in 2010. Assuming an exponential model: (a) Write the population of Nevada in the form N=N_{0} a^{t} , where N is the population of Nevada in millions, N_{0} and a are constants

Answers

Answer 1

The population of Nevada in the form N = N0 * a^t is:N = 1.18 * (2.292)^t

In 2010, the population of Nevada was 2.7 million. Assuming an exponential model, we can write the population of Nevada in the form N = N0 * a^t, where N is the population of Nevada in millions, N0 is the initial population, a is the growth rate, and t is the time in years.

Let N0 be the population of Nevada in 2000. We know that the population of Nevada grew from N0 to 2.7 million in 10 years. Thus, the growth rate, a, can be found as follows:

a = (N/ N0)^(1/t)= (2.7/N0)^(1/10)

Taking logarithms of both sides of N = N0 * a^t, we get

ln(N) = ln(N0) + t * ln(a)

Solving for N0, we have

N0 = N / a^t

Substituting the values of N, a, and t, we getN0 = 2.7 / (2.292) = 1.18

Therefore, the population of Nevada in the form N = N0 * a^t is:N = 1.18 * (2.292)^t (rounded to two decimal places)

Know more about growth rate here,

https://brainly.com/question/13870574

#SPJ11


Related Questions

If the original price of a shirt is $17 and it is now on sale for 20% off what is the sale price?

Answers

The sale price of the shirt after a 20% discount is $13.60.

To find the sale price of the shirt, we need to multiply the original price by the percentage discount and then subtract the result from the original price.

The percentage discount is 20%, or 0.2 as a decimal.

So, the discount amount is:

0.2 x $17 = $3.40

Therefore, the sale price of the shirt is:

$17 - $3.40 = $13.60

Thus, the sale price of the shirt after a 20% discount is $13.60.

learn more about sale price here
https://brainly.com/question/29199569

#SPJ11

Find the volume of the solid bounded by the planes z = x, y = x, x + y = 8 and z = 0.

Answers

The volume of the solid bounded by the given planes is 42.67 cubic units.

To find the volume of the solid bounded by the given planes, we can set up the triple integral using the bounds determined by the intersection of the planes.

The planes z = x and y = x intersect along the line x = 0. The plane x + y = 8 intersects the line x = 0 at the point (0, 8, 0). So, we need to find the bounds for x, y, and z to set up the integral.

The bounds for x can be set from 0 to 8 because x ranges from 0 to 8 along the plane x + y = 8.

The bounds for y can be set from 0 to 8 - x because y ranges from 0 to 8 - x along the plane x + y = 8.

The bounds for z can be set from 0 to x because z ranges from 0 to x along the plane z = x.

Now, we can set up the triple integral to calculate the volume:

Volume = ∭ dV

Volume = ∭ dz dy dx (over the region determined by the bounds)

Volume = ∫₀⁸ ∫₀ (8 - x) ∫₀ˣ 1 dz dy dx

Evaluating this integral will give us the volume of the solid.

If we evaluate this integral numerically, the volume of the solid bounded by the given planes is approximately 42.67 cubic units.

To learn more about volume here:

https://brainly.com/question/28058531

#SPJ4


A student group consists of 17 people, 7 of them are girls and
10 of them are boys. How many ways exist to choose a pair of the
same-sex people?

Answers

Answer:

We can solve this problem by using the combination formula, which is:

nCr = n! / (r! * (n - r)!)

where n is the total number of items (people in this case) and r is the number of items we want to select (the group size in this case).

To choose a pair of girls from the 7 girls in the group, we can use the combination formula as follows:

C(7, 2) = 7! / (2! * (7 - 2)!) = 21

Therefore, there are 21 ways to choose a pair of girls from the group.

Similarly, to choose a pair of boys from the 10 boys in the group, we can use the combination formula as follows:

C(10, 2) = 10! / (2! * (10 - 2)!) = 45

Therefore, there are 45 ways to choose a pair of boys from the group.

Since we want to choose a pair of the same-sex people, we can add the number of ways to choose a pair of girls to the number of ways to choose a pair of boys:

21 + 45 = 66

Therefore, there are 66 ways to choose a pair of the same-sex people from the group of 17 people.

A researcher in physiology has decided that a good mathematical model for the number of impulses fired after a nerve has been stimulated is given by y=−x 2
+40x−90, where y is the number of responses per millisecond and x is the number of milliseconds since the nerve was stimulated. (a) When will the maximum firing rate be reached? (b) What is the maximum firing rate? (a) The maximum number of impulses fired occurs at milliseconds. (b) The maximum number of impulses per millisecond is

Answers

To find the maximum firing rate and the corresponding time when it occurs, we can analyze the given quadratic function y = -x^2 + 40x - 90.Given that y = -x² + 40x - 90 (y is the number of responses per millisecond and x is the number of milliseconds since the nerve was stimulated)Now, we need to find out the maximum firing rate and the corresponding time when it occurs.(a) When will the maximum firing rate be reached? For that, we need to find the vertex of the quadratic equation y = -x² + 40x - 90. The x-coordinate of the vertex can be found by using the formula: `x=-b/2a`Here, a = -1 and b = 40Substituting the values, we get: x = -40 / 2(-1)x = 20 milliseconds Therefore, the maximum firing rate will be reached after 20 milliseconds. (b) What is the maximum firing rate? The maximum firing rate can be found by substituting the value of x obtained above in the quadratic equation. `y = -x² + 40x - 90`Substituting x = 20, we get: y = -(20)² + 40(20) - 90y = -400 + 800 - 90y = 310Therefore, the maximum firing rate is 310 impulses per millisecond. Answer: (a) 20 milliseconds; (b) 310 impulses per millisecond.

To learn more about maximum firing rate :https://brainly.com/question/29803395

#SPJ11

Suppose we have a cylindrical tank half full of water. Your friend says 'I think it takes twice as much work to empty this tank, as it would to lift half of the water out'. Assuming that you get water out by lifting to the top of the cylinder, is she right or is she wrong? Support your conclusion with math.

Answers

h = 0. This means that the cylindrical tank is completely empty, and there is no water in it. Therefore, your friend is wrong. It does not take twice the work to empty the tank as it would take to lift half the water out.

Let us consider that the cylindrical tank is of height h and radius r.

