Answer:
[tex]\frac{T}{T_o} = ( 1 + \frac{1}{n} )^2[/tex]
Explanation:
This is a string resonance exercise, the wavelengths in a string held at the ends is
λ = 2L₀ / n
where n is an integer
the speed of the wave is
v = λ f
f = v /λ
the speed of the wave is given by the characteristics of the medium (string)
v = [tex]\sqrt{\frac{T}{\mu } }[/tex]
we substitute
f = [tex]\frac{n}{2L_o} \ \sqrt{\frac{T}{\mu } }[/tex]
to obtain the following harmonic we change n → n + 1
f’ = [tex]\frac{n+1}{2L_o} \ \sqrt{\frac{T_o}{\mu } }[/tex]
In this case, it tells us to change the tension to obtain the same frequency.
f ’= \frac{n}{2L_o} \ \sqrt{\frac{T}{\mu } }
how the two frequencies are equal
[tex]\frac{n+1}{2L_o} \sqrt{\frac{T_o}{ \mu } } = \frac{n}{2L_o} \sqrt{\frac{T}{\mu } }[/tex]
(n + 1) [tex]\sqrt{T_o}[/tex] = n [tex]\sqrt{T}[/tex]
[tex]\frac{T}{T_o} = ( \frac{n+1}{n} )^2[/tex]
[tex]\frac{T}{T_o} = ( 1 + \frac{1}{n} )^2[/tex]
this is the relationship of the voltages to obtain the following harmonic,
Probability of a woman wearing green to walk into a restaurant
Please helppppppp I need it todayyyyyt!!!!!
Walking at a brisk pace, you cover 10 m in 5.0 s . How many seconds will you need to cover 50 m ?
A box attached to a spring is being pulled across a flat frictionless surface. The spring constant is 45 N/m, the box is accelerating at
1.3 m/s2, and the spring is stretched by 0.88 m. What is the mass of the box?
26 kg
O 38 kg
30 kg
O 33 kg
Plzzzzz help
Answer:
Mass = 30.46 kg
Explanation:
Given the following data;
Spring constant = 45 N/m
Acceleration = 1.3 m/s²
Extension = 0.88 m
To find the mass of the box;
First of all, we would determine the force acting on the spring.
Force = spring constant * extension
Force = 45 * 0.88
Force = 39.6 N
Next, we find the mass using Newton's second equation of motion.
Force = mass * acceleration
39.6 = mass * 1.3
Mass = 39.6/1.3
Mass = 30.46 kg
what is the light synthesis ?
Answer:
Photosynthesis, the process by which green plants and certain other organisms transform light energy into chemical energy. ... During photosynthesis in green plants, light energy is captured and used to convert water, carbon dioxide, and minerals into oxygen and energy-rich organic compounds.
Explanation:
thank me later
One of the earliest vertebrate animal groups that evolved in the early Paleozoic Era
are
A system has both potential energy (PE) and kinetic energy (KE). According to
the law of conservation of energy, what can happen to the total energy of the
system?
Answer:
A. It must stay the same, but kinetic energy (KE) can be transformed to PE and PE can be transformed to KE within the system.
Explanation:
Energy can be defined as the ability (capacity) to do work. The two (2) main types of energy are;
a. Potential energy (PE): it is an energy possessed by an object or body due to its position above the earth.
Mathematically, potential energy is given by the formula;
[tex] P.E = mgh[/tex]
Where,
P.E represents potential energy measured in Joules.m represents the mass of an object. g represents acceleration due to gravity measured in meters per seconds square. h represents the height measured in meters.b. Kinetic energy (KE): it is an energy possessed by an object or body due to its motion.
Mathematically, kinetic energy is given by the formula;
[tex] K.E = \frac{1}{2}MV^{2}[/tex]
Where;
K.E represents kinetic energy measured in Joules. M represents mass measured in kilograms. V represents velocity measured in metres per seconds square.Furthermore, the total energy of a physical object or body is the sum of the potential energy and kinetic energy possessed by the object or body.
Mathematically, it is given by the formula;
Total energy = P.E + K.E
The Law of Conservation of Energy states that energy cannot be destroyed but can only be transformed or converted from one form to another.
