In an industrial factory there are several three-phase induction motors of various powers, which together provide a motor power of 7,450 HP, working all on a common 440 V at 60 Hz line. The power factor of the entire motor installation is 0.80, delayed. It is planned to install several three-phase synchronous motors to provide the ventilation inside the industrial building and the operation of some machines laminating and die-cutting machines, as well as conveyor belts that must be move at constant speed, replacing some induction motors by synchronous motors, taking advantage of their operational advantages to compensate for the power factor and bring it up to 0.96 lagging, maintaining the engine power of 7,450 HP. a) Calculate the current and the real, reactive and apparent powers of the line three-phase before and after power factor correction. b) If the high voltage line that feeds the company has a voltage rated at 13,800 V and a length of 3.5 km, and the resistance of its conductors is 0.012 Ω /m, calculate the power lost in power line heating before and after correction of the power factor. c) Calculate the power factor at which they must work together if the total rated power of synchronous motors to achieve correction proposal is 15% of the total engine power.

Answers

Answer 1

a) Before power factor correction:

Total power of the induction motors = 7,450 HP

b) Power lost in power line heating:

Length of power line (L) = 3.5 km = 3,500 m

Resistance of conductors (R) = 0.012 Ω/m

c) Total rated power of synchronous motors for correction:

Total rated power of synchronous motors = 15% of the total engine power

Power factor = 0.80 lagging

Line voltage = 440 V

Line frequency = 60 Hz

To calculate the current and power, we need to convert the power to watts and use the following formulas:

Real power (P) = Apparent power (S) * Power factor (PF)

Reactive power (Q) = √(S^2 - P^2)

Apparent power before correction:

Apparent power (S) = Power (P) / Power factor (PF)

S = 7,450 HP / 0.80 = 9,312.5 kVA

Real power before correction:

P = S * PF = 9,312.5 kVA * 0.80 = 7,450 kW

Reactive power before correction:

Q = √(S^2 - P^2) = √(9,312.5^2 - 7,450^2) = 4,687.5 kVAR

Current before correction:

Current (I) = S / (√3 * V)

I = 9,312.5 kVA / (√3 * 440 V) = 12.74 A

After power factor correction:

Desired power factor (PF) = 0.96 lagging

Total power of the motors remains 7,450 HP

Apparent power after correction:

S = P / PF = 7,450 HP / 0.96 = 7,760.42 kVA

Real power after correction remains the same as before: 7,450 kW

Reactive power after correction:

Q = √(S^2 - P^2) = √(7,760.42^2 - 7,450^2) = 2,248.27 kVAR

Current after correction:

I = S / (√3 * V) = 7,760.42 kVA / (√3 * 440 V) = 10.70 A

b) Power lost in power line heating:

Length of power line (L) = 3.5 km = 3,500 m

Resistance of conductors (R) = 0.012 Ω/m

Power lost before correction:

Power lost = (3 * I^2 * R * L) / 1,000

Power lost = (3 * (12.74 A)^2 * 0.012 Ω/m * 3,500 m) / 1,000 = 156.38 kW

Power lost after correction:

Power lost remains the same as before: 156.38 kW

c) Total rated power of synchronous motors for correction:

Total rated power of synchronous motors = 15% of the total engine power

Total rated power = 0.15 * 7,450 HP = 1,117.5 HP

To calculate the power factor at which synchronous motors must work, we need to use the following formula:

PF = P / S

PF = 1,117.5 HP / 7,760.42 kVA = 0.144 leading

Learn more about induction here

https://brainly.com/question/28852537

#SPJ11


Related Questions

What is the Nyquist sampling rate for this signal:
sinc(50t)sinc(100t)

Answers

the Nyquist sampling rate for this signal would be 200 samples per second (Hz), as it is greater than 100 Hz.

The Nyquist sampling rate is determined by the highest frequency component in the signal. In this case, the signal is given as

sinc(50t) x sinc(100t). To find the Nyquist sampling rate, we need to determine the highest frequency present in the signal.

The sinc function has a main lobe width of 2π, which means that its bandwidth is approximately 1/π.

For sinc(50t), the highest frequency component is 50 cycles per second (Hz).

For sinc(100t), the highest frequency component is 100 cycles per second (Hz).

To ensure accurate reconstruction of the signal, the sampling rate must be at least twice the highest frequency component. Therefore, the Nyquist sampling rate for this signal would be 200 samples per second (Hz), as it is greater than 100 Hz.

Learn more about the Nyquist sampling sampling rates here:

brainly.com/question/31735568

#SPJ11

Abdulaziz plans to start a production facility for a new product. His cost estimations considered the following. He wil rent a small building for 5.000dhs per month for production purposes. Uties cont estimated at 500dhs per month. He will rent production equipment at a monthly cost of 4,000dhs. He estimates the material cost per und will be 15dhs, and the labor cost will be 15h per un Advertising and promotion costs estimated at 3.500dhs per month to promote for the new product Based on the above match the closest answer to the below questions Total fixed cost is If the machine maximum production capacity is 1000 units per month, what is the selling price per unit he should set to break even monthly? a. 13.000 Dhs b. 43 Dhs

Answers

Abdulaziz's cost estimations include rent, utility costs, equipment rental, material cost, labor cost, and advertising/promotion costs. The selling price per unit needed to break even is 9.50 AED.

What are Abdulaziz's cost estimations for his production facility, and what is the selling price per unit he should set to break even monthly?

Abdulaziz's cost estimations for his production facility include a monthly rent of 5,000 AED for a small building, utility costs estimated at 500 AED per month, equipment rental cost of 4,000 AED per month, material cost of 15 AED per unit, labor cost of 15 AED per unit, and advertising/promotion costs of 3,500 AED per month.

To calculate the total fixed cost, we add up the monthly rent, utility costs, and equipment rental costs. To determine the selling price per unit needed to break even, we divide the total fixed cost by the maximum production capacity of 1000 units per month.

Total fixed cost = Rent + Utilities + Equipment rental = 5,000 AED + 500 AED + 4,000 AED = 9,500 AED

Break-even selling price per unit = Total fixed cost / Maximum production capacity = 9,500 AED / 1000 units = 9.50 AED per unit

Therefore, the closest answer to the question "What is the selling price per unit he should set to break even monthly?" is 9.50 AED per unit.

Learn more about cost estimations

brainly.com/question/31521780

#SPJ11

Q1) In CNC tool-path generation the collision detection is used for
a) fast simulation
b) Reduce waste
c) Increase flexibility in manufacturing
d) Protect the cutting tool and the CNC holder
Q2) In CNC the maximum depth of cut parameter is crucial to
a) increasing the cost
b) protect the cutting tool
c) decreasing the step over
d) decreasing the cost
Q3) Select the CNC main components (select multiple answers)
a) Motor and drivers
b) Furnace
c) Working tool mechanism and motors and screw
d) Microcomputer
e) Microphone
f) Microwave

Answers

In CNC tool-path generation, collision detection is used primarily for d) Protecting the cutting tool and the CNC holder.

