Answer:
Sister
Step-by-step explanation:
Let the sister’s age be x.
Let the brother’s age be y.
2 + x = 2x - 2
3 + y = 3y - 3
Solve the first equation.
x - 2x = - 2 - 2
-x = -4
x = 4
Solve the second equation.
y - 3y = -3 - 3
-2y = -6
y = 3
The sister is 4 years old.
The brother is 3 years old.
The sister is older than the brother.
Find a solution to the linear equation y=12x−24
Answer:
I didn't know which one you wanted...
Step-by-step explanation:
1. Finding the x an y-intercepts
To find the x-intercept, substitute in 0 for y and solve for x. To find the y-intercept, substitute in 0 for x and solve for y.
x-intercept(s): (2,0)
y-intercept(s): (0,−24)
2. Finding the slope and y-intercept
Use the slope-intercept form to find the slope and y-intercept.
Slope: 12
y-intercept: −24
The formula to convert Fahrenheit to Celsius is C - 5 (F - 32). Convert 30°C to
Fahrenheit. Round to the nearest degree.
A. 30°F
B. -1°F
C. 112°F
D. 86°F
Answer:
D. *6F
Step-by-step explanation:
C=(F-32)*5/9
30=(F-32)*5/9
F = (30*9)/5+32
F = 86
Translate into an equation: The cost of V ounces at $2 per ounce equals $56.
Answer:
V = number of ounces
56 = 2V
Step-by-step explanation:
Answer:28
Step-by-step explanation:V times 2= 56
Express it in slope-intercept form.
Hey there! :)
Answer:
y = 1/4x - 3.
Step-by-step explanation:
Use the slope-formula to find the slope of the line:
[tex]m = \frac{\text{rise}}{\text{run}} = \frac{y_2 - y_1}{x_2 - x_1}[/tex]
Plug in two points from the line. Use the points (-4, -4) and (0, 3):
[tex]m = \frac{-3 - (-4)}{0 - (-4)}[/tex]
Simplify:
m = 1/4.
Slope-intercept form is y = mx + b.
Find the 'b' value by finding the y-value at which the graph intersects the y-axis. This is at y = -3. Therefore, the equation is:
y = 1/4x - 3.
A man is twice the age of his son,in 20 years time, the son's age will be 2/3 of that his father. what is the son's present age?
Answer:
20 years old.
Step-by-step explanation:
Let us say that the man's age is represented by x and the son's age is represented by y.
As of now, x = 2y.
In 20 years, both ages will increase by 20. We can have an equation where the son's age increased by 20 equals 2/3 of the man's age plus 20.
(y + 20) = 2/3(x + 20)
Since x = 2y...
y + 20 = 2/3(2y + 20)
3/2y + 30 = 2y + 20
2y + 20 = 3/2y + 30
1/2y = 10
y = 20
To check our work, the man's age is currently double his son's, so the man is 40 and the son is 20. In 20 years, the man will be 60 and the son will be 40. 40 / 60 = 2/3, so the son's age is 2/3 of his father's.
So, the son's present age is 20 years old.
Hope this helps!
State if the triangles in each pair are similar. If so, State how you know they are similar and complete the similarity statement.
Answer:
Answer is option 2
Step-by-step explanation:
We know that Angle M = Angle G (given in diagram)
We also know that Angle L in triangle LMN is equal to Angle L in triangle LGH
As two angles are equal in both triangles they are similar.
But why is it Triangle LGH instead of Triangle HGL?
As we know M=G therefore they should be in the same place in the name Of the triangle. In triangle LMN M is in the middle therefore Angle G should also be in the middle
Can anyone please explain? Need some help :)
A regular hexagon is inscribed in a circle with a diameter of 12 units. Find the area of the hexagon. Round your answer to the nearest tenth. (there's no picture included)
Answer:
93.5 square units
Step-by-step explanation:
Diameter of the Circle = 12 Units
Therefore:
Radius of the Circle = 12/2 =6 Units
Since the hexagon is regular, it consists of 6 equilateral triangles of side length 6 units.