In this scenario, a system has both potential energy (PE) and kinetic energy (KE).
According to the law of conservation of energy, we can infer or deduce that the total energy of the system must stay the same because it cannot be destroyed, but kinetic energy (KE) can be transformed to potential energy (PE) and potential energy (PE) can be transformed to kinetic energy (KE) within the system.
Two loudspeakers emit sound waves along the x-axis. The sound has maximum intensity when the speakers are 15 cm apart. The sound intensity decreases as the distance between the speakers is increased, reaching zero at a separation of 65 cm .
Required:
What is the wavelength of the sound?
Answer:
100 cm
Explanation:
It is given that there are two loudspeakers that produces [tex]$\text{sound waves }$[/tex] along x-axis.
The maximum intensity of the sound is [tex]$\text{when the speakers are}$[/tex] at a distance of = 15 cm apart.
The sound intensity becomes zero when the separation between the speakers are increased and becomes 65 cm.
Therefore, the sound waves are in the phase, [tex]$\Delta x_1=15 \ cm$[/tex]
The sound waves are out of phase when [tex]$\Delta x_2=65 \ cm$[/tex]
Therefore,
[tex]$\Delta x_2 - \Delta x_1 = \frac{\lambda}{2}$[/tex]
[tex]$\lambda= 2(\Delta x_2 - \Delta x_1)$[/tex]
= 2 (65 - 15)
= 2 x 50
= 100 cm
Hence the wavelength of the sound is 100 cm.
In a region of space there is a uniform magnetic field pointing in the positive z direction. In what direction should a negative charge move to experience a force in the positive x direction
Answer:
the speed in -y
Explanation:
For this exercise we must use the right hand rule. The motion of a positive charge is given by.
Thumb points in the direction of speed
fingers extended in the direction of the magnetic field, + z axis
the palm in the direction of the force, as the charge is negative in the opposite direction of the force, axis + x
therefore the thumb is in the direction - y
the speed in -y
An athlete training for an event does 6.53 104 J of work during a workout and gives off 5.97 105 J of heat. Consider the athlete to be like a heat engine. (a) Determine the magnitude of the change in internal energy of the athlete. J (b) What is the efficiency of the athlete
Answer:
(a) The magnitude of the change in internal energy is 6.623 x 10⁵ J
(b) the efficiency of the athlete is 10.94 %
Explanation:
Given;
work done by the athlete (system), W = 6.53 x 10⁴ J
the heat given off by the athlete (system), Q = 5.97 x 10⁵ J
The simple diagram below will be used to illustrate the direction of the energy flow assuming a heat engine.
Q← ⊕ →W
The work, W, points away from the system since the system does the work
The heat, Q, points away from the system since heat is given off
Apply first law of thermodynamic;
ΔU = Q + W
where;
q is the heat flowing into or out of the system
(+q if the heat is flowing into the system
(-q if the heat is leaving the system
w is the work done by or on the system
(+w if the work is done on the system by the surrounding
(-w if the work is done by the system to the surrounding
Thus, from the above explanation, the change in internal energy of the system is calculated as;
ΔU = -Q - W
ΔU = - 5.97 x 10⁵ J - 6.53 x 10⁴ J
ΔU = -6.623 x 10⁵ J
The magnitude of the change in internal energy = 6.623 x 10⁵ J
(b) the efficiency of the athlete;
[tex]Efficiency = \frac{W}{Q} \times 100\%\\\\Efficiency = \frac{6.53 \times 10^4}{5.97 \times 10^5} \times 100\%\\\\Efficiency = 10.94 \ \%[/tex]
Work is done when you lift an object to a certain height. If the force exerted is greater than the weight of the object, input work is greater than the output work. Where does the extra energy go?
Work is done when you lift an object to a certain height. If the force exerted is greater than the weight of the object, input work is greater than the output work. Then the extra energy goes in overcoming the gravitational acceleration and heating up of body etc
Visible matter belonging to the Milky Way Galaxy can be traced out to about 50,000 light years from the center.
a. True
b. False
Answer:
b. False
Explanation:
The visible matter that belongs to the Milky way Galaxy are traced out to be about 50 kpc distance from the center.
