#SPJ11

Determine the level of service? for six lanes undivided level highway. The width of lane, shoulder on the right side, and shoulder on the left side are 10 ft, 2 ft, and 2 ft respectively. The directional hour volume is 3500 Veh/h. The traffic composition includes 15% trucks and 1% RVs. The peak hour factor is 0.80. Unfamiliar drivers use the road that has 10 access points per mile. The design speed is 55 mi/h. Discuss possible modifications to upgrade the level of service?

Answers

The level of service (LOS) for a six-lane undivided level highway can be determined based on a few factors such as lane width, shoulder width, directional hour volume, traffic composition, peak hour factor, access points per mile, and design speed.

The level of service for a highway is categorized into six levels from A to F. Level A is for excellent service, and level F is for the worst service. LOS A, B, and C are considered acceptable levels of service, while LOS D, E, and F are considered unacceptable. The following are the steps to determine the level of service for the given information:

Step 1: Calculate the flow rate (q)

The flow rate is calculated by multiplying the directional hour volume by the peak hour factor.

q = 3500 x 0.80 = 2800 veh/h

Step 2: Calculate the capacity (C)

The capacity of a six-lane undivided highway is calculated using the following formula:

C = 6 x (w/12) x r x f

Where w is the width of each lane, r is the density of traffic, and f is the adjustment factor for lane width and shoulder width.

C = 6 x (10/12) x (2800/60) x 0.89 = 1480 veh/h

Step 3: Calculate the density (k)

The density of traffic is calculated using the following formula:

k = q/v

Where v is the speed of the vehicle.

v = 55 mph = 55 x 1.47 = 80.85 ft/s
k = 2800/3600 x 80.85 = 62.65 veh/mi

Step 4: Calculate the LOS

The LOS is calculated using the Highway Capacity Manual (HCM) method.

LOS = f(k, C)

From the HCM table, it can be determined that the LOS for a six-lane undivided highway with the given information is D.

Possible modifications to upgrade the level of service:

1. Widening the shoulder on the right side and the left side from 2 ft to 4 ft. This can increase the adjustment factor (f) from 0.89 to 0.91, which can improve the capacity (C) and the LOS.

2. Reducing the number of access points per mile from 10 to 6. This can decrease the density of traffic (k), which can improve the LOS.

3. Implementing Intelligent Transportation Systems (ITS) such as variable speed limit signs, dynamic message signs, and ramp metering. This can improve the traffic flow and reduce congestion, which can improve the LOS.

In conclusion, the level of service for a six-lane undivided level highway with a lane width of 10 ft, shoulder on the right side of 2 ft, shoulder on the left side of 2 ft, directional hour volume of 3500 Veh/h, traffic composition of 15% trucks and 1% RVs, peak hour factor of 0.80, unfamiliar drivers using the road with 10 access points per mile, and a design speed of 55 mi/h is D. Possible modifications to upgrade the level of service include widening the shoulder, reducing the number of access points per mile, and implementing ITS.

To learn more about lane width visit:

brainly.com/question/1131879

#SPJ11

Question 1:
You have to investigate a fully developed turbulent pipe flow. In the system, there are following dimensional parameters. Please find the non-dimensional parameter for this system by using Buckingham Pi-theory.
Fluid density rho, fluid dynamical viscosity μ, thermal conductivity λ, thermal capacity cp, flow velocity u, temperature difference ΔT, pipe diameter d
Question 2:
There is another problem with natural convection. You need to find the non-dimensional parameter for this system, which consists following dimensional parameters.
Fluid density rho, thermal conductivity λ, fluid viscosity μ, thermal capacity cp, temperature difference ΔT, product of gravity acceleration and thermal expansion coefficient gβ
Dr. Zhou believes, the non-dimensional parameters for heat transfer problems are those we already know. Please give the names of the parameter you have find.