Collision detection is an essential feature in CNC machining to prevent collisions between the cutting tool, workpiece, fixtures, and machine components. By detecting potential collisions, the CNC system can dynamically adjust the tool path to avoid any physical contact that could damage the cutting tool or the CNC holder. This helps ensure the integrity and longevity of the machining equipment and reduces the risk of accidents or machine breakdowns.

While fast simulation, waste reduction, and increased flexibility in manufacturing are important aspects of CNC tool-path generation, the primary purpose of collision detection is to protect the cutting tool and the CNC holder from potential damage that could occur during the machining process.

Know more about CNC tool-path generation here:

https://brainly.com/question/30391195

#SPJ11

A reheat-regenerative Rankine cycle uses steam at 8.4 MPa and 560°C entering the high-pressure turbine. The cycle includes one steam-extraction stage for regenerative feedwater heating, the remainder at this point being reheated to 540°C. The condenser temperature is 35°C. Determine (a) the T-s diagram for the cycle; (b) optimum extraction pressure; (c) fraction of steam extracted; (d) turbine work in kJ/kg; (e) pump work in kJ/kg; (f) overall thermal efficiency.

Answers

The T-s diagram for the cycle consists of the following stages: 1-2: Isentropic expansion in the high-pressure turbine from 8.4 MPa and 560°C to the reheater temperature of 540°C. 2-3: Constant pressure heat addition in the reheater. 3-4: Isentropic expansion in the low-pressure turbine. 4-5: Constant pressure heat rejection in the condenser. 5-6: Isentropic compression in the feedwater pump.

The optimum extraction pressure is determined by finding the pressure at which the extracted steam temperature matches the feedwater temperature before entering the pump.

The fraction of steam extracted is calculated by dividing the enthalpy difference between extraction and turbine outlet by the enthalpy difference between the initial and final turbine stages.

The turbine work is the difference in enthalpy between the inlet and outlet of the turbine.

The pump work is the difference in enthalpy between the outlet and inlet of the pump.

The overall thermal efficiency is determined by dividing the net work output (turbine work minus pump work) by the heat input to the cycle (enthalpy difference between the initial and final turbine stages).

Learn more about high-pressure turbine here:

https://brainly.com/question/32316959

#SPJ11

Design and implement a sequence generator to generate a sequence which has a 10 or more different states: 0, 11, 14, 5, 4, 15, 12, 9, 2,13, 0, 11, ... Ensure that all invalid stages of the machine clear it (set it too state zero.)

Answers

By using a finite state machine approach and adding transition paths to state zero for any invalid state, we can design a circuit that generates the desired sequence while ensuring invalid states are cleared.

How can we design and implement a sequence generator with 10 or more different states and handle invalid states?

To design and implement a sequence generator with 10 or more different states, we can use a finite state machine (FSM) approach. The FSM will have states representing the desired sequence elements: 0, 11, 14, 5, 4, 15, 12, 9, 2, 13. The sequence will repeat after reaching state 13, transitioning back to state 0.

To ensure that all invalid states clear the machine and set it to state zero, we can add transition paths from any state not included in the desired sequence to state 0. This ensures that if the machine enters an invalid state, it will automatically reset to the starting state.

The implementation of the sequence generator can be done using a combinational or sequential logic circuit, such as a state register and a combinational logic block to determine the next state based on the current state. The logic circuit should have appropriate outputs to represent the desired sequence elements.

By designing the sequence generator with the specified states and including the necessary transitions to reset the machine, we can create a circuit that generates the desired sequence while handling invalid states gracefully.

Learn more about finite state machine

brainly.com/question/32268314

#SPJ11

QUESTION 13 Which of the followings is true? O A. For a full inductor, at time t=0 when it is switched on, its through current will likely drop to half its value. O B. For a full inductor, at time t=0 when it is switched on, its through current will likely drop to quarter its value. O C. For an empty inductor, at time t=0 when it is switched on, its through current will be close to zero. O D. For a full capacitor, at time t=0 when it is switched on, its across voltage will be close to zero.

Answers

The correct statement is:C. For an empty inductor, at time t=0 when it is switched on, its through current will be close to zero.

When an inductor is initially empty and then switched on at time t=0, the current through the inductor will not change instantaneously. Instead, it will start from zero and gradually increase over time. This behavior is due to the inductor opposing changes in current. Therefore, the through current of an empty inductor at t=0 will be close to zero.The other options (A, B, and D) are incorrect because they describe different behaviors that do not accurately reflect the characteristics of an inductor when it is switched on.

Learn more about inductor here:

https://brainly.com/question/31503384

#SPJ11

State the difference between SOP and POS. A. SOP uses maxterms POS uses minterms B. POS uses maxterms SOP uses maxterms C. POSusesminterms SOPusesminterms D. POS uses maxterms SOP uses minterms

Answers

The correct option is D, POS uses maxterms SOP uses minterms. The terms SOP and POS relate to the two standard methods of representing Boolean expressions.

In SOP (Sum of Products), the output of a logic circuit can be defined as the sum of one or more products in which each product consists of a combination of inputs, and the output is either true or false.What is POS?In POS (Product of Sums), the output of a logic circuit can be defined as the product of one or more sums in which each sum consists of a combination of inputs, and the output is either true or false.

Difference between SOP and POS: POS uses maxterms, whereas SOP uses minterms. The two expressions for each circuit are the complement of one another. Hence option D is correct.

To learn more about "Boolean Expressions" visit: https://brainly.com/question/26041371

#SPJ11

n the following microstructures, which one possesses the lowest ductility? A.) 0.25 wt%C with fine pearlite B.)0.25 wt%C with coarse pearlite C.)0.60 wt%C with fine pearlite D.)0.60 wt%C with coarse pearlite

Answers

Ductility is the property of a material that allows it to be drawn or stretched into thin wire without breaking. Pearlitic steel is a combination of ferrite and cementite that has a pearlite microstructure. Microstructures of pearlitic steel determine the ductility of the steel.

The following microstructures, 0.25 wt%C with fine pearlite, 0.25 wt%C with coarse pearlite, 0.60 wt%C with fine pearlite, and 0.60 wt%C with coarse pearlite, are compared to determine which one possesses the lowest ductility. Out of the four microstructures given, the one with the lowest ductility is 0.60 wt%C with coarse pearlite. This is because 0.60 wt%C results in a high concentration of carbon in the steel, which increases its brittleness. Brittleness is the opposite of ductility and refers to the property of a material to crack or break instead of stretching or bending. Thus, the steel becomes more brittle as the carbon content increases beyond 0.25 wt%C. Coarse pearlite also reduces the ductility of the steel because the large cementite particles act as stress raisers, leading to the formation of cracks and reducing the overall strength of the steel. Therefore, the combination of high carbon content and coarse pearlite results in the lowest ductility compared to the other microstructures.

In contrast, the microstructure of 0.25 wt%C with fine pearlite possesses the highest ductility out of the four microstructures given. This is because 0.25 wt%C is a lower concentration of carbon in the steel, resulting in less brittleness and a higher ductility. Fine pearlite also increases the ductility of the steel because the smaller cementite particles do not act as stress raisers and are more evenly distributed throughout the ferrite. Thus, the steel is less prone to crack and has a higher overall strength. Therefore, the combination of low carbon content and fine pearlite results in the highest ductility compared to the other microstructures.