The volume of the cylindrical tank can be given by

V = πr²h

If the cylindrical tank is half-filled with water, then the volume of water is given by

V/2 = (πr²h)/2

According to your friend, it would take twice the work to empty the tank as it would take to lift half the water out. That is to say, the work required to empty the tank is twice the work required to lift half the water.

Thus, we have the following equation:

2 × (force × distance to empty the tank) = (force × distance to lift half the water)

Let us assume that the density of water is p.

Then, the mass of the water in the cylindrical tank will be given by

M = (p × V)/2 = (p × πr²h)/2

Similarly, the mass of half the water is given by

M/2 = (p × V)/4

= (p × πr²h)/4

Now, the force required to lift the half water to the top of the cylinder is given by

F = Mg = (p × πr²h × g)/4

The work done is the product of force and distance. In this case, the distance is the height of the cylinder, which is h. Thus, the work done to lift half the water is given by

W = Fh

= (p × πr²h² × g)/4.

Now, let us calculate the work required to empty the tank. For that, we need to calculate the force required to empty the tank.

The force required will be equal to the weight of the water in the tank. The weight of water is given by

Wt = Mg

= (p × πr²h × g)/2

Thus, the work required to empty the tank is given by

Wt × h = (p × πr²h² × g)/2

Comparing the two equations, we get:

(p × πr²h² × g)/2 = 2 × (p × πr²h² × g)/4

After simplifying, we get:

h = 4h/2

h =0

It would take the same amount of work to lift half the water out as it would take to empty the tank.

Know more about the cylindrical tank

https://brainly.com/question/15808316

#SPJ11

etermine the total solution using: a. Classical Method b. Laplace Transform Method D ^2 y(t)+8Dy(t)+16y(t)=2t ^3 y(0)=0;Dy(0)=1

Answers

A. The total solution (general solution) is the sum of the complementary and particular solutions:

y(t) = y_c(t) + y_p(t)

= c1 * e^(-4t) + c2 * t * e^(-4t) + (1/8)t^3 - (1/4)t^2

B. The total solution is given by:

y(t) = 2e^(-4t) + te^(-4t) + (1 - t^2)e^(-4t)

a. Classical Method:

The characteristic equation for the given differential equation is obtained by substituting y(t) = e^(rt) into the differential equation:

r^2 + 8r + 16 = 0

Solving this quadratic equation, we find two equal roots: r = -4.

Therefore, the complementary solution (homogeneous solution) is given by:

y_c(t) = c1 * e^(-4t) + c2 * t * e^(-4t)

To find the particular solution, we assume a particular form for y_p(t) based on the non-homogeneous term, which is a polynomial of degree 3. We take:

y_p(t) = At^3 + Bt^2 + Ct + D

Differentiating y_p(t) with respect to t, we have:

y'_p(t) = 3At^2 + 2Bt + C

y''_p(t) = 6At + 2B

Substituting these derivatives into the differential equation, we get:

(6At + 2B) + 8(3At^2 + 2Bt + C) + 16(At^3 + Bt^2 + Ct + D) = 2t^3

Simplifying this equation, we equate the coefficients of like powers of t:

16A = 2 (coefficient of t^3)

16B + 24A = 0 (coefficient of t^2)

8C + 24B = 0 (coefficient of t)

2B + 8D = 0 (constant term)

Solving these equations, we find A = 1/8, B = -1/4, C = 0, and D = 0.

Therefore, the particular solution is:

y_p(t) = (1/8)t^3 - (1/4)t^2

The total solution (general solution) is the sum of the complementary and particular solutions:

y(t) = y_c(t) + y_p(t)

= c1 * e^(-4t) + c2 * t * e^(-4t) + (1/8)t^3 - (1/4)t^2

b. Laplace Transform Method:

Taking the Laplace transform of the given differential equation, we have:

s^2Y(s) - sy(0) - y'(0) + 8sY(s) - 8y(0) + 16Y(s) = (2/s^4)

Applying the initial conditions y(0) = 0 and y'(0) = 1, and rearranging the equation, we get:

Y(s) = 2/(s^2 + 8s + 16) + s/(s^2 + 8s + 16) + (1 - s^2)/(s^2 + 8s + 16)

Factoring the denominator, we have:

Y(s) = 2/[(s + 4)^2] + s/[(s + 4)^2] + (1 - s^2)/[(s + 4)(s + 4)]

Using the partial fraction decomposition method, we can write the inverse Laplace transform of Y(s) as:

y(t) = 2e^(-4t) + te^(-4t) + (1 - t^2)e^(-4t)

Therefore, the total solution is given by:

y(t) = 2e^(-4t) + te^(-4t) + (1 - t^2)e^(-4t)

Learn more about  solution from

https://brainly.com/question/27894163

#SPJ11

g the integral \int 0^1 \int 0^{y^2}\int 0^{1-y} f(x,y,z) \; dz \; dx \; dy equals: (hint: carefully draw a 3d sketch of the domain

Answers

The integral  [tex]\int_{0}^{1}\int_{0}^{y^2}\int_{0}^{1-y}f(x,y,z)dz dy dx[/tex]  represents the accumulation or area under the function f(x,y,z) over the specified region of integration. The specific value of the integral cannot be determined without knowing the function f(x,y,z).

The given triple integral is:   [tex]\int_{0}^{1}\int_{0}^{y^2}\int_{0}^{1-y}f(x,y,z)dz dy dx[/tex]

To solve this triple integral, we start from the innermost integral and work our way out. Let's go step by step:

   1. First, we integrate with respect to the innermost variable, which is 'z'. Here, we integrate the function f(x,y,z) with respect to 'z' while keeping 'x' and 'y' constant. The limits of integration for 'z' are from 0 to 1 - y.

   2. Once we integrate with respect to 'z', we move to the next integral. This time, we integrate the result obtained from the previous step with respect to 'y'. Here, we integrate the function obtained from the previous step with respect to 'y' while keeping 'x' constant. The limits of integration for 'y' are from 0 to 2y².

   3. Finally, after integrating with respect to 'y', we move to the outermost integral. This time, we integrate the result obtained from the previous step with respect to 'x'. The limits of integration for 'x' are from 0 to 1.

Now, the exact form of the function f(x,y,z) is not provided in the question, so we cannot determine the specific value of the integral. However, we can still provide a general expression for the integral:

[tex]\int_{0}^{1}\int_{0}^{y^2}\int_{0}^{1-y}f(x,y,z)dz dy dx[/tex]

In summary, we have a triple integral where we integrate a function f(x,y,z) with respect to 'z', then 'y', and finally 'x', while considering the given limits of integration.