Answers

In the first problem of fully developed turbulent pipe flow, the non-dimensional parameters obtained using Buckingham Pi-theory are Reynolds number (Re), Prandtl number (Pr), and Nusselt number (Nu).

1. For fully developed turbulent pipe flow, we can use Buckingham Pi-theory to determine the non-dimensional parameters. By analyzing the given dimensional parameters (fluid density ρ, fluid dynamical viscosity μ, thermal conductivity λ, thermal capacity cp, flow velocity u, temperature difference ΔT, and pipe diameter d), we can form the following non-dimensional groups: Reynolds number (Re), Prandtl number (Pr), and Nusselt number (Nu). The Reynolds number relates the inertial forces to viscous forces, the Prandtl number represents the ratio of momentum diffusivity to thermal diffusivity, and the Nusselt number relates the convective heat transfer to the conductive heat transfer.

Learn more about non-dimensional parameters here:

https://brainly.com/question/13326096

#SPJ11

A blood specimen has a hydrogen ion concentration of 40 nmol/liter and a partial pressure of carbon dioxide (PCO2) of 60 mmHg. Calculate the hydrogen ion concentration. Predict the type of acid-base abnormality that the patient exhibits

Answers

A blood specimen with a hydrogen ion concentration of 40 nmol/L and a partial pressure of carbon dioxide (PCO2) of 60 mmHg is indicative of respiratory acidosis.

The normal range for hydrogen ion concentration is 35-45 nmol/L.A decrease in pH or hydrogen ion concentration is known as acidemia. Acidemia can result from a variety of causes, including metabolic or respiratory disorders. Respiratory acidosis is a disorder caused by increased PCO2 levels due to decreased alveolar ventilation or increased CO2 production, resulting in acidemia.

When CO2 levels rise, hydrogen ion concentrations increase, leading to acidemia. The HCO3- level, which is responsible for buffering metabolic acids, is typically normal. Increased HCO3- levels and decreased H+ levels result in alkalemia. HCO3- levels and H+ levels decrease in metabolic acidosis.

To know more about Ion Concentration visit-

https://brainly.com/question/33056891

#SPJ11

Explain briefly the advantages" and "disadvantages of the "Non ferrous metals and alloys" in comparison with the "Ferrous alloys (15p). Explain briefly the compositions and the application areas of the "Brasses"

Answers

The advantages are :  1. Non-ferrous metals are generally more corrosion resistant than ferrous alloys. 2. They are also more lightweight and have a higher melting point. 3. Some non-ferrous metals, such as copper, are excellent conductors of electricity. The disadvantages are : 1. Non-ferrous metals are typically more expensive than ferrous alloys. 2. They are also more difficult to machine and weld. 3. Some non-ferrous metals, such as lead, are toxic.

Here is a brief explanation of the compositions and application areas of brasses:

1. Brasses are copper-based alloys that contain zinc.

2. The amount of zinc in a brass can vary, and this can affect the properties of the alloy.

3. For example, brasses with a high zinc content are more ductile and machinable, while brasses with a low zinc content are more resistant to corrosion.

4. Brasses are used in a wide variety of applications, including:

Electrical connectors

Plumbing fixtures

Musical instruments

Jewelry

Coins

To learn more about Plumbing fixtures click here : brainly.com/question/30001133

#SPJ11

Using sketches, describe the carburisation process for steel
components?

Answers

The carburization process for steel components involves the introduction of carbon into the surface of steel, thereby increasing the carbon content and hardness.

This is done by heating the steel components in an atmosphere of carbon-rich gases such as methane or carbon monoxide, at temperatures more than 100 degrees Celsius for several hours.

Step 1: The steel components are placed in a carburizing furnace.

Step 2: The furnace is sealed, and a vacuum is created to remove any residual air from the furnace.

Step 3: The furnace is then filled with a carbon-rich atmosphere. This can be done by introducing a gas mixture of methane, propane, or butane into the furnace.