To know more about Ductility refer to:

https://brainly.com/question/4313413

#SPJ11

Design for flexure a beam 14 ft in length, having a uniformly distributed dead load of 3 kip per ft, a uniformly distributed live load of 4 kip per ft and a concentrated dead load of 12 kips at its center point.

Answers

Design for flexure a beam 14 ft in length, having a uniformly distributed dead load of 3 kip per ft, a uniformly distributed live load of 4 kip per ft, and a concentrated dead load of 12 kips at its center point.

The calculation of the moment capacity of the beam using the AISC-ASD code is critical in the design of a beam under flexure. In a situation where a beam is loaded, it develops a moment that is equivalent to the load times the distance from the point of reference. The calculation of this moment is known as the moment capacity.

The beam can be designed using the following steps:

i. Determine the total load that is acting on the beam. This is computed as a summation of the uniformly distributed dead load, the uniformly distributed live load, and the concentrated dead load.

ii. Compute the moment capacity of the beam. This calculation involves computing the maximum bending moment acting on the beam using the beam's length and the load distribution. The design of a beam should consider the maximum moment and the shear stress.

iii. Calculate the maximum allowable stress and the beam's flexural stress, which should be less than the maximum allowable stress. If the calculated stress exceeds the allowable stress, the design must be adjusted, either by increasing the beam's depth or the width. 

The design of the beam can be done using a beam design software such as Microsoft Excel or by using the standard formulas. The design process involves the determination of the maximum moment and the maximum shear stress acting on the beam. Once these two quantities are known, it is easy to calculate the maximum allowable stress and the actual stress. The actual stress should be less than the maximum allowable stress.

To know more about Microsoft Excel refer to:

https://brainly.com/question/32047461

#SPJ11

An electrical power meter can measure power over the range from 0.1 W to 100 kW. What is the dynamic range of the meter? A. 50 dB B. 60 dB C. 100 dB D. 120 dB A pressure gauge is fitted in a thin film processing chamber and reading a value of 6.54 bar. Considering that the atmospheric pressure surrounding the chamber is 1.013 bar, what is the gauge pressure? A. 7.55 bar B. 5.53 bar C. 6.54 bar D. 1.013 bar A voltage to frequency converter has an input range of 0-10 V and an output range of 100 kHz to 4 MHz. What is the output span? A. 3.9 MHZ B. 10 V C. 100 kHz D. 3 MHz

Answers

The dynamic range of the power meter is 60 dB, the gauge pressure is 5.527 bar, and the output span of the voltage to frequency converter is 3.9 MHz.

What is the dynamic range of the power meter, the gauge pressure, and the output span of the voltage to frequency converter?

The dynamic range of a power meter is the ratio between the maximum and minimum measurable power levels. In this case, the dynamic range can be calculated using the formula:

Dynamic Range (in dB) = 10 * log10 (Maximum Power / Minimum Power)

For the given power meter, the maximum power is 100 kW and the minimum power is 0.1 W. Plugging these values into the formula:

Dynamic Range (in dB) = 10 * log10 (100,000 / 0.1) = 10 * log10 (1,000,000) = 10 * 6 = 60 dB

Therefore, the dynamic range of the power meter is 60 dB.

The gauge pressure is the pressure measured by the pressure gauge relative to the atmospheric pressure. To calculate the gauge pressure, we subtract the atmospheric pressure from the reading of the pressure gauge.

Gauge Pressure = Reading - Atmospheric Pressure = 6.54 bar - 1.013 bar = 5.527 bar

Therefore, the gauge pressure is 5.527 bar.

The output span of a voltage to frequency converter is the difference between the maximum and minimum output frequencies. In this case, the output range is from 100 kHz to 4 MHz.

Output Span = Maximum Output Frequency - Minimum Output Frequency = 4 MHz - 100 kHz = 3.9 MHz

Therefore, the output span is 3.9 MHz.

Learn more about dynamic range

brainly.com/question/31715117

#SPJ11

: 4 of 5 The IR receiver has the following pins: O a. GND, Vcc, Echo O b. GND, Vcc, DAT O c. GND, Vcc, Trigger O d. GND, Vcc, Vat for emplouing pr in remoto ond consor it is optional to include the library:

Answers

The answer to the given question is Option B: GND, Vcc, DAT. The IR receiver has three pins, GND (ground), Vcc (positive power supply), and DAT (digital output signal). The IR receiver senses the infrared signals from the IR remote and decodes them to get the actual data from the remote. The DAT pin of the IR receiver is connected to the microcontroller to decode the infrared signals from the IR remote.

IR stands for Infrared which is an electromagnetic radiation. The IR receiver is an electronic device that detects and decodes IR signals from a remote control and then sends the decoded information to a microcontroller. The IR receiver has three pins: GND, Vcc, and DAT. Here is a stepwise explanation of each pin:

GND: The GND (ground) pin of the IR receiver is connected to the ground of the circuit to provide a common reference for the incoming IR signals.

Vcc: The Vcc (positive power supply) pin of the IR receiver is connected to the power supply of the circuit to provide power to the receiver. It can be supplied with 5 volts.

DAT: The DAT (digital output signal) pin of the IR receiver is the pin that sends the decoded signal to the microcontroller. This pin is connected to the input pin of the microcontroller that is programmed to decode the signal. The decoded signal is used to perform specific functions such as turning on or off a device, changing the volume, etc.

The IR receiver has three pins GND, Vcc, and DAT. The DAT pin is used to decode the infrared signals from the IR remote. The answer is option B: GND, Vcc, DAT.

To learn more about  IR

https://brainly.com/question/7850201

#SPJ11

What wiring would you not expect to find on a single line diagram? ?1. branch circuit wiring to a load 2. feeder to distribution panel 3.service power from utility 4.feeder to sub-panel1.

Answers

The wiring that you would not expect to find on a single line diagram is:

Branch circuit wiring to a load

A single line diagram represents the electrical distribution system at a higher level, showing the major components and connections. It typically includes the main components such as generators, transformers, switchgear, and major distribution panels. Branch circuit wiring to individual loads, such as outlets or appliances, is not typically shown on a single line diagram. Instead, it focuses on the main power flow and distribution paths.

Feeder to distribution panel, service power from the utility, and feeder to sub-panel are all components and connections that would be expected to be shown on a single line diagram as they represent the main elements of the electrical distribution system.

Know more about Branch circuit here:

https://brainly.com/question/31889919

#SPJ11

Draw the root locus of the system whose O.L.T.F. given as:
Gs=(s+1)s2(s2+6s+12)
And discuss its stability? Determine all the required data.

Answers

The root locus of the system Gs=(s+1)s^2(s^2+6s+12) can be drawn to analyze its stability.

The root locus is a graphical representation of the possible locations of the system's poles as a parameter, usually the gain (K), varies. It provides insights into the stability and transient response characteristics of the system.

To draw the root locus, we start by determining the poles and zeros of the open-loop transfer function Gs. The poles are the roots of the denominator polynomial, while the zeros are the roots of the numerator polynomial. In this case, the open-loop transfer function has poles at s=-1, s=0 (with multiplicity 2), and the roots of s^2+6s+12=0.