Area of the Hexagon = 6 X Area of one equilateral triangle
Area of an equilateral triangle of side length s = [tex]\dfrac{\sqrt{3} }{4}s^2[/tex]
Side Length, s=6 Units
[tex]\text{Therefore, the area of one equilateral triangle =}\dfrac{\sqrt{3} }{4}\times 6^2\\\\=9\sqrt{3} $ square units[/tex]
Area of the Hexagon
[tex]= 6 X 9\sqrt{3} \\=93.5$ square units (to the nearest tenth)[/tex]
The function defined by w(x)=-1.17x+1260 gives the wind speed w(x)(in mph) based on the barometric pressure x (in millibars,mb). a) Approximate the wind speed for a hurricane with the barometric pressure of 900mb. b) Write a function representing the inverse of w and interpret its meaning in context. c) Approximate the barometric pressure for a hurricane with speed 90 mph.
Answer:
a) 207 mph
b) x = (1260-w)/1.17
c) 1000 mb
Step-by-step explanation:
a) Put the pressure in the equation and solve.
w(900) = -1.17(900) +1260 = 207
The wind speed for a hurricane with a pressure of 900 mb is 207 mph.
__
b) Solving for x, we have ...
w = -1.17x +1260
w -1260 = -1.17x
x = (1260 -w)/1.17 . . . . inverse function
__
c) Evaluating the inverse function for w=90 gives ...
x = (1260 -90)/1.17 = 1170/1.17 = 1000 . . . millibars
The approximate barometric pressure for a hurricane with a wind speed of 90 mph is 1000 millibars.
Joan's Nursery specializes in custom-designed landscaping for residential areas. The estimated labor cost associated with a particular landscaping proposal is based on the number of planting trees, shrubs, and so on to be used for the project. For cost-estimating purposes, managers use two hours of labor time for planting of a medium-sized tree. Actual times from a sample of 10 plantintings during the past month follow (times in hours):
1.7, 1.5, 2.6, 2.2, 2.4, 2.3, 2.6, 3.0, 1.4, 2.3
With a 0.05 level of significance, test to see whether the mean tree-planting time differs from two hours.
A. State the null and alternative hypotheses.
B. Compute the sample mean.
C. Compute the sample standard deviation.
D. What is the p-value?
E. What is your conclusion?
Answer:
A) Null and alternative hypothesis
[tex]H_0: \mu=2\\\\H_a:\mu\neq 2[/tex]
B) M = 2.2 hours
C) s = 0.52 hours
D) P-value = 0.255
E) At a significance level of 0.05, there is not enough evidence to support the claim that the mean tree-planting time significantly differs from two hours.
Step-by-step explanation:
This is a hypothesis test for the population mean.
The claim is that the mean tree-planting time significantly differs from two hours.
Then, the null and alternative hypothesis are:
[tex]H_0: \mu=2\\\\H_a:\mu\neq 2[/tex]
The significance level is 0.05.
The sample has a size n=10.
The sample mean is M=2.2.
As the standard deviation of the population is not known, we estimate it with the sample standard deviation, that has a value of s=0.52.
The estimated standard error of the mean is computed using the formula:
[tex]s_M=\dfrac{s}{\sqrt{n}}=\dfrac{0.52}{\sqrt{10}}=0.1644[/tex]
Then, we can calculate the t-statistic as:
[tex]t=\dfrac{M-\mu}{s/\sqrt{n}}=\dfrac{2.2-2}{0.1644}=\dfrac{0.2}{0.1644}=1.216[/tex]
The degrees of freedom for this sample size are:
[tex]df=n-1=10-1=9[/tex]
This test is a two-tailed test, with 9 degrees of freedom and t=1.216, so the P-value for this test is calculated as (using a t-table):
[tex]\text{P-value}=2\cdot P(t>1.216)=0.255[/tex]
As the P-value (0.255) is bigger than the significance level (0.05), the effect is not significant.
The null hypothesis failed to be rejected.