Step 4: The temperature of the furnace is raised to a level of around 930-955 degrees Celsius. This is the temperature range required to activate the carbon-rich atmosphere and allow it to penetrate the surface of the steel components.

Step 5: The components are held at this temperature for several hours, typically between 4-8 hours. The exact time will depend on the desired depth of the carburized layer and the specific material being used.

To know more about carburization visit:

https://brainly.com/question/33291700

#SPJ11

Steam enters the high-pressure turbine of a steam power plant that operates on the ideal reheat Rankine cycle at 6 MPa and 500°C and leaves as saturated vapor. Steam is then reheated to 400°C before it expands to a pressure of 10 kPa. Heat is transferred to the steam in the boiler at a rate of 6 × 104 kW. Steam is cooled in the condenser by the cooling water from a nearby river, which enters the condenser at 7°C. Show the cycle on a T-s diagram with respect to saturation lines, and determine (a) the pressure at which reheating takes place, (b) the net power output and thermal efficiency, and (c) the minimum mass flow rate of the cooling water required. mains the same

Answers

a) Pressure at which reheating takes place The given steam power plant operates on the ideal reheat Rankine cycle. Steam enters the high-pressure turbine at 6 MPa and 500°C and leaves as saturated vapor.

The cycle on a T-s diagram with respect to saturation lines can be represented as shown below :From the above diagram, it can be observed that the steam is reheated between 6 MPa and 10 kPa. Therefore, the pressure at which reheating takes place is 10 kPa .

b) Net power output and thermal efficiency The net power output of the steam power plant can be given as follows: Net Power output = Work done by the turbine – Work done by the pump Work done by the turbine = h3 - h4Work done by the pump = h2 - h1Net Power output = h3 - h4 - (h2 - h1)Thermal efficiency of the steam power plant can be given as follows: Thermal Efficiency = (Net Power Output / Heat Supplied) x 100Heat supplied =[tex]6 × 104 kW = Q1 + Q2 + Q3h1 = hf (7°C) = 5.204 kJ/kgh2 = hf (10 kPa) = 191.81 kJ/kgh3 = hg (6 MPa) = 3072.2 kJ/kgh4 = hf (400°C) = 2676.3 kJ/kgQ1 = m(h3 - h2) = m(3072.2 - 191.81) = 2880.39m kJ/kgQ2 = m(h4 - h1) = m(26762880.39m - 2671.09m = 209.3m   x 100= [209.3m / (2880.39m + 2671.09m)] x 100= 6.4 %c)[/tex]

Minimum mass flow rate of the cooling water required Heat rejected by the steam to the cooling water can be given as follows: Q rejected = mCpΔTwhere m is the mass flow rate of cooling water, Cp is the specific heat capacity of water, and ΔT is the temperature difference .Qrejected = Q1 - Q2 - Q3 = 209.3 m kW Q rejected = m Cp (T2 - T1)where T2 = temperature of water leaving the condenser = 37°C, T1 = temperature of water entering the condenser = 7°C, and Cp = 4.18 kJ/kg K Therefore, m = Qrejected / (Cp (T2 - T1))= 209.3 x 103 / (4.18 x 30)= 1.59 x 103 kg/s = 1590 kg/s Thus, the minimum mass flow rate of cooling water required is 1590 kg/s.

To know more about   saturated vapor visit:

brainly.com/question/32499566

#SPJ11

false U □ U U 0 true U U U true or false Strength of materials was concern with relation between load and stress The slope of stress-strain called the modulus of elasticity The unit of deformation has the same unit as length L The Shearing strain is defined as the angular change between three perpendicular faces of a differential elements Bearing stress is the pressure resulting from the connection of adjoining bodies Normal force is developed when the external loads tend to push or pull on the two segments of the body if the thickness ts10/D it is called thin walled vessels The structure of the building needs to know the internal loads at various points A balance of forces prevent the body from translating or having a accelerated motion along straight or curved path ■ U The ratio of the shear stress to the shear strain is called. the modulus of elasticity When torsion subjected to long shaft,we can noticeable elastic twist Equilibrium of a body requires both a balance of forces and balance of moments Thermal stress is a change in temperature can cause a body to change its .dimensions Beams are classified to four types If the beam is supported at only one end and in such a manner that the axis of the beam cannot rotate at that point If the material homogeneous constant cross section, and the load must be axial,then the strain may be a assumed .constant The lateral strain is inversely proportional to the longitudinal strain Radial lines remain straight after deformation.

Answers

Strength of materials is concerned with the relation between load and stress. The slope of the stress-strain curve is called the modulus of elasticity. The unit of deformation has the same unit as length L.

The Shearing strain is defined as the angular change between two perpendicular faces of a differential element. Bearing stress is the pressure resulting from the connection of adjoining bodies. Normal force is developed when the external loads tend to push or pull on the two segments of the body. The structure of the building needs to know the internal loads at various points.

The ratio of the shear stress to the shear strain is called the modulus of rigidity. When torsion is subjected to a long shaft, we can notice elastic twist. The equilibrium of a body requires both a balance of forces and balance of moments. Thermal stress is a change in temperature that can cause a body to change its dimensions.

To know more about dimensions visit:

https://brainly.com/question/31460047

#SPJ11

2. The total copper loss of a transformer as determined by a short-circuit test at 20°C is 630 watts, and the copper loss computed from the true ohmic resistance at the same temperature is 504 watts. What is the load loss at the working temperature of 75°C?

Answers

Load Loss = (R75 - R20) * I^2

To determine the load loss at the working temperature of 75°C, we need to consider the temperature coefficient of resistance and the change in resistance with temperature.

Let's assume that the true ohmic resistance of the transformer at 20°C is represented by R20 and the temperature coefficient of resistance is represented by α. We can use the formula:

Rt = R20 * (1 + α * (Tt - 20))

where:

Rt = Resistance at temperature Tt

Tt = Working temperature (75°C in this case)

From the information given, we know that the copper loss computed from the true ohmic resistance at 20°C is 504 watts. We can use this information to find the value of R20.

504 watts = R20 * I^2

where:

I = Current flowing through the transformer (not provided)

Now, we need to determine the temperature coefficient of resistance α. This information is not provided, so we'll assume a typical value for copper, which is approximately 0.00393 per °C.

Next, we can use the formula to calculate the load loss at the working temperature:

Load Loss = (Resistance at 75°C - Resistance at 20°C) * I^2

Substituting the values into the formulas and solving for the load loss:

R20 = 504 watts / I^2

R75 = R20 * (1 + α * (75 - 20))

Load Loss = (R75 - R20) * I^2

Please note that the specific values for R20, α, and I are not provided, so you would need those values to obtain the precise load loss at the working temperature of 75°C.

to learn more about coefficient of resistance.