To know more about integral here

https://brainly.com/question/18125359

#SPJ4

Complete Question:

The integral [tex]\int_{0}^{1}\int_{0}^{y^2}\int_{0}^{1-y}f(x,y,z)dz dy dx[/tex] equals

Chloe loans out a sum of $1,000 every quarter to her associates at an interest rate of 4%, compounded quarterly. How much does she stand to gain if er loans are repaid after three years? A) $15,025.8 B)$15,318.6

Answers

A) $15,025.8. is the correct option. Chloe loans out a sum of $1,000 every quarter to her associates at an interest rate of 4%, compounded quarterly. She stand to get $15,025.8. if er loans are repaid after three years.

Chloe loans out a sum of $1,000 every quarter to her associates at an interest rate of 4%, compounded quarterly.

We need to find how much she stands to gain if er loans are repaid after three years.

Calculation: Semi-annual compounding = Quarterly compounding * 4 Quarterly interest rate = 4% / 4 = 1%

Number of quarters in three years = 3 years × 4 quarters/year = 12 quarters

Future value of $1,000 at 1% interest compounded quarterly after 12 quarters:

FV = PV(1 + r/m)^(mt) Where PV = 1000, r = 1%, m = 4 and t = 12 quartersFV = 1000(1 + 0.01/4)^(4×12)FV = $1,153.19

Total amount loaned out in 12 quarters = 12 × $1,000 = $12,000

Total interest earned = $1,153.19 - $12,000 = $-10,846.81

Therefore, Chloe stands to lose $10,846.81 if all her loans are repaid after three years.

Hence, the correct option is A) $15,025.8.

To know more about compounded quarterly visit:

brainly.com/question/33359365

#SPJ11

comparison between DES and AES and what is the length of the block and give Round about one of them

Answers

DES (Data Encryption Standard) and AES (Advanced Encryption Standard) are both symmetric encryption algorithms used to secure sensitive data.

AES is generally considered more secure than DES due to its larger key sizes and block sizes. DES has a fixed block size of 64 bits, while AES can have a block size of 128 bits. In terms of key length, DES uses a 56-bit key, while AES supports key lengths of 128, 192, and 256 bits.

AES also employs a greater number of rounds in its encryption process, providing enhanced security against cryptographic attacks. AES is widely adopted as a global standard, recommended by organizations such as NIST. On the other hand, DES is considered outdated and less secure. It is important to note that AES has different variants, such as AES-128, AES-192, and AES-256, which differ in the key length and number of rounds.

To know more about encryption algorithms,

https://brainly.com/question/31831935

#SPJ11

find the following in polar form a. 2+3 \pi i b. 1+i c. 2 \pi(1+i)

Answers

a.  2 + 3πi  in polar form is approximately 5.79(cos(1.48 + kπ) + i sin(1.48 + kπ)).

To convert 2 + 3πi to polar form, we need to find the magnitude r and the argument θ. We have:

r = |2 + 3πi| = √(2^2 + (3π)^2) ≈ 5.79

θ = arg(2 + 3πi) = arctan(3π/2) + kπ ≈ 1.48 + kπ, where k is an integer.

Therefore, 2 + 3πi in polar form is approximately 5.79(cos(1.48 + kπ) + i sin(1.48 + kπ)).

b. To convert 1 + i to polar form, we need to find the magnitude r and the argument θ. We have:

r = |1 + i| = √2

θ = arg(1 + i) = arctan(1/1) + kπ/2 = π/4 + kπ/2, where k is an integer.

Therefore, 1 + i in polar form is √2(cos(π/4 + kπ/2) + i sin(π/4 + kπ/2)).

c. To convert 2π(1 + i) to polar form, we first need to multiply 2π by the complex number (1 + i). We have:

2π(1 + i) = 2π + 2πi

To convert 2π + 2πi to polar form, we need to find the magnitude r and the argument θ. We have:

r = |2π + 2πi| = 2π√2 ≈ 8.89

θ = arg(2π + 2πi) = arctan(1) + kπ = π/4 + kπ, where k is an integer.

Therefore, 2π(1 + i) in polar form is approximately 8.89(cos(π/4 + kπ) + i sin(π/4 + kπ)).

Learn more about "polar form" : https://brainly.com/question/21538521

#SPJ11

Give an English language description of the regular expression (0 ∗
1 ∗
) ∗
000(0+1) ∗

Answers

To write it in English, we can say the regular expression matches strings that have any number of repetitions of a pattern consisting of consecutive 0s followed by consecutive 1s, followed by the sequence 000, and ending with any number of consecutive 0s or 1s.

The regular expression (0 ∗ 1 ∗) ∗ 000(0+1) ∗ can be described in English as follows:

This regular expression matches any string that follows the following pattern:

1. It can start with any number (including zero) of consecutive 0s, followed by any number (including zero) of consecutive 1s. This pattern can repeat any number of times.

2. After the previous pattern, the string must contain the sequence 000.

3. After the sequence 000, the string can have any number (including zero) of consecutive 0s or 1s.

To know more about regular expression, visit:

https://brainly.com/question/32344816#

#SPJ11

For each of the following sequences (an), prove lim an = a. 00411
(a) an = (-1)"¹/n, a=0
(b) an = 1 /2n, a = 0
(c) an = √n+1-√n, a=0
(d) an=2n2+2 /3n2+3,a= 2/3

Answers

For the sequences (a) an = (-1)^(1/n), (b) an = 1/2^n, (c) an = √(n+1) - √n, the limits are a=0 in each case.

(a) For the sequence (an) = (-1)^(1/n), we want to prove that lim an = a, where a = 0.

Let ε > 0 be given. We need to find N such that for all n ≥ N, |an - a| < ε.

Since (-1)^k = 1 for even values of k and (-1)^k = -1 for odd values of k, we have two cases to consider:

Case 1: n is even.

In this case, an = (-1)^(1/n) = 1^(1/n) = 1. Since a = 0, we have |an - a| = |1 - 0| = 1 < ε for any ε > 0.

Case 2: n is odd.

In this case, an = (-1)^(1/n) = -1^(1/n) = -1. Since a = 0, we have |an - a| = |-1 - 0| = 1 < ε for any ε > 0.

In both cases, we can choose N = 1. For all n ≥ 1, we have |an - a| < ε.