Next, we plot the poles and zeros on the complex plane. The root locus consists of all possible values of the system's poles as the gain varies from zero to infinity. We draw the root locus by finding the points on the complex plane where the angle of the poles with respect to the zeros is equal to an odd multiple of 180 degrees.

Analyzing the root locus allows us to determine the stability of the system. If all the poles of the system lie in the left half-plane of the complex plane, the system is stable. On the other hand, if any pole crosses into the right half-plane, the system becomes unstable.

By examining the root locus of the given system, we can assess its stability and identify the range of gain values that ensure stability.

Learn more about root locus method

brainly.com/question/30884659

#SPJ11

Find the value need to be loaded in SPBRG (Serial Port Baud Rate Generator) register to achieve the baud rate 38,400 bps in asynchronous low speed mode. The value of = 20 Hz. i) Calculate the % error in baud rate computation that may arise in Q3a. Indicate the main reason for the introduction of the error. ii) Write an embedded C program for the PIC16F877A to transfer the letter ‘HELP' serially at 9600 baud continuously. Assume XTAL = 10 MHz.

Answers

The value can be calculated using the formula SPBRG = (Fosc / (64 * BaudRate)) - 1, where Fosc is the oscillator frequency and BaudRate is the desired baud rate.

How can we calculate the value needed in the SPBRG register for a baud rate of 38,400 bps in asynchronous low-speed mode?

The value needed to be loaded in the SPBRG (Serial Port Baud Rate Generator) register to achieve a baud rate of 38,400 bps in asynchronous low-speed mode can be calculated using the formula:

SPBRG = (Fosc / (64 * BaudRate)) - 1

Given that the oscillator frequency (Fosc) is 20 Hz and the desired baud rate is 38,400 bps, we can substitute these values into the formula to calculate the SPBRG value.

i) To calculate the % error in baud rate computation, we can compare the actual baud rate achieved with the desired baud rate. The main reason for the introduction of the error is the limitations in the accuracy of the oscillator frequency and the calculation formula.

ii) To write an embedded C program for the PIC16F877A to transfer the letter 'HELP' serially at 9600 baud continuously, we need to configure the UART module, set the baud rate, and transmit the data using appropriate functions or registers. The XTAL frequency of 10 MHz will be used for the calculations and configuration of the UART module.

Learn more about SPBRG

brainly.com/question/32716568

#SPJ11

A line JK, 80 mm long, is inclined at 30o
to HP and 45 degree to VP. A point M on the line JK, 30 mm from J is at a distance of 35 mm above HP and 40 mm in front of VP. Draw the projections of JK such that point J is closer to the reference planes

Answers

Line JK is 80 mm longInclined at 30° to HP45° to VPA point M on the line JK, 30 mm from J is at a distance of 35 mm above HP and 40 mm in front of VP We are required to draw the projections of JK such that point J is closer to the reference planes.

1. Draw a horizontal line OX and a vertical line OY intersecting each other at point O.2. Draw the XY line parallel to HP and at a distance of 80 mm above XY line. This line XY is inclined at an angle of 45° to the XY line and 30° to the HP.

4. Mark a point P on the HP line at a distance of 35 mm from the XY line. Join P and J.5. From J, draw a line jj’ parallel to XY and meet the projector aa’ at jj’.6. Join J to O and further extend it to meet XY line at N.7. Draw the projector nn’ from the end point M perpendicular to HP.

To know more about longInclined visit:-

https://brainly.com/question/21835412

#SPJ11A

What is the fully corrected endurance limit for a round steel beam undergoing uniaxial tension, where the ultimate strength is 800 MPa, and the beam has been machined to a diameter of 15 cm, operates at 450°C, and the user requires a 90% confidence in reliability?

Answers

The fully corrected endurance limit for the round steel beam undergoing uniaxial tension is approximately X MPa.

The endurance limit, also known as the fatigue strength, is the maximum stress level at which a material can withstand cyclic loading without experiencing fatigue failure. To determine the fully corrected endurance limit for the given round steel beam, several factors need to be considered.

First, we need to account for the operating temperature of 450°C. Elevated temperatures can significantly affect the fatigue behavior of steel, reducing its endurance limit. In this case, the temperature exceeds the range where steel exhibits a constant endurance limit, and therefore, the endurance limit must be adjusted.

Secondly, the user requires a 90% confidence in reliability. This means that the endurance limit needs to be determined with a high level of assurance to minimize the risk of fatigue failure. Achieving such confidence usually involves statistical analysis and considerations of variability in material properties.

Additionally, the ultimate strength of the steel beam is provided as 800 MPa, but it does not directly indicate the endurance limit. The ultimate strength represents the maximum stress that the material can withstand before fracture occurs under static loading conditions. However, fatigue failure is influenced by different factors, including stress concentration, surface finish, and the number of cycles.

To accurately determine the fully corrected endurance limit, further information is required, such as the material type and specific fatigue properties. Detailed analysis involving S-N curves, material testing, and statistical methods would be necessary to account for the temperature, confidence level, and other factors mentioned.

Learn more about fatigue strength

brainly.com/question/29990152

#SPJ11

According to the Clausius' theorem, the cyclic integral of for a reversible cycle is zero. OdW/dT OdH/dT O dE/dT OdQ/dT

Answers

According to Clausius' theorem, the cyclic integral of the differential of heat transfer (dQ) divided by the absolute temperature (T) is zero for a reversible cycle.

In other words, when considering a complete cycle of a reversible process, the sum of the infinitesimal amounts of heat transfer divided by the corresponding absolute temperatures throughout the cycle is equal to zero.

Mathematically, this can be expressed as:

∮ (dQ / T) = 0

This theorem highlights the concept of entropy and the irreversibility of certain processes. For a reversible cycle, the heat transfer can be completely converted into work, and no net transfer of entropy occurs. As a result, the cyclic integral of dQ/T is zero, indicating that the overall heat transfer in the cycle is balanced by the temperature-dependent factor.

Therefore, the correct option is:

[tex]OdQ/dT.[/tex]

Learn more about Clausius' theorem here:

brainly.com/question/30853813

#SPJ11

An HVAC system must supply 250 CFM of air with a temperature of 60°F and relative humidity of 40%. The system receives return air with a temperature of 70°F and relative humidty of 60% which it mixes with outside air at 85°F and 80% relative humidity with a ratio of 75% return air and 25% outside air on a mass basis. The outside air and return air are first mixed. The mixure is then cooled and dehumidified before finally reheating to the desired exit condition. A) Sketch the system hardware
B) Sketch the process on a psychometric diagram
C) Find the volumetric flow rate of the return air in ft3/min
D) Find the volumetric flow rate for the outside air in ft3/min
E) Find the mass flow rate of water condensate removal in lbm/min
F) Find the net rate of heat transfer for the system in Btu/min
Please show all work. Thank you.

Answers

A) The sketch of the system hardware is given below.B) The process on a psychometric diagram is given below:C).

The volumetric flow rate of the return air in ft3/min is calculated as follows:Given data are: Air supply capacity Q = 250 CFM.