https://brainly.com/question/9793655

#SPJ11

Other Questions
What is the value of the equilibrium constant for theconjugate acid, K., for a base that has a Kg = 5,28 x10-hO 1.00x 10-14O 1.89 x 10-6O 6.46 x 100 249 x 10-5 Explain the term "complex system". Explain five key properties of complex systems. Write atleast fourparagraphs. 4) Disc brakes are used on vehicles of various types (cars, trucks, motorcycles). The discs are mounted on wheel hubs and rotate with the wheels. When the brakes are applied, pads are pushed against the faces of the disc causing frictional heating. The energy is transferred to the disc and wheel hub through heat conduction raising its temperature. It is then heat transfer through conduction and radiation to the surroundings which prevents the disc (and pads) from overheating. If the combined rate of heat transfer is too low, the temperature of the disc and working pads will exceed working limits and brake fade or failure can occur. A car weighing 1200 kg has four disc brakes. The car travels at 100 km/h and is braked to rest in a period of 10 seconds. The dissipation of the kinetic energy can be assumed constant during the braking period. Approximately 80% of the heat transfer from the disc occurs by convection and radiation. If the surface area of each disc is 0.4 m and the combined convective and radiative heat transfer coefficient is 80 W/m K with ambient air conditions at 30C. Estimate the maximum disc temperature. Allocating Joint Costs Using the Sales-Value-at-Split-Off Method Sunny Lane, Inc,, purchases peaches from focal orchards and sorts them into four categories. Grade A are large blemish-free peaches that can be sold to gourmet fruit sellers. Grade B peaches are smaller and may be slightly out of proportion. These are packed in boxes and sold to grocery stores. Peaches to be sliced for canned peaches are even smalier than Grade 8 peaches and have blemishes. Peaches to be pureed for use in savces are of lower grade than peaches for slices, yet still food grade for canning. Information on a recent purchase of 20,000 pounds of peaches is as foliows: Assume that Sunny Lane, Inc, uses the sales-value-at-split-off method of joint cost allocation and has provided the following information about the four grades of peaches: Total joint cost is $16,000; 1. Allocate the joint cost to the four grades of peaches using the sales-value-at-spl t-off method, Round your allocation percentages to four decimal places and round the allocated costs to the nearest dollar. 2. What if the price at split-off of Grade B peaches increased to $1.60 per pound? How would that affect the allocation of cost to Grade B peaches? How would it affect the aliocation of cost to the remaining grades? Round your allocation percentages to four decimal places and round the allocated costs to the nearest dollar. The Yahoo! website provides quotations of various exchange rates and stock market indexes. Its website address is www.yahoo.com. 1. Go to the Yahoo! site for exchange rate data (finance.yahoo.com/currency-converter). 2. What is the prevailing direct exchange rate of the Japanese yen? 3. What is the prevailing direct exchange rate of the euro? 4. Based on your answers to parts (a) and (b). show how to determine the number of yen per curo. 5. One euro is equal to how many yen according to the converter in Yahoo!? 6. Based on your answer to part (d), show how to determine how many euros are equal to one Japanese yen. Explore the idea of family and our responsibilities to each other as expressed in "Death of a Hired Man" by Robert Frost.How is "The Love Song of J Alfred Prufrock" in many ways the opposite of a traditional love poem?Flannery O'Connor herself says her subject is "the action of grace in territory held largely by the devil." Define grace and the devil and how they function in either "The Life You Save May Be Your Own" or "Good Country People."How does Tennessee Williams explore the destruction of the Old South in A Streetcar Named Desire? Consider the transshipment costs per unit shipped below for this problem. Consider this distribution plan below. What is the total cost (dollars) associated with this distribution plan? (round to a whole number) Layout (cont.) Assume a faciity is setting us an assembly line and the tasks and times are listed above. Assume the desired cycle time is 15 minutes/unit. What is the theoretical minimum number of workstations required? (Round up to a whole number) Which of the following is a possible effect on transmission of action potentials, of a mutant sodium channel that does not have a refractory period? The frequency of action potentials would be increased The peak of the action potential (amount of depolarization) would be higher The action potential would travel in both directions The rate at which the action