At a significance level of 0.05, there is not enough evidence to support the claim that the mean tree-planting time significantly differs from two hours.
Sample mean and standard deviation:
[tex]M=\dfrac{1}{n}\sum_{i=1}^n\,x_i\\\\\\M=\dfrac{1}{10}(1.7+1.5+2.6+. . .+2.3)\\\\\\M=\dfrac{22}{10}\\\\\\M=2.2\\\\\\s=\sqrt{\dfrac{1}{n-1}\sum_{i=1}^n\,(x_i-M)^2}\\\\\\s=\sqrt{\dfrac{1}{9}((1.7-2.2)^2+(1.5-2.2)^2+(2.6-2.2)^2+. . . +(2.3-2.2)^2)}\\\\\\s=\sqrt{\dfrac{2.4}{9}}\\\\\\s=\sqrt{0.27}=0.52\\\\\\[/tex]
Translate the following argument in a standard form categorial syllogims then use venn diagram or rules for syllogim to determine whether each is valid or invalid.
All of the movies except the romantic comedies were exciting. Hence, the action films were exciting,because none of them is a romantic comedies.
Answer:
couldnt tell you
Step-by-step explanation:
jkj
In ABC,if sin A=4/5 and tan A=4/3, then what I s cos A?
A trough of water is 8 meters deep and its ends are in the shape of isosceles triangles whose width is 5 meters and height is 2 meters. If water is being pumped in at a constant rate of 6 m3Isec. At what rate is the height of the water changing when the water has a height of 120 cm?
Answer:
0.3 m/s
Step-by-step explanation:
The first thing is to attach the allusive graphic to the question. Now yes, let's move on to the solution that would be:
If the through is completely filtered the its volume will:
V = l * [1/2 w * h] = 1/2 l * w * h
Now we derive with respect to time and we are left with:
dV / dt = 1/2 * l * w * dh / dt
We solve by dh / dt and we have:
dh / dt = (2 / (l * w)) * (dV / dt)
We know that l = 8 and w = 5, in addition to dV / dt = 6, we replace:
dh / dt = (2 / (8 * 5)) * (6)
dh / dt = 0.3
Therefore the rate at which the height of the water changes is 0.3 m / s
Periodically, customers of a financial services company are asked to evaluate the company's financial consultants and services. Higher ratings on the client satisfaction survey indicate better service, with 7 the maximum service rating. Independent samples of service ratings for two financial consultants are summarized here. Consultant A has 10 years of experience, whereas consultant B has 1 year of experience. Use
α = 0.05
and test to see whether the consultant with more experience has the higher population mean service rating.
Consultant A Consultant B
n1 = 16
n2 = 10
x1 = 6.82
x2 = 6.28
s1 = 0.65
s2 = 0.75
(a)
State the null and alternative hypotheses.
H0:
μ1 − μ2 ≤ 0
Ha:
μ1 − μ2 = 0
H0:
μ1 − μ2 > 0
Ha:
μ1 − μ2 ≤ 0
H0:
μ1 − μ2 ≠ 0
Ha:
μ1 − μ2 = 0
H0:
μ1 − μ2 ≤ 0
Ha:
μ1 − μ2 > 0
H0:
μ1 − μ2 = 0
Ha:
μ1 − μ2 ≠ 0
(b)
Compute the value of the test statistic. (Round your answer to three decimal places.)
(c)
What is the p-value? (Round your answer to four decimal places.)
p-value =
(d)
What is your conclusion?
Reject H0. There is sufficient evidence to conclude that the consultant with more experience has a higher population mean rating.Do not reject H0. There is insufficient evidence to conclude that the consultant with more experience has a higher population mean rating. Do not Reject H0. There is sufficient evidence to conclude that the consultant with more experience has a higher population mean rating.Reject H0. There is insufficient evidence to conclude that the consultant with more experience has a higher population mean rating.
Answer:
A) Null hypothesis; H0: μ1 − μ2 ≤ 0
Alternative hypothesis; Ha: μ1 − μ2 > 0
B) Test statistic = t = 1.878
C) p-value is 0.038823.