Ratio of air (return air to outside air) = 75:25; Volumetric flow rate of the mixture of outside and return air = 250 ft3/min (As it supplies at a flow rate of 250 CFM)By using the formula for mass balance, we can write it as below;Where Q1 is the volumetric flow rate of the return air.

The volumetric flow rate of the outside air, and Q is the volumetric flow rate of the mixture.  Q1/Q2 = (100-R)/R; R = 75 (Ratio of the flow rate of the return air to the outside air) Q = Q1 + Q2; Q2 = Q - Q1By using these formulas.

we can solve for the flow rate of the return air Q1Q1 = (100/75) × Q2Q1 = (100/75) × (Q - Q1)Q1 = 0.57Q ft3/minQ1 = 0.57 × 250 ft3/minQ1 = 142.5 ft3/min, the volumetric flow rate of the return air in ft3/min is 142.5 ft3/min.D) The volumetric flow rate for the outside air in ft3/min is calculated as follows.

To know more about psychometric visit:

https://brainly.com/question/16737798

#SPJ11

In an orthogonal cutting operation in tuning, the cutting force and thrust force have been measured to be 300 lb and 250 lb, respectively. The rake angle = 10°, width of cut = 0.200 in, the feed is 0.015in/rev, and chip thickness after separation is 0.0375. Determine the shear strength of the work material.

Answers

The shear strength of the work material is equal to 40,000 lb/in^2.

Explanation:

To determine the shear strength of the work material in an orthogonal cutting operation, we can use the equation:

Shear Strength = Cutting Force / (Width of Cut * Chip Thickness)

Given the values provided:

Cutting Force = 300 lb

Width of Cut = 0.200 in

Chip Thickness = 0.0375 in

Plugging these values into the equation, we get:

Shear Strength = 300 lb / (0.200 in * 0.0375 in)

Simplifying the calculation, we have:

Shear Strength = 300 lb / (0.0075 in^2)

Therefore, the shear strength of the work material is equal to 40,000 lb/in^2.

It's important to note that the units of the shear strength are in pounds per square inch (lb/in^2). The shear strength represents the material's resistance to shearing or cutting forces and is a crucial parameter in machining operations as it determines the material's ability to withstand deformation during cutting processes.

Know more about Shear Strength here:

https://brainly.com/question/31746102

#SPJ11

1) State the kelvin's law for economic section of a
feeder conductor . Mention the reasons for preferring the Kelvin's
law.
2) Why transformer is called as heart of power
distribution system ? Explain

Answers

Kelvin's law states that the annual cost of energy loss in a feeder conductor is equal to the annual fixed cost of the conductor, and it is preferred for determining the most economical conductor size.

Why is a transformer referred to as the heart of the power distribution system, and how does it fulfill this role?

Kelvin's law states that for an economic section of a feeder conductor, the annual cost of energy loss is equal to the annual fixed cost of the conductor.

The law states that the sum of the annual cost of energy loss and the annual fixed cost of the conductor is minimum for an optimal conductor size.

Reasons for preferring Kelvin's law:

It helps in determining the most economical size of the feeder conductor by balancing the cost of energy loss and the cost of the conductor itself. It considers the operating conditions, such as the load current and the length of the feeder, to determine the optimal conductor size. It provides a guideline for selecting the conductor size that minimizes energy losses and reduces overall costs in the power distribution system.

A transformer is called the "heart" of a power distribution system due to the following reasons:

Role in voltage transformation: Transformers are responsible for stepping up or stepping down the voltage levels in the power distribution system.

Central component: Transformers are strategically located at substations, which act as central points for receiving power from the generating stations and distributing it to various load centers.

They form a vital link between the power generation and consumption stages.

Ensuring efficient power transfer: Transformers facilitate efficient power transfer by reducing transmission losses and voltage drop.

They allow for long-distance power transmission at high voltages, reducing the current and consequently minimizing power losses in the transmission lines.

Voltage regulation: Transformers help in maintaining voltage levels within desired limits.

System reliability: Transformers play a crucial role in maintaining the reliability and stability of the power distribution system.

Learn more about determining

brainly.com/question/29898039

#SPJ11

A packet between two hosts passes through 5 switches and 7 routers until it reaches its destination. Between the sending application and the receiving application, how often is it handled by the transport layer?

Answers

In the given scenario, the packet between two hosts passes through 5 switches and 7 routers. The transport layer is responsible for providing end-to-end communication services between the sending and receiving applications. Therefore, the packet is handled by the transport layer at both the sending and receiving hosts.

The transport layer is typically implemented in the operating system of the hosts. It takes the data from the sending application, breaks it into smaller segments, adds necessary headers, and passes it down to the network layer for further routing.

At the receiving host, the transport layer receives the segments from the network layer, reassembles them into the original data, and delivers it to the receiving application.

Hence, in this scenario, the packet is handled by the transport layer twice: once at the sending host and once at the receiving host.

Learn more about transport layer:

https://brainly.com/question/30426969

#SPJ11

In the given scenario, the packet between two hosts passes through 5 switches and 7 routers. The transport layer is responsible for providing end-to-end communication services between the sending and receiving applications. Therefore, the packet is handled by the transport layer at both the sending and receiving hosts.

The transport layer is typically implemented in the operating system of the hosts. It takes the data from the sending application, breaks it into smaller segments, adds necessary headers, and passes it down to the network layer for further routing.

At the receiving host, the transport layer receives the segments from the network layer, reassembles them into the original data, and delivers it to the receiving application.

Hence, in this scenario, the packet is handled by the transport layer twice: once at the sending host and once at the receiving host.

Learn more about transport layer:

brainly.com/question/30426969

#SPJ11

Calculate the acceptable angle so as to achieve the suitable signal acceptance of FOC. Presuppose that you derive the formula, then what would be your answer if the material of the optic fiber is made of glass with a refractive index of 56 and is clad with another glass whose refractive index is 1.51 launched in air.

Answers

To calculate the acceptable angle for achieving suitable signal acceptance in Fiber Optic Communication (FOC), we need to consider the principle of total internal reflection. When light passes from a higher refractive index medium to a lower refractive index medium, it undergoes reflection if the incident angle exceeds a critical angle.

What is the acceptable angle for achieving suitable signal acceptance in Fiber Optic Communication (FOC) when using glass as the material for the optic fiber?

In this case, the optic fiber is made of glass with a refractive index of 56 and is clad with another glass with a refractive index of 1.51, launched in air with a refractive index of 1. The critical angle can be determined using Snell's law:

n₁sinθ₁ = n₂sinθ₂

Where n₁ is the refractive index of the core (56), n₂ is the refractive index of the cladding (1.51), θ₁ is the incident angle, and θ₂ is the angle of refraction (90 degrees in this case).

Rearranging the equation, we have:

sinθ₁ = (n₂/n₁)sinθ₂

Substituting the values, we get:

sinθ₁ = (1.51/56)sin90

sinθ₁ = 0.027

Taking the inverse sine, we find:

θ₁ = 1.55 degrees

Therefore, the acceptable angle to achieve suitable signal acceptance in this FOC system is approximately 1.55 degrees.

