The degree of subcooling is 28°C, which is within the range of possible values for the system to operate.
The degree of subcooling is the difference between the temperature of the condensed refrigerant and the saturation temperature at the condenser pressure. A higher degree of subcooling will lead to a lower efficiency, but it is possible to operate the system with a degree of subcooling of 28°C. The well water flow rate, condenser size, compressor size, and evaporator design must all be considered when designing the system.
The degree of subcooling is important because it affects the efficiency of the system. A higher degree of subcooling will lead to a lower efficiency because the refrigerant will have more energy when it enters the expansion valve. This will cause the compressor to work harder and consume more power.
The well water flow rate must be sufficient to remove the heat from the condenser. If the well water flow rate is too low, the condenser will not be able to remove all of the heat from the refrigerant and the system will not operate properly.
The condenser must be sized to accommodate the well water flow rate. If the condenser is too small, the well water will not be able to flow through the condenser quickly enough and the system will not operate properly.
The compressor must be sized to handle the refrigerant mass flow rate. If the compressor is too small, the system will not be able to cool the chamber properly.
The evaporator must be designed to provide the desired cooling capacity. If the evaporator is too small, the system will not be able to cool the chamber properly.
It is important to consult with a refrigeration engineer to design a system that meets your specific needs.
Learn more about condenser pressure here:
https://brainly.com/question/32891465
#SPJ11
Prove that a Schmitt oscillator trigger can work as a VCO.
Step 1:
A Schmitt oscillator trigger can work as a VCO (Voltage Controlled Oscillator).
Step 2:
A Schmitt oscillator trigger, also known as a Schmitt trigger, is a circuit that converts an input signal with varying voltage levels into a digital output with well-defined high and low voltage levels. It is commonly used for signal conditioning and noise filtering purposes. On the other hand, a Voltage Controlled Oscillator (VCO) is a circuit that generates an output signal with a frequency that is directly proportional to the input voltage applied to it.
By incorporating a voltage control mechanism into the Schmitt trigger circuit, it can be transformed into a VCO. This can be achieved by introducing a variable voltage input to the reference voltage level of the Schmitt trigger. As the input voltage changes, it will cause the switching thresholds of the Schmitt trigger to vary, resulting in a change in the output frequency.
The VCO functionality of the modified Schmitt trigger circuit allows it to generate a continuous output signal with a frequency that can be controlled by the applied voltage. This makes it suitable for various applications such as frequency modulation, clock generation, and signal synthesis.
Step 3:
Learn more about : frequency
Describe frequency, relative frequency, and cumulative relative frequency.
#SPJ11