D) Reject the Null hypothesis H0
Step-by-step explanation:
We are given;
α = 0.05
n1 = 16
n2 = 10
bar x1 = 6.82
bar x2 = 6.28
s1 = 0.65
s2 = 0.75
A) The hypothesis is as follows;
Null hypothesis; H0: μ1 − μ2 ≤ 0
Alternative hypothesis; Ha: μ1 − μ2 > 0
B) Formula yo determine the test statistic is;
t = ((bar x1) - (bar x))/√((s1)²/n1) + (s2)²/n2))
Plugging in the relevant values, we have;
t = (6.82 - 6.28)/√((0.65)²/16) + (0.75)²/10))
t = 0.54/√(0.02640625 + 0.05625)
t = 0.54/0.2875
t = 1.878
C) The formula for the degree of freedom is;
Δ = [(s1)²/n1) + (s2)²/n2))]²/[((s1²/n1)²/(n1 - 1)) + ((s2²/n2)²/(n1 - 1))
Plugging in the relevant values, we have;
Δ = [(0.65)²/16) + (0.75)²/10))]²/[((0.65²/16)²/(16 - 1)) + ((0.75²/10)²/(10 - 1))
Δ = 0.00683205566/(0.000046486 + 0.0003515625)
Δ ≈ 17
Thus, the P-value;
From online p-value calculator from t-score and DF which i attached, we have the p-value as;
The p-value is 0.038823.
D) The p-value result is significant at p < 0.05
Thus, we reject the Null hypothesis H0
A) Null hypothesis: μ1 − μ2 ≤ 0
B) Test statistic = t = 1.878
C) The p-value is 0.038823.
D) Reject the Null hypothesis H0.
HypothesisWhat all information we have ?
α = 0.05
n1 = 16
n2 = 10
bar x1 = 6.82
bar x2 = 6.28
s1 = 0.65
s2 = 0.75
Part A)
The hypothesis is as follows;
Null hypothesis; H0: μ1 − μ2 ≤ 0
Alternative hypothesis; Ha: μ1 − μ2 > 0
Part B)
The formula to determine the test statistic is :
t = ((bar x1) - (bar x))/√((s1)²/n1) + (s2)²/n2))
t = (6.82 - 6.28)/√((0.65)²/16) + (0.75)²/10))
t = 0.54/√(0.02640625 + 0.05625)
t = 0.54/0.2875
t = 1.878
The formula to determine the test statistic is t = 1.878.
Part C)
The formula for the degree of freedom is;
Δ = [(s1)²/n1) + (s2)²/n2))]²/[((s1²/n1)²/(n1 - 1)) + ((s2²/n2)²/(n1 - 1))
Δ = [(0.65)²/16) + (0.75)²/10))]²/[((0.65²/16)²/(16 - 1)) + ((0.75²/10)²/(10 - 1))
Δ = 0.00683205566/(0.000046486 + 0.0003515625)
Δ ≈ 17
Thus, the P-value is 0.038823.
Part D)
The p-value result is significant at p < 0.05 is :
Thus, we reject the Null hypothesis H0.
Learn more about "Hypothesis":
https://brainly.com/question/17032137?referrer=searchResults
Write the equation in the form Ax + By = C. Find an equation of a line passing through the pair of points (4,7) and (3,4).
Answer:
[tex] 3x - y = 5 [/tex]
Step-by-step explanation:
The two pint equation of a line:
[tex] y - y_1 = \dfrac{y_2 - y_1}{x_2 - x_1}(x - x_1) [/tex]
We have
[tex] x_1 = 4 [/tex]
[tex] x_2 = 3 [/tex]
[tex] y_1 = 7 [/tex]
[tex] y_2 = 4 [/tex]
[tex] y - 7 = \dfrac{4 - 7}{3 - 4}(x - 4) [/tex]
[tex] y - 7 = \dfrac{-3}{-1}(x - 4) [/tex]
[tex] y - 7 = 3(x - 4) [/tex]
[tex] y - 7 = 3x - 12 [/tex]
[tex] 5 = 3x - y [/tex]
[tex] 3x - y = 5 [/tex]
a coin will be tossed 10 times. Find the chance that there will be exactly 2 heads among the first five tosses and exactly 4 heads among the last 5 tosses
Answer:
The chance that there will be exactly 2 heads among the first five tosses and exactly 4 heads among the last 5 tosses is P=0.0488.