Kpc stands for kiloparsec. It is the unit of measurement of distance.
A parsec is[tex]$\text{ used to measure large distances}$[/tex] of the astronomical objects that lies [tex]$\text{outside the solar system}$[/tex], mainly where galaxies are involved.
1 kiloparsec is 1000 parsec and is equal to 3260 light years.
So the visible matter is about 163,078 light years away.
Hence the answer is FALSE.
Red light of wavelength 633 nm from a helium-neon laser passes through a slit 0.390 mm wide. The diffraction pattern is observed on a screen 3.10 m away. Define the width of a bright fringe as the distance between the minima on either side.
Answer:
Y = 5.03 x 10⁻³ m = 5.03 mm
Explanation:
Using Young's Double-slit formula:
[tex]Y = \frac{\lambda L}{d}[/tex]
where,
Y = Fringe Spacing = Width of bright fringe = ?
λ = wavelength = 633 nm = 6.33 x 10⁻⁷ m
L = Screen distance = 3.1 m
d = slit width = 0.39 mm = 3.9 x 10⁻⁴ m
Therefore,
[tex]Y = \frac{(6.33\ x\ 10^{-7}\ m)(3.1\ m)}{3.9\ x\ 10^{-4}\ m}[/tex]
Y = 5.03 x 10⁻³ m = 5.03 mm
Try to shorten the long string and talk once again with one of your family members, how did the length of the string affect the quality of the sound produced?
Answer:
Explanation:
The length of the string determines the frequency of the sound waves. Shorter length strings will cause the string to vibrate faster which causes faster frequency and a higher pitch. Longer length strings have the opposite effect, in which frequency is slowed down causing lower pitch. This higher pitch creates a perceived brightness of the sound which can be categorized as being a better sound quality than that of a lower-pitched message. Therefore, we can say that yes, it does affect the sound produced.
A car travels at a constant speed around a circular track whose radiu is 2.6 km. The goes once arond the track in 360s . What is the magnitude
Answer:
Centripetal acceleration = 0.79 m/s²
Explanation:
Given the following data;
Radius, r = 2.6 km
Time = 360 seconds
Conversion:
2.6 km to meters = 2.6 * 1000 = 2600 meters
To find the magnitude of centripetal acceleration;
First of all, we would determine the circular speed of the car using the formula;
[tex] Circular \; speed (V) = \frac {2 \pi r}{t}[/tex]
Where;
r represents the radius and t is the time.Substituting into the formula, we have;
[tex] Circular \; speed (V) = \frac {2*3.142*2600}{360} [/tex]
[tex] Circular \; speed (V) = \frac {16338.4}{360} [/tex]
Circular speed, V = 45.38 m/s
Next, we find the centripetal acceleration;
Mathematically, centripetal acceleration is given by the formula;
[tex] Centripetal \; acceleration = \frac {V^{2}}{r}[/tex]
Where;
V is the circular speed (velocity) of an object.r is the radius of circular path.Substituting into the formula, we have;
[tex] Centripetal \; acceleration = \frac {45.38^{2}}{2.6}[/tex]
[tex] Centripetal \; acceleration = \frac {2059.34}{2600}[/tex]
Centripetal acceleration = 0.79 m/s²
as a mercury atom absorbs a photon of energy as electron in the atom changes from energy level B to energy level E. calculate the frequency of the absorb photon.
Answer:
2.00x 10 14th Hz
Explanation:
Answer:
2.99 x 10^14 Hz
Explanation:
E photon= hf (you have to solve for f)
f= E photon/h
f= 1.98 x 10^-19 J / 6.63 x 10^-34 J x s
f=2.99 x 10^14 Hz
How is a continuous spectra is formed?
Answer:
Hello There!!
Explanation:
They are produced by the photodissociation of negatively charged hydrogen ions (H−).
hope this helps,have a great day!!