Therefore, for the sequence (an) = (-1)^(1/n), lim an = a = 0.

(b) For the sequence (an) = 1/2^n, we want to prove that lim an = a, where a = 0.

Let ε > 0 be given. We need to find N such that for all n ≥ N, |an - a| < ε.

Since an = 1/2^n, we have |an - a| = |1/2^n - 0| = 1/2^n < ε.

To satisfy 1/2^n < ε, we can choose N such that 2^N > 1/ε. This ensures that for all n ≥ N, 1/2^n < ε.

Therefore, for the sequence (an) = 1/2^n, lim an = a = 0.

(c) For the sequence (an) = √(n+1) - √n, we want to prove that lim an = a, where a = 0.

Let ε > 0 be given. We need to find N such that for all n ≥ N, |an - a| < ε.

We have an = √(n+1) - √n. To simplify, we can rationalize the numerator:

an = (√(n+1) - √n) * (√(n+1) + √n) / (√(n+1) + √n)

  = (n+1 - n) / (√(n+1) + √n)

  = 1 / (√(n+1) + √n).

To make an < ε, we can choose N such that 1/(√(n+1) + √n) < ε. This can be achieved by choosing N such that 1/(√(N+1) + √N) < ε.

Learn more about limits here :-

https://brainly.com/question/12207563

#SPJ11

g identify the straight-line solutions. b) write the general solution. c) describe the behavior of solutions, including classifying the equilibrium point at (0, 0).

Answers

1. The straight-line solutions are of the form y = kx + c, where k and c are constants.

2. The general solution is f(x) = kx + c, where k and c can be any real numbers.

3. The behavior of solutions depends on the value of k: if k > 0, the solutions increase as x increases; if k < 0, the solutions decrease as x increases; and if k = 0, the solutions are horizontal lines. The equilibrium point at (0, 0) is classified as a stable equilibrium point.

a) To identify the straight-line solutions, we need to find the points on the graph where the slope is constant. This means the derivative of the function with respect to x is a constant. Let's assume our function is f(x).

So, we have f'(x) = k, where k is a constant.

By integrating both sides, we get f(x) = kx + c, where c is an arbitrary constant.

Therefore, the straight-line solutions are of the form y = kx + c, where k and c are constants.

b) The general solution can be written as f(x) = kx + c, where k and c can be any real numbers.

c) The behavior of solutions depends on the value of k.
- If k > 0, the solutions will be increasing lines as x increases.
- If k < 0, the solutions will be decreasing lines as x increases.
- If k = 0, the solutions will be horizontal lines.

The equilibrium point at (0, 0) is classified as a stable equilibrium point because any small disturbance will bring the system back to the equilibrium point.

In summary, the straight-line solutions are of the form y = kx + c, where k and c are constants. The behavior of solutions depends on the value of k, and the equilibrium point at (0, 0) is a stable equilibrium point.

Learn more about equilibrium points:

https://brainly.com/question/32765683

#SPJ11

Write balanced chemical equations for each of the acid-base reactions described below. a) Aqueous solutions of {HClO}_{4} and {LiOH} are mixed b) Aqueous {NaOH}

Answers

one mole of NaOH dissociates into one mole of Na⁺ ions and one mole of OH⁻ ions in aqueous solution.

a) Aqueous solutions of HClO₄ and LiOH are mixed:

The balanced chemical equation for the reaction between HClO₄ (perchloric acid) and LiOH (lithium hydroxide) is:

2 HClO₄ + 2 LiOH → 2 LiClO₄ + 2 H₂O

In this reaction, two moles of HClO₄ react with two moles of LiOH to produce two moles of LiClO₄ and two moles of water.

b) Aqueous NaOH:

The balanced chemical equation for the dissociation of NaOH (sodium hydroxide) in water is:

NaOH(aq) → Na⁺(aq) + OH⁻(aq)

In this reaction, one mole of NaOH dissociates into one mole of Na⁺ ions and one mole of OH⁻ ions in aqueous solution.

To know more about solutions refer here:

https://brainly.com/question/30665317#

#SPJ11

Mr Cooper’ claroom had 5 table. There were 4 tudent at each table. Mr Garcia’ claroom had 3 more tudent than Mr Cooper’ claroom

Answers

Mr. Garcia's classroom had 23 students.

Let's denote the number of students in Mr. Cooper's classroom as C and the number of students in Mr. Garcia's classroom as G.

Given that Mr. Cooper's classroom had 5 tables with 4 students at each table, we can write:

C = 5 * 4 = 20

It is also given that Mr. Garcia's classroom had 3 more students than Mr. Cooper's classroom, so we can write:

G = C + 3

Substituting the value of C from the first equation into the second equation, we get:

G = 20 + 3 = 23

Therefore, Mr. Garcia's classroom had 23 students.

Learn more about Equation here:

https://brainly.com/question/29657983

#SPJ4

Let B=A T A. Recall that a i is the i-th column vector of A. Show that b ij=a iTaj

.

Answers

To show that bij = ai^T * aj, where B = A^T * A, we can expand the matrix multiplication and compare the elements of B with the expression ai^T * aj.

Let's consider the (i, j)-th element of B, which is bij:

bij = Σk (aik * akj)

Now let's consider the expression ai^T * aj:

ai^T * aj = (a1i, a2i, ..., ani) * (a1j, a2j, ..., anj)

The dot product of these two vectors is given by:

ai^T * aj = a1i * a1j + a2i * a2j + ... + ani * anj

We can see that the (i, j)-th element of B, bij, matches the corresponding element of ai^T * aj.

Therefore, we have shown that bij = ai^T * aj for the given matrix B = A^T * A.

Learn more about multiplication here

https://brainly.com/question/11527721

#SPJ11

Find all values of x (if any) where the tangent line to the graph of the function is. horizontal. y=2+8x−x^2
a) 8 b) 4
c) −8 d) −4

Answers

The values of x at which the tangent line to the graph of the function is horizontal is 4. Hence, the correct option is (b) 4.

Given function: y = 2 + 8x - x²

To find the values of x (if any) where the tangent line to the graph of the function is horizontal.

Let's first find the derivative of the function using the power rule of differentiation:

dy/dx = d/dx (2 + 8x - x²)

dy/dx = 0 + 8 - 2x

dy/dx = 8 - 2x

To find the values of x at which the tangent is horizontal, we set the derivative of the function equal to zero:

8 - 2x = 0

-2x = -8

x = 4

Hence, the correct option is (b) 4.