Step-by-step explanation:
To solve this problem we divide the tossing in two: the first 5 tosses and the last 5 tosses.
Both heads and tails have an individual probability p=0.5.
Then, both group of five tosses have the same binomial distribution: n=5, p=0.5.
The probability that k heads are in the sample is:
[tex]P(x=k)=\dbinom{n}{k}p^k(1-p)^{n-k}=\dbinom{5}{k}\cdot0.5^k\cdot0.5^{5-k}[/tex]
Then, the probability that exactly 2 heads are among the first five tosses can be calculated as:
[tex]P(x=2)=\dbinom{5}{2}\cdot0.5^{2}\cdot0.5^{3}=10\cdot0.25\cdot0.125=0.3125\\\\\\[/tex]
For the last five tosses, the probability that are exactly 4 heads is:
[tex]P(x=4)=\dbinom{5}{4}\cdot0.5^{4}\cdot0.5^{1}=5\cdot0.0625\cdot0.5=0.1563\\\\\\[/tex]
Then, the probability that there will be exactly 2 heads among the first five tosses and exactly 4 heads among the last 5 tosses can be calculated multypling the probabilities of these two independent events:
[tex]P(H_1=2;H_2=4)=P(H_1=2)\cdot P(H_2=4)=0.3125\cdot0.1563=0.0488[/tex]
George has opened a new store and he is monitoring its success closely. He has found that this store’s revenue each month can be modeled by r(x)=x2+5x+14 where x represents the number of months since the store opens the doors and r(x) is measured in hundreds of dollars. He has also found that his expenses each month can be modeled by c(x)=x2−3x+4 where x represents the number of months the store has been open and c(x) is measured in hundreds of dollars. What does (r−c)(3) mean about George's new store?
This is a great question!
When we are given ( r - c )( 3 ), we are being asked to take 3 as x in the functions r( x ) and c( x ), taking the difference of each afterwards -
[tex]r( 3 ) = ( 3 )^2 + 5( 3 ) + 14,\\x( 3 ) = ( 3 )^2 - 3( 3 ) + 4[/tex]
____
Let us calculate the value of each function, determine their difference, and multiply by 100, considering r( x ) and c( x ) are measured in hundreds of dollars,
[tex]r( 3 ) = 9 + 15 + 14 = 38,\\x( 3 ) = 9 - 9 + 4 = 0 + 4 = 4\\----------------\\( r - c )( 3 ) = 38 - 4 = 34,\\34 * 100 = 3,400( dollars )\\\\Solution = 3,400( dollars )[/tex]
Therefore, ( r - c )( 3 ) " means " that George's new store will have a profit of $3,400 after it's third month in business, given the following options,
( 1. The new store will have a profit of $3400 after its third month in business.
( 2. The new store will have a profit of $2400 after its third month in business.
( 3. The new store will sell 2400 items in its third month in business.
( 4. The new store will sell 3400 items in its third month in business.
The required answer is , [tex](r-c)(5)[/tex] means the revenue less expenses in 5 months i.e. the new store will have a profit of $ 5400 after 5 months.
Substitution:The substitution method is the algebraic method to solve simultaneous linear equations.
Given function is,
[tex]r(x) = x^2+5x+14[/tex]...(1)
And [tex]c(x) = x^2-4x+5[/tex]...(2)
Now, substituting the value into the equation (1) and (2).