Learn more about acceptable angle

brainly.com/question/12035621

#SPJ11

1. Which of the following is a type of self-contained air conditioning unit?
A packaged terminal air conditioner
A through the wall room air conditioner
A console air conditioner
A portable air conditioner

Answers

Among the given options, the type of self-contained air conditioning unit is a portable air conditioner.

Portable air conditioners are standalone units that can be easily moved from one room to another. They are self-contained units that do not require permanent installation like window air conditioners or through-the-wall air conditioners. Portable air conditioners are ideal for cooling small to medium-sized rooms and are usually equipped with casters for easy mobility.

A packaged terminal air conditioner (PTAC) is a type of air conditioning system that is commonly used in commercial buildings. PTACs are typically installed through the wall and can provide both heating and cooling.

A through-the-wall room air conditioner is a type of air conditioning unit that is designed to be installed through a wall opening. It is similar to a window air conditioner but is installed through a wall instead of a window.

A console air conditioner is a type of air conditioning unit that is designed to be installed on the floor. It is similar to a window air conditioner but is installed on the floor instead of a window.

Learn more about air conditioners: https://brainly.com/question/10754043

#SPJ11

bus The frictional resistance for fluids in motion varies O slightly with temperature for laminar flow and considerably with temperature for turbulent flow O considerably with temperature for laminar flow and slightly with temperature for turbulent flow O considerably with temperature for both laminar and burbulent flows slightly with temperature for both laminar and turbulent flows

Answers

The frictional resistance for fluids in motion varies slightly with temperature for laminar flow and considerably with temperature for turbulent flow is correct.

The frictional resistance for fluids in motion varies slightly with temperature for laminar flow and considerably with temperature for turbulent flow. In laminar flow, where the fluid moves in smooth, parallel layers, the frictional resistance is primarily determined by the viscosity of the fluid. The viscosity of most fluids changes only slightly with temperature, resulting in a minor variation in frictional resistance. On the other hand, turbulent flow is characterized by chaotic, swirling motion with eddies and vortices. The frictional resistance in turbulent flow is influenced by factors such as fluid viscosity, velocity, and turbulence intensity. The viscosity of fluids typically changes significantly with temperature, leading to considerable variations in the frictional resistance for turbulent flow. It's worth noting that other factors, such as surface roughness and flow conditions, can also affect the frictional resistance in fluid flow.

Learn more about the  frictional resistance here:

brainly.com/question/2963008

#SPJ11

Task: It is required to convolve two continuous time exponential signals given by the user. The signals should have the following characteristics Increasing exponential or decreasing exponential Left-sided or right-sided signal. - Boundary points of the signals are integers. You are required to write a code in Matlab to: 1. Take required parameters, of the two signals, as input from user. 2. Convolve the two signals using symbolic toolbox. 3. Display the mathematical expression of the output of the convolution process. 4. Plot the input and output signals.

Answers

Convolution of two exponential signals in MATLAB Exponential signals are signals in which the value of the signal grows or decays exponentially with time.

They can either be increasing or decreasing exponential signals. In this task, we are required to convolve two continuous time exponential signals given by the user. The signals should have the following characteristics: Increasing exponential or decreasing exponential Left-sided or right-sided signal Boundary points of the signals are integers.

The task requires us to write a code in MATLAB that will take required parameters of the two signals as input from the user. Then, we will convolve the two signals using symbolic toolbox and display the mathematical expression of the output of the convolution process. Finally, we will plot the input and output signals.

The following code can be used to convolve two exponential signals:%% Take input parameters from userx1 = input('Enter the first signal: ');t1 = input('Enter the time vector of first signal: ');x2 = input('Enter the second signal: ');t2 = input('Enter the time vector of second signal: ');%%.

To know more about exponential visit:

https://brainly.com/question/29160729

#SPJ11

A three-phase induction motor has the following characteristics: 60Hz, it is turning at 890 rpm at no load and at 840 rpm at full load. 1) How many poles does the motor have, 2) what is the slip at nominal load, 3) what is the speed at a quarter of the nominal load, 4) what is the electrical frequency of the rotor at a quarter of the nominal load.

Answers

The formulas and relationships related to the speed, slip, and electrical frequency of a three-phase induction motor. Let's calculate the required values:

1) Number of poles:

The synchronous speed (Ns) of an induction motor can be calculated using the formula:

Ns = (120 × f) / P

where Ns is the synchronous speed in RPM, f is the frequency in Hz, and P is the number of poles.

Given that the synchronous speed (Ns) is calculated by:

Ns = 120 × f / P

And the synchronous speed (Ns) at no load is 890 RPM, we can substitute the values into the equation and solve for the number of poles (P):

890 = (120 × 60) / P

By calculating the values using the provided formulas, you can find the number of poles, slip at nominal load, speed at a quarter of the nominal load, and the electrical frequency of the rotor at a quarter of the nominal load for the given three-phase induction motor.

Learn more about three-phase here:

brainly.com/question/30853813

#SPJ11

A 240 V dc shunt motor has an armature resistance of 0.05 Ohms. When the motor is UNLOADED and connected to its supply, the armature current is 20 A, the field current is 12 A, and the speed is 1200 rpm. Now, a load is applied to the shaft, and the armature current increases to 300 A and the speed drops to 1150 rpm. The motor drives a mechanical load, which requires a torque proportional to speed square. . The speed is to be reduced to 900 rpm by inserting a resistance in series with the armature. The field current is kept the same. Determine the value of the added series resistance. . Determine the speed of the system if a resistance of 0.5 Ohms is inserted in series with the armature.

Answers

The value of the added series resistance is 0.45 Ohms, and the speed of the system if a resistance of 0.5 Ohms is inserted in series with the armature is 942 rpm.

The armature current before and after the load is applied can be expressed as follows:

Before: I1 = 20 A

After: I2 = 300 A

Therefore, the resistance of the motor, which is armature resistance, can be expressed as follows:R = (240/20) = 12 Ω

The back EMF before and after the load is applied can be expressed as follows:

Before: E1 = V − I1R = 240 − (20 × 0.05) = 239 V

After: E2 = V − I2R - (12 × 0.05) = 240 − (300 × 0.05) − (12 × 0.05) = 225 V

The speed of the motor is proportional to the back EMF.

N1/N2 = E1/E2 = 239/225

N2 = (225/239) × 1200 = 1128 rpm

Let R be the added series resistance in the armature, and let N be the new speed.

The current in the motor can be calculated as follows:If the motor current is I, then the armature voltage is (240 - I(R + 0.05)).

Therefore, the following equation can be used to calculate the motor current:

I = (240 - I(R + 0.05)) / (12 + 0.05)

The speed can be calculated using the following equation:

N / 1200 = E1 / (240 - I(R + 0.05))

Substituting the values, we obtain:(N / 1200) = 239 / (240 - I(R + 0.05))1200(N / 1200) = 239(240 - I(R + 0.05))

1200N = 239(240 - I(R + 0.05))

I = 300 A and N = 900 rpm, hence:

900 = 239(240 - 300(R + 0.05))

R = (239 × 240 - 900) / (300 × 239)

R = 0.45 Ω

When a resistance of 0.5 Ohms is inserted in series with the armature, the speed of the system is calculated as follows:

I = (240 - I(R + 0.05)) / (12 + 0.05)I = (240 - 300(0.5 + 0.05)) / (12 + 0.05)I = 10 A

Using the equation:

N / 1200 = E1 / (240 - I(R + 0.05))N / 1200 = 239 / (240 - 10(0.5 + 0.05))

N / 1200 = 187.72

N = 187.72 × 1200 / 239

N = 942 rpm

Learn more about resistance at

https://brainly.com/question/32391949

#SPJ11

QUESTION 16 Which of the followings is true? The unit rectangular pulse is convenient in O A. convoluting processes. O B. filtering processes. O C. modulation and convoluting processes. O D. modulating processes.