Know more about the tangent line

https://brainly.com/question/30162650

#SPJ11

Please answer the (b)(ii)
b) The height h(t) of a ferris wheel car above the ground after t minutes (in metres) can be modelled by: h(t)=15.55+15.24 sin (8 \pi t) . This ferris wheel has a diameter of 30.4

Answers

(b)(ii)  The maximum height of the ferris wheel car above the ground is 30.79 meters.

To find the maximum and minimum height of the ferris wheel car above the ground, we need to find the maximum and minimum values of the function h(t).

The function h(t) is of the form h(t) = a + b sin(c t), where a = 15.55, b = 15.24, and c = 8π. The maximum and minimum values of h(t) occur when sin(c t) takes on its maximum and minimum values of 1 and -1, respectively.

Maximum height:

When sin(c t) = 1, we have:

h(t) = a + b sin(c t)

= a + b

= 15.55 + 15.24

= 30.79

Therefore, the maximum height of the ferris wheel car above the ground is 30.79 meters.

Minimum height:

When sin(c t) = -1, we have:

h(t) = a + b sin(c t)

= a - b

= 15.55 - 15.24

= 0.31

Therefore, the minimum height of the ferris wheel car above the ground is 0.31 meters.

Note that the diameter of the ferris wheel is not used in this calculation, as it only provides information about the physical size of the wheel, but not its height at different times.

Learn more about "ferris wheel car" : https://brainly.com/question/11306671

#SPJ11

What is ABC in Pythagorean Theorem?

Answers

The ABC in the Pythagorean Theorem refers to the sides of a right triangle.

The theorem states that in a right triangle, the square of the length of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the other two sides. The formula is written as a^2 + b^2 = c^2, where "a" and "b" are the lengths of the legs of the triangle, and "c" is the length of the hypotenuse.

For example, let's consider a right triangle with side lengths of 3 units and 4 units. We can use the Pythagorean Theorem to find the length of the hypotenuse.

a^2 + b^2 = c^2
3^2 + 4^2 = c^2
9 + 16 = c^2
25 = c^2

Taking the square root of both sides, we find that c = 5. So, in this case, the ABC in the Pythagorean Theorem represents a = 3, b = 4, and c = 5.

In summary, the ABC in the Pythagorean Theorem refers to the sides of a right triangle, where a and b are the lengths of the legs, and c is the length of the hypotenuse. The theorem allows us to calculate the length of one side when we know the lengths of the other two sides.


Learn more about Pythagorean Theorem from the link given below:

brainly.com/question/14930619

#SPJ11

Using the "power rule", determine the derivative of the functions: f(x) = (15/ (x^4))- ( 1 /8)x^-2

Answers

The derivative of the given function is:

f'(x) + g'(x) = (-60 / (x^5)) + (1/4)x^-3

To use the power rule, we differentiate each term separately and then add the results.

For the first term, we have:

f(x) = (15/ (x^4))

Using the power rule, we bring down the exponent, subtract one from it, and multiply by the derivative of the inside function, which is 1 in this case. Therefore, we get:

f'(x) = (-60 / (x^5))

For the second term, we have:

g(x) = -(1/8)x^-2

Using the power rule again, we bring down the exponent -2, subtract one from it to get -3, and then multiply by the derivative of the inside function, which is also 1. Therefore, we get:

g'(x) = 2(1/8)x^-3

Simplifying this expression, we get:

g'(x) = (1/4)x^-3

Now, we can add the two derivatives:

f'(x) + g'(x) = (-60 / (x^5)) + (1/4)x^-3

Therefore, the derivative of the given function is:

f'(x) + g'(x) = (-60 / (x^5)) + (1/4)x^-3

Learn more about  derivative from

https://brainly.com/question/28376218

#SPJ11

Which of the following gives the equation of a circle of radius 22 and center at the point (-1,2)(-1,2)?

Answers

Step-by-step explanation:

Equation of a circle is

[tex](x - h) {}^{2} + (y - k) {}^{2} = {r}^{2} [/tex]

where (h,k) is the center

and the radius is r.

Here the center is (-1,2) and the radius is 22

[tex](x + 1) {}^{2} + (y - 2) {}^{2} = 484[/tex]

Let f be a function from A to B. (a) Show that if f is injective and E⊆A, then f −1
(f(E))=E. Give an example to show that equality need not hold if f is not injective. (b) Show that if f is surjective and H⊆B, then f(f −1
(H))=H. Give an example to show that equality need not hold if f is not surjective.

Answers

(a) If f is an injective function from set A to set B and E is a subset of A, then f^(-1)(f(E)) = E. This is because an injective function assigns a unique element of B to each element of A.

Therefore, f(E) will contain distinct elements of B corresponding to the elements of E. Now, taking the inverse image of f(E), f^(-1)(f(E)), will retrieve the elements of A that were originally mapped to the elements of E. Since f is injective, each element in E will have a unique pre-image in A, leading to f^(-1)(f(E)) = E.

Example: Let A = {1, 2, 3}, B = {4, 5}, and f(1) = 4, f(2) = 5, f(3) = 5. Consider E = {1, 2}. f(E) = {4, 5}, and f^(-1)(f(E)) = {1, 2} = E.

(b) If f is a surjective function from set A to set B and H is a subset of B, then f(f^(-1)(H)) = H. This is because a surjective function covers all elements of B. Therefore, when we take the inverse image of H, f^(-1)(H), we obtain all the elements of A that map to elements in H. Applying f to these pre-images will give us the original elements in H, resulting in f(f^(-1)(H)) = H.

Example: Let A = {1, 2}, B = {3, 4}, and f(1) = 3, f(2) = 4. Consider H = {3, 4}. f^(-1)(H) = {1, 2}, and f(f^(-1)(H)) = {3, 4} = H.

In conclusion, when f is injective, f^(-1)(f(E)) = E holds true, and when f is surjective, f(f^(-1)(H)) = H holds true. However, these equalities may not hold if f is not injective or surjective.