~Pinky~
An atom has 20 protons and 22 neutrons and 18 electrons. The charge of this atom is: ________
Answer:
the number of electrons should equal to the the number of protons in a neutral atom
if there is a inequality between the numbers it means the atom has a + or - charge
The charge of this atom=+(20-18)=+26. In an integrated circuit, each wafer is cut into sections, which
ООО
A. have multiple circuits and are placed in individual cases.
B. carry a single circuit and are placed in individual cases.
C. carry a single circuit and are placed all together in one case.
D. have multiple circuits and are placed all together in one case.
o
Answer:
B. carry a single circuit and are placed in individual cases.
Explanation:
An electric circuit can be defined as an interconnection of electrical components which creates a path for the flow of electric charge (electrons) due to a driving voltage.
Generally, an electric circuit consists of electrical components such as resistors, capacitors, battery, transistors, switches, inductors, etc.
Similarly, an integrated circuit (IC) also referred to as microchip can be defined as a semiconductor-based electronic component that comprises of many other tiny electronic components such as capacitors, resistors, transistors, and inductors.
Integrated circuits (ICs) are often used in virtually all modern electronic devices to carry out specific tasks or functions such as amplification, timer, oscillation, computer memory, microprocessor, etc.
A wafer can be defined as a thin slice of crystalline semiconductor such as silicon and germanium used typically for the construction of an integrated circuit.
In an integrated circuit, each wafer is cut into sections, which generally comprises of a single circuit that are placed in individual cases.
Additionally, a semiconductor can be defined as a crystalline solid substance that has its conductivity lying between that of a metal and an insulator, due to the effects of temperature or an addition of an impurity.
Answer: B got it right on the test just now
Explanation:
Matter's resistance to a change in motion is called _____ and is directly proportional to the mass of an object. For an object to change its state of motion, a force must be applied to it.
A. Velocity
B. Inertia
C. Distance
D. Area
Answer:
B) Inertia is the resistance of any physical object
You throw a glob of putty straight up toward the ceiling, which is 3.50 mm above the point where the putty leaves your hand. The initial speed of the putty as it leaves your hand is 9.50 m/sm/s. Part A What is the speed of the putty just before it strikes the ceiling
Answer: [tex]4.65\ m/s[/tex]
Explanation:
Given
Distance putty has to travel is 3.5 m
The initial speed of putty is 9.50 m/s
Using equation of motion to determine the velocity of putty just before it hits ceiling
[tex]v^2-u^2=2as[/tex]
[tex]\Rightarrow v^2-(9.5)^2=2(-9.8)(3.5)\\\\\Rightarrow v^2=9.5^2-68.6\\\Rightarrow v=\sqrt{90.25-68.6}\\\Rightarrow v=4.65\ m/s[/tex]
So, the velocity of putty just before hitting is [tex]4.65\ m/s[/tex]
A jet accelerates from rest down a runway at 1.75m/s² for a distance of 1500 m before takeoff.
a). How fast is the plane moving at takeoff?
b). How long does ot take the plane to travel down the runway?
Two workers are sliding 450 kg kg crate across the floor. One worker pushes forward on the crate with a force of 380 NN while the other pulls in the same direction with a force of 230 NN using a rope connected to the crate. Both forces are horizontal, and the crate slides with a constant speed. What is the crate's coefficient of kinetic friction on the floor
Answer:
The coefficient of kinetic friction on the floor is 0.138
Explanation:
Given;
mass of the crate, m = 450 kg
force applied by the first worker, F₁ = 380 N
force applied by the second worker in the same direction as the first worker, F₁ = 230 N
frictional force opposing the motion of the box = -[tex]F_k[/tex]
Apply Newton's second law of motion;
∑F = ma
[tex]F_1 + F_2 - F_k = ma[/tex]
If the crate slides with constant speed, acceleration is zero (0).
[tex]F_1 + F_2 - F_k = ma = 0\\\\F_1 + F_2 - F_k = 0\\\\F_k = F_1 + F_2\\\\\mu _kmg= F_1 + F_2\\\\\mu _k = \frac{F_1 + F_2}{mg} \\\\\mu _k = \frac{380 + 230}{450 \times 9.8} \\\\\mu _k = 0.138[/tex]
Therefore, the coefficient of kinetic friction on the floor is 0.138
PLEASE HELP! Daniel is 50.0 meters away from a building. He observes that his line-of-sight to the tip of the building makes an angle of 63.0° with the
horizontal. What is the height of the building?