Answers

The correct option is option A: convoluting processes. The unit rectangular pulse is the most commonly used function in signal processing because of its unique properties that make it convenient in many applications. It is also called the box function and can be used to represent an impulse in time or frequency domain.

The unit rectangular pulse has a value of 1 inside a given interval and zero outside the interval. The interval of non-zero values is the pulse duration. The pulse can be shifted, stretched, or compressed in time or frequency domain. The area of the pulse is equal to the pulse duration because the pulse has a constant value of 1 inside the interval. Therefore, the pulse can be used as an idealized representation of a signal in many applications such as convolution, filtering, modulation, and Fourier analysis. Convolution is a mathematical operation that describes the effect of a linear time-invariant system on a signal.

Convolution is used in many applications such as signal processing, control theory, and image processing. The unit rectangular pulse is particularly useful in convolution because it allows for easy calculation of the convolution integral. The convolution of two signals can be calculated by multiplying the Fourier transform of the two signals and taking the inverse Fourier transform of the result. This method is called the convolution theorem. The unit rectangular pulse has a simple Fourier transform that can be easily calculated by using the Fourier transform pair. Therefore, the unit rectangular pulse is a convenient function for convolution in signal processing.

To know more about convolution theorem refer to:

https://brainly.com/question/29897786

#SPJ11

In an Otto cycle, 1m^3of air enters at a pressure of 100kPa and a temperature of 18°C. The cycle has a compression ratio of 10:1 and the heat input is 760kJ. Sketch the P-v and T-s diagrams. State at least three assumptions.
CV=0.718kJ/kg K CP=1.005kJ/kg K
Calculate:
(i) The mass of air per cycle
(ii) The thermal efficiency
(iii) The maximum cycle temperature
(iv.) The net- work output

Answers

The calculations will provide the required values for the given Otto cycle

(i) m = (100 kPa × 1 m³) / (0.287 kJ/(kg·K) × 291.15 K)

(ii) η = 1 - [tex](1 / 10^{(0.405)})[/tex]))

(iii) [tex]T_{max}[/tex] = (18°C + 273.15 K) × [tex]10^{(0.405)}[/tex]

(iv) [tex]W_{net}[/tex] = 760 kJ - [tex]Q_{out}[/tex]

Assumptions:

The air behaves as an ideal gas throughout the cycle.

The combustion process is assumed to occur instantaneously.

There are no heat losses during compression and expansion.

To calculate the values requested, we need to make several assumptions like the above for the Otto cycle.

Now let's proceed with the calculations:

(i) The mass of air per cycle:

To calculate the mass of air, we can use the ideal gas law:

PV = mRT

Where:

P = pressure = 100 kPa

V = volume = 1 m³

m = mass of air

R = specific gas constant for air = 0.287 kJ/(kg·K)

T = temperature in Kelvin

Rearranging the equation to solve for m:

m = PV / RT

Convert the temperature from Celsius to Kelvin:

T = 18°C + 273.15 = 291.15 K

Substituting the values:

m = (100 kPa × 1 m³) / (0.287 kJ/(kg·K) × 291.15 K)

(ii) The thermal efficiency:

The thermal efficiency of the Otto cycle is given by:

η = 1 - (1 / [tex](compression ratio)^{(\gamma-1)}[/tex])

Where:

Compression ratio = 10:1

γ = ratio of specific heats = CP / CV = 1.005 kJ/(kg·K) / 0.718 kJ/(kg·K)

Substituting the values:

η = 1 - [tex](1 / 10^{(0.405)})[/tex]))

(iii) The maximum cycle temperature:

The maximum cycle temperature occurs at the end of the adiabatic compression process and can be calculated using the formula:

[tex]T_{max}[/tex] = T1 ×[tex](compression ratio)^{(\gamma-1)}[/tex]

Where:

T1 = initial temperature = 18°C + 273.15 K

Substituting the values:

[tex]T_{max}[/tex] = (18°C + 273.15 K) × [tex]10^{(0.405)}[/tex]

(iv) The net work output:

The net work output of the cycle can be calculated using the equation:

[tex]W_{net}[/tex] = [tex]Q_{in} - Q_{out}[/tex]

Where:

[tex]Q_{in[/tex] = heat input = 760 kJ

[tex]Q_{out }[/tex] = heat rejected = [tex]Q_{in} - W_{net}[/tex]

Substituting the values:

[tex]W_{net}[/tex] = 760 kJ - [tex]Q_{out}[/tex]

These calculations will provide the required values for the given Otto cycle.

To learn more about Otto cycle, visit:

https://brainly.com/question/13156035

#SPJ11

r. n 1 bar, 350 K with a mass flow rate of 1 kg/s and exits at 4 bar. The pressor operating at steady state at isentropic compressor efficiency is 82%. Determine the power input, in kW, and the rate of entropy production, in kW/K, using the ideal gas model with data from Table A-22. 6.102 Refrigerant 134a enters a compressor operating at steady state as saturated vapor at -6.7°C and exits at a pressure of 0.8 MPa. There is no significant heat transfer with the surroundings, and kinetic and potential energy effects can be ignored. a. Determine the minimum theoretical work input required, in kJ per kg of refrigerant flowing through the compressor, and the cor- responding exit temperature, in °C. b. If the refrigerant exits at a temperature of 49°C, determine the 1 1 isentropic compressor efficiency. 6.103 Air at 1.3 bar, 423 K and a velocity of 40 m/s enters a nozzle operating at steady state and expands adiabatically to the exit, where the pressure is 0.85 bar and velocity is 307 m/s. For air modeled as an with b = 1.4, determine for the nozzle (a) the temperature at Giancy

Answers

The minimum theoretical work input required, in kJ per kg of refrigerant flowing through the compressor, is -119.55 kJ/kg (work input), and the corresponding exit temperature is 45.9°C, in °C.

6.102 Refrigerant 134a enters a compressor operating at steady state as saturated vapor at -6.7°C and exits at a pressure of 0.8 MPa. There is no significant heat transfer with the surroundings, and kinetic and potential energy effects can be ignored.

a. Determine the minimum theoretical work input required, in kJ per kg of refrigerant flowing through the compressor, and the corresponding exit temperature, in °C.

The given conditions are:

Inlet conditions:

Temperature, T1 = -6.7°C

Refrigerant exits as a compressed vapor at pressure, P2 = 0.8 MPa

Assuming compressor to be an adiabatic compressor, that is Q = 0 i.e., there is no heat transfer.

Also, there are no kinetic or potential energy effects and hence,

h1 = h2s, where h2s is the specific enthalpy of refrigerant at state 2s.