To know more about injective, visit;

https://brainly.com/question/32604303

#SPJ11

Use the following problem to answer questions 7 and 8. MaxC=2x+10y 5x+2y≤40 x+2y≤20 y≥3,x≥0 7. Give the corners of the feasible set. a. (0,3),(0,10),(6.8,3),(5,7.5) b. (0,20),(5,7.5),(14,3) c. (5,7.5),(6.8,3),(14,3) d. (0,20),(5,7.5),(14,3),(20,0) e. (0,20),(5,7.5),(20,0) 8. Give the optimal solution. a. 200 b. 100 c. 85 d. 58 e. 40

Answers

The corners of the feasible set are:

b. (0,20), (5,7.5), (14,3)

To find the corners of the feasible set, we need to solve the given set of inequalities simultaneously. The feasible set is the region where all the inequalities are satisfied.

The inequalities given are:

5x + 2y ≤ 40

x + 2y ≤ 20

y ≥ 3

x ≥ 0

From the inequality x + 2y ≤ 20, we can rearrange it to y ≤ (20 - x)/2.

Since y ≥ 3, we can combine these two inequalities to get 3 ≤ y ≤ (20 - x)/2.

From the inequality 5x + 2y ≤ 40, we can rearrange it to y ≤ (40 - 5x)/2.

Since y ≥ 3, we can combine these two inequalities to get 3 ≤ y ≤ (40 - 5x)/2.

Now, let's check the corners by substituting the values:

For (0, 20):

3 ≤ 20/2 and 3 ≤ (40 - 5(0))/2, which are both true.

For (5, 7.5):

3 ≤ 7.5 ≤ (40 - 5(5))/2, which are all true.

For (14, 3):

3 ≤ 3 ≤ (40 - 5(14))/2, which are all true.

Therefore, the corners of the feasible set are (0,20), (5,7.5), and (14,3).

The corners of the feasible set are (0,20), (5,7.5), and (14,3) - option d.

The optimal solution is:

c. 85

To find the optimal solution, we need to evaluate the objective function at each corner of the feasible set and choose the maximum value.

The objective function is MaxC = 2x + 10y.

For (0,20):

MaxC = 2(0) + 10(20) = 0 + 200 = 200.

For (5,7.5):

MaxC = 2(5) + 10(7.5) = 10 + 75 = 85.

For (14,3):

MaxC = 2(14) + 10(3) = 28 + 30 = 58.

Therefore, the maximum value of the objective function is 85, which occurs at the corner (5,7.5).

The optimal solution is 85 - option c.

To know more about corners, visit;
https://brainly.com/question/30466188
#SPJ11

Let x ∈R, c ∈R, and ε > 0. Suppose that |x −c|< ε.
(a) Prove that |x|< ε + |c|
(b) Prove that |c|−ε < |x|
Justify all steps by stating a theorem or definition that makes your assumption true
Thank you

Answers

In both cases, the triangle inequality theorem is used to justify the steps, which guarantees the validity of the inequalities.

|a + b| ≤ |a| + |b|

(a) Proving |x| < ε + |c|:

Given: |x - c| < ε

Adding |c| to both sides of the inequality, we have:

|x - c| + |c| < ε + |c|

Applying the triangle inequality to the left side of the inequality, we get:

|x - c + c| < ε + |c|

Simplifying the expression inside the absolute value, we have:

|x| < ε + |c|

Thus, we have proved that |x| < ε + |c|.

(b) Proving |c| - ε < |x|:

Given: |x - c| < ε

Subtracting |c| from both sides of the inequality, we have:

|x - c| - |c| < ε - |c|

Applying the triangle inequality to the left side of the inequality, we get:

|x - c - c| < ε - |c|

Simplifying the expression inside the absolute value, we have:

|x - 2c| < ε - |c|

Adding 2|c| to both sides of the inequality, we get:

|x - 2c| + 2|c| < ε - |c| + 2|c|

Applying the triangle inequality to the left side of the inequality, we have:

|x - 2c + 2c| < ε - |c| + 2|c|

Simplifying the expression inside the absolute value, we have:

|x| < ε + |c|

Rearranging the inequality, we get:

|c| - ε < |x|

Thus, we have proved that |c| - ε < |x|.

In both cases, the triangle inequality theorem is used to justify the steps, which guarantees the validity of the inequalities.

Learn more about Triangle here:

https://brainly.com/question/2773823

#SPJ11

The table below shows the linear relationship between the number of people at a picnic and the total cost of the picnic.

Answers

The line represented by the table is:

y = 2x + 40

How to find the linear relationship?

A general linear relationship is written as:

y = ax + b

Where a is the slope and b is the y-intercept.

If the line passes through (x₁, y₁) and (x₂, y₂) then the slope is:

a = (y₂ - y₁)/(x₂ - x₁)

We can use the first two pairs:

(6, 52) and (9, 58)

Then we will get:

a = (58 - 52)/(9 - 6)

a = 6/3 = 2

y = 2x + b

To find the value of b, we replace the values of one of the points, if we use the first one (6, 52), then we will get:

52 = 2*6 + b

52 = 12 + b

52 - 12 = b

40 = b

The line is:

y = 2x + 40

Learn more about linear equations at:

https://brainly.com/question/1884491

#SPJ1

Now that you have studied the translations of linear function, let's apply that concept to a function that is not linear.

Answers

The translation transformation of the parent function in the graph, indicates that the equation for each of the specified graphs, using the form y = f(x - h) + k, are;

a. y = f(x) + 3

b. y = f(x - 3)

c. y = f(x - 1) + 2

What is a transformation of a function?

A transformation of a function is a function that takes a specified function or graph and modifies them into another function or graph.

The points on the graph of the specified function f(x) in the diagram are; (0, 0), (1.5, 1), (-1.5, -1)

The graph is the graph of a periodic function, with an amplitude of (1 - (-1))/2 = 1, and a period of about 4.5

Therefore, we get;

a. The graph in part a consists of the parent function shifted up three units. The transformation that can be represented by the vertical shift of a function f(x) is; f(x) + a or f(x) - a

Therefore, the translation of the graph of the parent function is; f(x) + 3

b. The graph of the parent function in the graph in part b is shifted to the right two units, and the vertical translation is zero units, down or up.

The translation of the graph of a function by h units to the right or left can be indicated by an subtraction or addition of h units to the value of the input variable, therefore, the translation of the function in the graph of b is; y = f(x - 3) + 0 = f(x - 3)

c. The translation of the graph in part c are;

A vertical translation 2 units upwards

A horizontal translation 1 unit to the right

The equation representing the graph in part c is therefore; y = f(x - 1) + 2

Lear more on the transformation of functions here: https://brainly.com/question/29185109

#SPJ1

Use the Venin diagram to represent net {A} in roster form A=\text {. } (Use a comma to separate answers as needed)

Answers

The answer in roster form is A = {6, 8, 10}.