[tex]r(5) = (5)^2+5(5)+14=64[/tex]
[tex]c(5) = (5)^2-4(5)+5=10[/tex]
Therefore,
[tex](r-c)(5)=r(5)-c(5)\\=64-10\\=54[/tex]
Now, [tex](r-c)(5)[/tex] means the revenue less expenses in 5 months i.e. the new store will have a profit of $ 5400 after 5 months.
Learn more about the topic Substitution:
https://brainly.com/question/3388130
The number 128 is divided into two parts in the ratio 7:9. Find the absolute difference between the two parts.
An appliance dealer sells three different models of upright freezers having 13.5, 15.9, and 19.1 cubic feet of storage. Let X = the amount of storage space purchased by the next customer to buy a freezer. Suppose that X has pmf:
Answer:
a) E(X) = 16.09 ft³
E(X²) = 262.22 ft⁶
Var(X) = 3.27 ft⁶
b) E(22X) = 354 dollars
c) Var(22X) = 1,581 dollars
d) E(X - 0.01X²) = 13.470 ft³
Step-by-step explanation:
The complete Correct Question is presented in the attached image to this solution.
a) Compute E(X), E(X2), and V(X).
The expected value of a probability distribution is given as
E(X) = Σxᵢpᵢ
xᵢ = Each variable in the distribution
pᵢ = Probability of each distribution
Σxᵢpᵢ = (13.5×0.20) + (15.9×0.59) + (19.1×0.21)
= 2.70 + 9.381 + 4.011
= 16.092 = 16.09 ft³
E(X²) = Σxᵢ²pᵢ
Σxᵢ²pᵢ = (13.5²×0.20) + (15.9²×0.59) + (19.1²×0.21)
= 36.45 + 149.1579 + 76.6101
= 262.218 = 262.22 ft⁶
Var(X) = Σxᵢ²pᵢ - μ²
where μ = E(X) = 16.092
Σxᵢ²pᵢ = E(X²) = 262.218
Var(X) = 262.218 - 16.092²
= 3.265536 = 3.27 ft⁶
b) E(22X) = 22E(X) = 22 × 16.092 = 354.024 = 354 dollars to the nearest whole number.
c) Var(22X) = 22² × Var(X) = 22² × 3.265536 = 1,580.519424 = 1,581 dollars
d) E(X - 0.01X²) = E(X) - 0.01E(X²)
= 16.092 - (0.01×262.218)
= 16.0926- 2.62218
= 13.46982 = 13.470 ft³
Hope this helps!!!
According to the Stack Overflow Developers Survey of 20184 , 25.8% of developers are students. The probability that a developer is a woman given that the developer is a student is 7.4%, and the probability that a developer is a woman given that the developer is not a student is 76.4%. If we encounter a woman developer, what is the probability that she is a student
Answer:
3.26%
Step-by-step explanation:
The computation of the probability that she is a student is shown below:
Percentage of student developers = 25.8% = SD
The Percentage of the developer is student = 7.4% = DS
The percentage of the developer is not student = 76.4% = ND
Based on this, the probability is
[tex]= \frac{SD \times DS}{SD \times DS + DS \times ND}[/tex]
[tex]= \frac{25.8\% \times 7.4\%}{25.8\% \times 7.4\% + 7.4\% \times 76.4\%}[/tex]
=3.26%
we simply considered all the elements
Not sure how to solve
Answer:
(x, y, z) = (13/7, 19/7, 25/7)
Step-by-step explanation:
You know that the vector whose components are the coefficients of the equation of the plane is perpendicular to the plane. That is (1, 2, 3) is a vector perpendicular to the plane.
The parametric equation for a line through (1, 1, 1) with this direction vector is ...
(x, y, z) = (1, 2, 3)t +(1, 1, 1) = (t+1, 2t+1, 3t+1)
The point of intersection of this line and the plane will be the point in the plane closest to (1, 1, 1). That point has a t-value of ...
(t +1) +2(2t +1) +3(3t +1) = 18
14t +6 = 18
t = 12/14 = 6/7
The point in the plane closest to (1, 1, 1) is ...