A. 174 m
B. 110 m
C. 98 m
D. 50 m
Answer:
The height of building should be 98.13 m plus the height of Daniel. Since the 63° was measured from his eye level.
Explanation:
Suppose an astronomer observes a binary star system where the stars are separated by 2.0 AU , and they have an orbital period of 7.0 years . Using Newton's version of Kepler's Third Law, find the combined mass of the stars.
Answer:
4.408 [tex]\mathsf{M_{sun}}[/tex]
Explanation:
According to Kelper's Third Law, the equation of the combined mass (m₁+m₂) can be expressed as:
[tex](m_1 + m_2) = \dfrac{\text{(distance between stars)}^3}{\text{(orbital period)}^2}[/tex]
[tex]\text{combined mass}(m_1+m_2)} =\dfrac{(6.0)^3}{(7)^2} \ M_{sun}[/tex]
[tex]\text{combined mass}(m_1+m_2)} =\dfrac{216}{49} \ M_{sun}[/tex]
combined mass (m₁+m₂) = 4.408 [tex]\mathsf{M_{sun}}[/tex]
A red apple reflects ______
light and absorbs all other
colours.
A red apple reflects Red light and absorbs all other colours.
If a fisherman applies a horizontal force with magnitude 47.0 NN to the box and produces an acceleration of magnitude 3.20 m/s2m/s2, what is the mass of the box
Answer:
The correct solution is "14.6875 kg".
Explanation:
Given values:
Force,
F = 47.0 N
Acceleration,
a = 3.20 m/s²
Now,
⇒ [tex]Force=Mass\times Acceleration[/tex]
or,
⇒ [tex]F=ma[/tex]
⇒ [tex]47.0=m\times 3.20[/tex]
⇒ [tex]m=\frac{47.0}{3.20}[/tex]
⇒ [tex]=14.6875 \ kg[/tex]
A body initially at rest is accelerated at a constant rate for 5.0 seconds in the positive x direction. If the final speed of the body is 20.0 m/s, what was the body's acceleration?
Answer:
[tex]a=4\ m/s^2[/tex]
Explanation:
Given that,
Initial speed of a body, u = 0
Final speed of the body, v = 20 m/s
Time, t = 5 s
We need to find the acceleration of the body. We know that the acceleration of an object is equal to the rate of change of velocity divided by time taken. So,
[tex]a=\dfrac{v-u}{t}\\\\a=\dfrac{20-0}{5}\\\\a=4\ m/s^2[/tex]
So, the body's acceleration is equal to [tex]4\ m/s^2[/tex].
What are the relationships between the temperature scales of Fahrenheit, Kelvin, Celsius, and Rankine
What is the speed acquired by a freely falling object 4 seconds after being dropped from a rest position? Use units of meter per second (m/s) and assume acceleration from gravity is 10 m/s2.
speed = 40 m/s
Explanation:
Since the object is dropped, V0y = 0.
Vy = V0y - gt
= -(10 m/s^2)(4 s)
= -40 m/s
This means that its velocity is 40 m/s downwards. Its speed is simply 40 m/s.
The speed acquired by a freely falling object 4 seconds after being dropped from a rest position would be 40 meters/seconds.
What are the three equations of motion?There are three equations of motion given by Newton
The first equation is given as follows
v = u + at
the second equation is given as follows
S = ut + 1/2×a×t²
the third equation is given as follows
v² - u² = 2×a×s
Keep in mind that these calculations only apply to uniform acceleration.
As given in the problem, we have to find the speed acquired by a freely falling object 4 seconds after being dropped from a rest position,
By using the first equation of motion,
v = u + at
initial velocity(u) = 0 m/s
acceleration(a) = 10 m/s²
v = 0 + 10×4
v = 40 meters/seconds
Thus, the speed acquired by a freely falling object 4 seconds after being dropped from a rest position would be 40 meters/seconds.
Learn more about equations of motion from here,
brainly.com/question/5955789
#SPJ2