In order to represent net {A} in roster form A, we need to use the Venin diagram. A Venin diagram is a way to depict set operations graphically. The three most common set operations are intersection, union, and complement. The Venin diagram is a geometric representation of these operations.

In order to use the Venin diagram to represent net {A} in roster form A, we follow these steps:

Step 1: Draw two overlapping circles to represent sets A and B.

Step 2: Write down the elements that belong to set A inside its circle.

Step 3: Write down the elements that belong to set B inside its circle.

Step 4: Write down the elements that belong to both set A and set B in the overlapping region of the two circles.

Step 5: List the elements that belong to the net of set A.

Step 6: Write the final answer in roster form, separated by a comma.

Let's assume that set A is {2, 4, 6, 8, 10}, and set B is {1, 2, 3, 4, 5}. Then, the Venin diagram would look like this: Venin diagram As we can see from the Venin diagram, the net of set A is {6, 8, 10}. Therefore, the answer in roster form is A = {6, 8, 10}.

Learn more about Roster:https://brainly.com/question/28709089

#SPJ11

Consider the differential equation dp/dt = p(p-1) (2-p)
for the population p (in thousands) of a certain species at time t.
(a) Sketch the direction field by using either a computer software package or the method of isoclines.
(b) If the initial population is 4000 [that is, p(0) = 4], what can you say about the limiting population
limt→+[infinity] p(t)?
(c) If p(0) = 1.7, what is limt→+[infinity] p(t)?
(d) If p(0) = 0.8, what is limt→+[infinity] p(t)?
(e) Can a population of 900 ever increase to 1100?

Answers

The limiting population is 2 for initial populations greater than or equal to 1, and it is 0 for initial populations less than 1. The population of 900 can never reach 1100.

(a) The direction field can be sketched by plotting short line segments with slopes given by the equation dp/dt = p(p-1)(2-p) at various points in the p-t plane.

(b) When the initial population is 4000, the limiting population as t approaches infinity is 2. This can be observed from the direction field or by analyzing the behavior of the differential equation.

(c) When p(0) = 1.7, the limiting population as t approaches infinity is approximately 2. This can be determined by analyzing the behavior of the differential equation.

(d) When p(0) = 0.8, the limiting population as t approaches infinity is 0. This can be determined by analyzing the behavior of the differential equation.

(e) No, a population of 900 can never increase to 1100 based on the given differential equation. The equation dp/dt = p(p-1)(2-p) indicates that the population will either tend towards 0 or 2, but it cannot reach values between 0 and 2.

Learn more about limiting population here :-

https://brainly.com/question/33360284

#SPJ11

Find the polar form for all values of (a) (1+i)³,
(b) (-1)1/5

Answers

Polar form is a way of representing complex numbers using their magnitude (or modulus) and argument (or angle).  The polar form of (1+i)³ is 2√2e^(i(3π/4)) and the polar form of (-1)^(1/5) is e^(iπ/5).

(a) To find the polar form of (1+i)³, we can first express (1+i) in polar form. Let's write it as r₁e^(iθ₁), where r₁ is the magnitude and θ₁ is the argument of (1+i). To find r₁ and θ₁, we use the formulas:

r₁ = √(1² + 1²) = √2,

θ₁ = arctan(1/1) = π/4.

Now, we can express (1+i)³ in polar form by using De Moivre's theorem, which states that (r₁e^(iθ₁))ⁿ = r₁ⁿe^(iθ₁ⁿ). Applying this to (1+i)³, we have:

(1+i)³ = (√2e^(iπ/4))³ = (√2)³e^(i(π/4)³) = 2√2e^(i(3π/4)).

Therefore, the polar form of (1+i)³ is 2√2e^(i(3π/4)).

(b) To find the polar form of (-1)^(1/5), we can express -1 in polar form. Let's write it as re^(iθ), where r is the magnitude and θ is the argument of -1. The magnitude is r = |-1| = 1, and the argument is θ = π.

Now, we can express (-1)^(1/5) in polar form by using the property that (-1)^(1/5) = r^(1/5)e^(iθ/5). Substituting the values, we have:

(-1)^(1/5) = 1^(1/5)e^(iπ/5) = e^(iπ/5).

Therefore, the polar form of (-1)^(1/5) is e^(iπ/5).

Learn more about De Moivre's theorem here : brainly.com/question/28999678

#SPJ11

Write Equations of a Line in Space Find a vector parallel to the line defined by the parametric equations ⎩x(t)=−3+6t
⎨y(t)=−5+5t
⎧z(t)=5−6t
Additionally, find a point on the line. Parallel vector (in angle bracket notation): Point:

Answers

The Parallel vector (in angle bracket notation): $\begin{pmatrix}6\\5\\-6\end{pmatrix}$Point: $(-3,-5,5)$[/tex]

The given parametric equations define a line in the 3-dimensional space.

To write the equations of a line in space, we need a point on the line and a vector parallel to the line.

Vector parallel to the line:

We note that the coefficients of t in the parametric equations give the components of the vector parallel to the line.

So, the parallel vector to the line is given by

[tex]$\begin{pmatrix}6\\5\\-6\end{pmatrix}$[/tex]

Point on the line:

To get a point on the line, we can substitute any value of t in the given parametric equations.

Let's take [tex]$t=0$[/tex].

Then, we get [tex]$x(0)=-3+6(0)=-3$ $y(0)=-5+5(0)=-5$ $z(0)=5-6(0)=5$[/tex]

So, a point on the line is [tex]$(-3,-5,5)$[/tex].