The state 2s is the state at which the refrigerant leaves the compressor after the adiabatic compression process.

Therefore, the process of compression is IsentropicCompression, i.e.,

s1 = s2s.

The specific entropy at state 1 can be determined from the saturated refrigerant table.

It is given that the refrigerant enters the compressor as a saturated vapor, and hence, we can say that the specific entropy at state 1 is equal to the specific entropy of the corresponding saturated vapor at the given temperature of -6.7°C.

From the saturated table for Refrigerant 134a:

At T = -6.7°C, saturated vapor has specific entropy, s1 = 1.697 kJ/kg·K

The specific enthalpy at state 1 can be determined from the saturated refrigerant table.

It is given that the refrigerant enters the compressor as a saturated vapor, and hence, we can say that the specific enthalpy at state 1 is equal to the specific enthalpy of the corresponding saturated vapor at the given temperature of -6.7°C.

From the saturated table for Refrigerant 134a:

At T = -6.7°C, saturated vapor has specific enthalpy, h1 = 257.6 kJ/kg Therefore, we can say that the isentropic specific enthalpy at state 2s is h2s. Using these values, we can determine the minimum theoretical work input required.

The isentropic specific enthalpy can be determined from the table A-22. It is given that the refrigerant exits the compressor at a pressure of 0.8 MPa.

Hence, we can say that the specific enthalpy at state 2s is h2s = 377.15 kJ/kg.

Work input required:

W = h1 - h2s= 257.6 - 377.15=-119.55 kJ/kg

The negative sign signifies that the work is input, i.e., work is required for the compression process.

Corresponding exit temperature:

The corresponding exit temperature can be determined from the refrigerant table using the specific enthalpy at state 2s.

From the refrigerant table for Refrigerant 134a:

At a pressure of 0.8 MPa, specific enthalpy, h2s = 377.15 kJ/kg

The corresponding exit temperature, T2s = 45.9°C (approx)Therefore, the minimum theoretical work input required, in kJ per kg of refrigerant flowing through the compressor, is -119.55 kJ/kg (work input), and the corresponding exit temperature is 45.9°C, in °C.

To know more about minimum theoretical work visit:

https://brainly.com/question/32673403

#SPJ11

Other Questions
If password audits are enabled through Group Policy, attempts are logged in this application O PC Settings O Event Viewer O Command Prompt O Control Panel The view of the universe where the planets and stars revolve around the earth is called ________. a 1.45 g1.45 g sample of an unknown gas at 39 c 39 c and 1.05 atm 1.05 atm is stored in a 3.05 l3.05 l flask. what is the density of the gas? An antibiotic is to be given to an adult male patient (58 years, 75 kg) by IV infusion. The elimination half-life is 8 hours and the apparent volume of distribution is 1.5 L/kg. The drug is supplied in 60-mL ampules at a drug concentration of 15 mg/mL. The desired steady-state drug concentration is 20 mcg/mL.c. Why should a loading dose be recommended?d. According to the manufacturer, the recommended starting infusion rate is 15 mL/h. Do you agree with this recommended infusion rate for your patient? Give a reason for your answer.e. If you were to monitor the patients serum drug concentration, when would you request a blood sample? Give a reason for your answer.f. The observed serum drug concentration is higher than anticipated. Give two possible reasons based on sound pharmacokinetic principles that would account for this observation. consider the combustion of pentane, balanced chemical reaction shown. how many moles of carbon dioxide are produced with the combustion of 3 moles of pentane? C5H12 (1) + 8 O2 (g) 6 H20 (1) + 5 CO2 (g) The information gathered from comparing an employee's work to an established is a performance appraisal. Solve the problem by setting up and solving an appropriate algebraic equation.How many gallons of a 16%-salt solution must be mixed with 8 gallons of a 25%-salt solution to obtain a 20%-salt solution?gal Presence of amino acids may stabilize the parenteral nutrition as they Select one: O a. neutralize the effect of electrolytes O b. act as buffers and form ligands O c. act as emulsifying agents O d. neutralise the effect of electrolytes and acts as buffers is an example of "masked" incompatibility Select one: O a. Liquefaction of camphor-menthol mixture solids due to reduced melting point O b. Formation of mucilage during trituration of castor oil and acacia O c. Decomposition of ascorbic acid in presence of oxidizing agent O d. Loss of physical texture due to absorption of moisture A process involving the recording of behavior in its natural context, such as the classroom or the home, is known as _____ observation. In the African Savannah case study, the Rinderpest virus affected the Wildebeest. Put the following in order Rinderpest virus causes death of wildebeest. As a result, the vegetation had more grassland than shrubs. Increased vegetation causes in increase in the number of fires. Wildebeest numbers decline and vegetation increases Object 1 has x = 2.01 times the kinetic energy as object 2. The mass of object 1 is m1 = 2.01 kg and the mass of object 2 is m2 = 8.01 kg. A 50% Part (a) Write an expression for the ratio of the speeds, v1/v2 in terms of m, m2, and x. A 50% Part (b) What is the numerical value of the ratio of the speeds, v1/v2? M Q/C An oil film (n=1.45) floating on water is illuminated by white light at normal incidence. The film is 280nm thick. Find (a) the wavelength and color of the light in the visible spectrum most strongly reflecte A carbohydrate chemist plans to use blocking groups and activating groups in a research project. what type of experiment is the chemist likely planning? In SEC. analytes are separated based on: O Polarity O Charge O Size O Nuclear Spin Absorption of nutrients occurs readily as result of the villi and microvilli of the large intestine. may involve endocytosis. such as water and some minerals occurs in the large intestine. primarily occurs in the small intestine as a result of osmosis, diffusion, and active transport mechanisms. According to boccacio, the city of florence took all of the following precautions to stop the spread of the plague except: Make a box-and-whisker plot for each set of values. 25,25,30,35,45,45,50,55,60,60 how to calculate thetotal number of free electrons in the si bar At Inner City Health Care, clinical medical assistant Gwen Carr, CMA (AAMA), performs many laboratory tests, is always mindful of her legal scope of practice, and performs only those laboratory test that are within the CLIA-waived category. As Gwen interacts with patients to obtain laboratory specimens, she uses her best communication skills to make sure they understand her instructions, are comfortable with the laboratory tests, and always maintains professional boundaries.Gwen is also very careful when working with laboratory equipment and specimens, using precautions to assure her own safety and the safety of her patients, coworkers, and the public.1.) Besides learning more about microscopic examinations and continuing her education, what benefit does Gwen obtain by putting forth this extra effort?2.) Do you think Dr.Reynolds will appreciate her extra effort?Case Study 25-2 (pg.917)Marie Tyndall is a student in the Jackson Heights Community College Medical Assisting Program. She and two classmates have been assigned the project of creating a plan for cleaning up spills that might occur in the classroom laboratory and ensuring that all students using the laboratory have been trained in the proper procedure.1.) What materials would her group need?2.) How would her group go about learning the proper steps in the cleanup process?3.) How would her group ensure that all other students in the laboratory also have the proper training? to determine the client's planned amount and timing of production of a product, the auditor reviews the multiple choice production plan. purchases journal. inventory reports. sales forecast.