potential moves down the axon would be increased Which of the following is/are true of promoters in prokaryotes? More than one answer may be correct. They are proteins that bind to DNA They are recognized by multiple transcription factors/complexes They are recognized by sigma factors They are regions of DNA rich in adenine and thymine What are the consequences of a defective (non-functional) Rb protein in regulating cell cycle? E2F is active in the absence of G1 cyclin, resulting in unregulated progression past the G checkpoint E2F is inactive, resulting in unregulated progression past the Gcheckpoint G cyclin is overproduced, resulting in unregulated progression past the G checkpoint E2F is active in the absence of MPF cyclin, resulting in unregulated progression past the G2 checkpoint FINDING THE NUMBER OF TEETH FOR A SPEED RATIO 415 same direction as the driver; an even number of idlers will cause the driven gear to rotate in the direction opposite to that of the driver. 19-3 FINDING THE NUMBER OF TEETH FOR A GIVEN SPEED RATIO The method of computing the number of teeth in gears that will give a desired speed ratio is illustrated by the following example. Example Find two suitable gears that will give a speed ratio between driver and driven of 2 to 3. Solution. 2 x 12 24 teeth on follower 3 x 12 36 teeth on driver - Explanation. Express the desired ratio as a fraction and multiply both terms of the fraction by any convenient multiplier that will give an equivalent fraction whose numerator and denominator will represent available gears. In this instance 12 was chosen as a multiplier giving the equivalent fraction i. Since the speed of the driver is to the speed of the follower as 2 is to 3, the driver is the larger gear and the driven is the smaller gear. PROBLEMS 19-3 Set B. Solve the following problems involving gear trains. Make a sketch of the train and label all the known parts. 1. The speeds of two gears are in the ratio of 1 to 3. If the faster one makes 180 rpm, find the speed of the slower one. 2. The speed ratio of two gears is 1 to 4. The slower one makes 45 rpm. How many revolutions per minute does the faster one make? 3. Two gears are to have a speed ratio of 2.5 to 3. If the larger gear has 72 teeth, how many teeth must the smaller one have? 4. Find two suitable gears with a speed ratio of 3 to 4. 5. Find two suitable gears with a speed ratio of 3 to 5. 6. In Fig. 19-9,A has 24 teeth, B has 36 teeth, and C has 40 teeth. If gear A makes 200 rpm, how many revolutions per minute will gear C make? 7. In Fig. 19-10, A has 36 teeth, B has 60 teeth, C has 24 teeth, and D has 72 teeth. How many revolutions per minute will gear D make if gear A makes 175 rpm? A heat engine operating on a Carnot Cycle rejects 519 kJ of heat to a low-temperature sink at 304 K per cycle. The high-temperature source is at 653C. Determine the thermal efficiency of the Carnot engine in percent. Pig-to-humanorgan transplants use a genetically modified pig as the source oforgans. Note that some genes were added and some pig genes wereknocked out. Describe in conceptual detail how the gene-m A 70 kg man falls on a platform with negligible weight from a height of 1.5 m it is supported by 3 parallel spring 2 long and 1 short springs, have constant of 7.3 kN/m and 21.9 kN/m. find the compression of each spring if the short spring is 0.1 m shorter than the long spring 9) Explain why genetic drift has a greater effect in smaller populations than in large populations. 10) Discuss similarities and differences between a founder effect and a genetic bottleneck. A mass of 0.15 slug in space is subjected to an downward external vertical force of 8 lbf. If the local gravity acceleration is g = 29 ft/s2 and if friction effects are neglected, Determine the acceleration of the mass in m/s2.correct answer (24.94 m/s^2) Three models of heat transfer: _____, ____, and ____ An individual organism has the following genotype ( 4 genes are being considered): AABbCcDd. Which of the following is a potential final product of meiosis for the production of gametes by this organism? AbCd AABBCcDd AAbcd abCD AABbCcDd Discuss the three techniques of assessing density in a speciesof organisms, and indicate the conditions under which each methodwould be most beneficial. Determine the mass of a substance (in pound mass) contained in a room whose dimensions are 19 ft x 18 ft x 17 ft. Assume the density of the substance is 0.082 lb/ft^3 (a) When considering the energy states for free electrons in metals, explain what is meant by the terms Fermi sphere and Fermi level. (b) Electrons, constituting a current, are driven by a battery thr Reaction of antigen with IgE antibodies attached to mast cells causes a. Complement fixation. b. Agglutination. c. Lysis of the cells. d. Release of chemical mediators. e. None of these