Therefore, the equation of the line in space is given by:[tex]$\begin{pmatrix}x\\y\\z\end{pmatrix}=\begin{pmatrix}-3\\-5\\5\end{pmatrix}+t\begin{pmatrix}6\\5\\-6\end{pmatrix}$Parallel vector (in angle bracket notation): $\begin{pmatrix}6\\5\\-6\end{pmatrix}$Point: $(-3,-5,5)$[/tex]

For more related questions on Parallel vector:

https://brainly.com/question/31140426

#SPJ8

Other Questions
Arrowhead is a fintech startup that operates an online securities trading platform. Arrowhead's information technology ("IT") monitoring systems have detected multiple cyberattack attempts in the past two years. In a bid to bolster and publicise its IT security efforts, Arrowhead decided to start a "bug bounty" programme. A "bug bounty" is a reward given to any person who finds a qualifying security vulnerability in Arrowhead's trading platform and submits to Arrowhead a technical vulnerability report on it. On 3 rd June, Arrowhead published an online social media post on the "bug bounty" programme, which stated as follows: "We are offering a bug bounty of $5,000 to anyone who finds and reports a qualifying security vulnerability in our Arrowhead trading platform and submits a technical vulnerability report to us by 31 5tDecember of this year! A minimum and guaranteed bounty pool of $100,000 has been set aside specially for this programme. Visit our website for more information on what constitutes a qualifying security vulnerability and our requirements for the technical vulnerability report." Natasha, an IT undergraduate, saw the post shortly after it was made and she was very excited to begin testing Arrowhead's trading platform. Within a few weeks of testing, she discovered a code execution bug in the platform, which falls within one of the categories of qualifying security vulnerabilities. Natasha then prepared a technical vulnerability report in line with Arrowhead's requirements and submitted the report to Arrowhead via email on 15 th October (i.e., before the stipulated deadline of 31 st December). Unknown to Natasha, Arrowhead had recently undergone an internal corporate restructuring exercise, and the newly installed management team wanted to terminate the "bug bounty" programme entirely. Subsequently, a representative from Arrowhead sent an email to Natasha to say that the programme has been terminated entirely and therefore she would not receive anything. Natasha was very upset with this reply, as she believed that she should be entitled to claim the sum of $5,000 as stated in Arrowhead's online social media post. Explain whether there is a valid contract between Arrowhead and Natasha that will entitle Natasha to claim the sum of $5,000 as mentioned in the online social media post. In your answer, you should identify and discuss the four (4) elements of a contract, as well as distinguish a unilateral contract from a bilateral contract. (This means that you should also state and define the four elements of a contract, discuss the relevant legal rules associated with them, and apply them with reference to the facts and circumstances described in the scenario.) (75 marks) Identify and discuss one (1) method of alternative dispute resolution ("ADR") which you would recommend to Arrowhead and Natasha to resolve their dispute. In your answer, you should compare and contrast your recommended ADR method with litigation, and provide reasons for your recommendation. (You are not required to cite the Rules of Court.) Which of the following functions of money would be violated if inflation were high? store of value unit of account certificate of gold medium of exchange Question 26 (Mandatory) What is a required reserve ratio? The percent of deposits that banks must keep on hand. The percent of reserves that banks can loan out. The ratio of deposits to loans. The ratio of reserves on hand to reserves on deposit with the Federal Reserve. people who have a strong sense of _______are quick to cope with problems rather than stewing and brooding about them. self-endowment self-control self-fulfilling prophecy self-efficacy 19. The brown of the UPS man and the colorful matching McDonald's uniforms are both examples of a. Trade dress b. Certification mark c. Custom design d. Poor taste in fashion. What do Figure A and B below have in common Given a binary tree using the BinaryTree class in chapter 7.5 of your online textbook, write a function CheckBST(btree) that checks if it is a binary search tree, where btree is an instance of the BinaryTree class. Question 2 In the lecture, we introduced the implementation of binary heap as a min heap. For this question, implement a binary heap as a Maxheap class that contains at least three member functions: - insert (k) adds a new item to the heap. - findMax() returns the item with the maximum key value, leaving item in the heap. whose law explains why a gas will move from one area to another area WeBuild Ltd has traditionally constructed small scale student apartment buildings. Management was concerned about rising costs whilst building its first large scale student accommodation and responded by using cheaper imported window frames and sealants. These materials proved to be highly flammable, and a fire occurred shortly after the building was occupied by students. The fire nearly proved fatal and caused significant reputational issues for WeBuild, casting public doubt about the safety of all WeBuilds buildings.Following an initial investigation, the responsible senior manager believes that the problem can only be resolved if all window frames and sealants are replaced. The CEO considered this request but has yet to approve the funding for the replacement program.According to Augustine (2000) Six Stages of Crisis Management, what is the current crisis stage for WeBuild?a.Containing the crisis.b.Preparation.c.Avoiding the crisis.d.Profiting from the crisis.e.Resolving the crisis. Find the slope of the line tangent to the graph of function f(x)=\ln (x) sin ( x) at x=1 2 -1 1 0 The slope of a line. The slope of a tine or curve depends on the units used in measuring the variables. The slope is cspocially relevant to ecoeomics because it reffects mi (See p.21 of textbook) The slope of horizontal line is : the slope of a vertical line is what is the probability of rolling a number greater than 4 or rolling a 2 on a fair six-sided die? enter the answer as a simplified fraction. Magine you were to add a ingle, antibiotic-reitant bacterium to a population of bacteria. Decribe what the tructure of the cell membrane would be like. Explain why thi tructure would give the bacteria a competitive advantage over other variation in the population. HINT (think about the imulation we ran in cla with purple, red, green, and brown bacteria. They each had different number of pore in their cell membrane. How wa thi important?) In what ways are government agencies akin tomonopolies? In what ways are government agencies unlikeprivate-sector monopolies? Find the indicated limit.lim (8t2 3t + 1)t4 Tang Company accumulates the following data concerning raw materials in making its finished product: (1) Price per pound of raw materials-net purchase price \( \$ 2.90 \), freight-in \( \$ 0.40 \), an in her diary, how does anne frank make a connection between herself and her father? responses she includes dialogue that demonstrates how they share the same sense of humor. she includes dialogue that demonstrates how they share the same sense of humor. she provides descriptions of her father that capture her sense that he truly understands her. she provides descriptions of her father that capture her sense that he truly understands her. she uses an analogy that likens herself to a flower and otto to the warm sunlight. she uses an analogy that likens herself to a flower and otto to the warm sunlight. she compares him to her friends' fathers, all of whom are less caring and kind. Write a C++ program that focuses on CPU SCHEDULING. A_ particle is falling in a viscous liquid. Assume that the drag force is 245 dynessec times cm the velocity: If the mass of the particle is 10 grams, the limiting speed in cm is sec [Hint: use 980 cm sec as the value of the acceleratic due to gravity] a) 4 b) Al the second step in the problem-solving process is to plan the ____, which is the set of instructions that, when followed, will transform the problems input into its output. a certain ore is 23.5% nickel by mass. how many kilograms of this ore would you need to dig up to have 40.0 g of nickel?