(x, y, z) = (6/7+1, 2(6/7)+1, 3(6/7)+1)
(x, y, z) = (13/7, 19/7, 25/7)
A sample of size 42 college students produced a 95% confidence interval of (3.1, 5.2) for the mean number of coats owned. Then there is a 95% chance that these 42 students own on average between 3.1 and 5.2 coats.
a. True
b. False
Answer:
b. False.
Step-by-step explanation:
According to the presented information, at the 95% confidence level, the mean number of coats owned will be between 3.1 and 5.2. That does not mean that there is a 95% chance that they will own that many coats; just that you are 95% confident that they will own the coats.
Hope this helps!
An object of height 2.50cm is placed 20.0cm from a converging mirror of focal length 10.0cm. What are the height and the magnification of the image formed?
First find the distance it is reflected:
D = 20.0 x 10.0 /(20-10) = 200/10 = 20cm away.
Now calculate the magnification: -20/ 20 = -1
Now calculate the height:
-1 x 2.50 = -2.50
The negative sign means the image is inverted.
The mirrored image would be inverted, 2.50 cm tall and 20 cm in front of the mirror.
How many bits does it take to identify uniquely every person in the United States (the current population is about 300 million)?
Answer:
what's a bit
Step-by-step explanation:
Researchers studied the mean egg length (in millimeters) for a particular bird population. After a random sample of eggs, they obtained a 95% confidence interval of (45,60) in millimeters. In the context of the problem, which of the following interpretations is correct, if any?
A. We are 95% sure that an egg will be between 45 mm and 60 mm in length.
B. For this particular bird population, 95% of all birds have eggs between 45 mm and 60 mm.
C. We are 95% confident that the mean length of eggs for this particular bird population is between 45 mm and 60 mm.
D. We are 95% confident that the mean length of eggs in the sample is between 45 mm and 60 mm.
E. None of the above is a correct interpretation.
Answer:
C. We are 95% confident that the mean length of eggs for this particular bird population is between 45 mm and 60 mm.
Step-by-step explanation:
Confidence interval can be defined as a range of values so defined that there is a specified probability that the value of a parameter lies within it.
For 95% confidence interval, it means that we are 95% confident that the mean of the population is between the given upper and lower bounds of the confidence interval.
For the case above, the interpretation of the 95% confidence interval is that we are 95% confident that the mean length of eggs for this particular bird population is between 45 mm and 60 mm.
Forty one people were riding bus number 527. At 8:45 am,it arrived at the 109th street stop. There,19 people got off and then 20 people boarded. How many riders were on the bus when it traveled to the next stop?
Answer:
1 because jahahdhekskdbsks
Figure ABCDE was reflected across the line y=x to create figure A’B’C’D’E’. What are the coordinates of the pre image of E?
Answer
so I need to know the coordinates for me to tell you the answer but I think I can still help you by explaining.
In order for E to become E' the rule for reflection over y=x is (y, x) so you basically switch the x and the Y to have E'. so for you to be able find out E, you need to witch the x and the y.
for example:
if E' was (-2, 3)
E in the pre image would be (3, -2)
hope this helps :)
Answer:
(-2,6)
Step-by-step explanation:
Just did it edge 2021
Pls help me help me pls guys
Answer:
C
Step-by-step explanation:
[tex]-5x-49\geq 113[/tex]
[tex]-5x\geq 162[/tex]
[tex]x\leq -32.4[/tex]
(Multiplying or dividing by a negative flips the sign).
Which of the following theorems verifies that HIJ MLN?
Answer:
HL (try HL, I believe that's the right answer)
Answer:
HL
Step-by-step explanation:
BRO TRUST ME
2(x + 25) HELPPPPP MEEEEE
Answer:
2x+50
Step-by-step explanation:
Distributive property: 2(x)+2(25)
Simplify: 2x+50
Answer: 2x + 50
Step-by-step explanation: In this problem, the 2 distributes through the parenthses, multiplying by each of the terms inside.
So we have 2(x) + 2(25) which simplifies to 2x + 50.
If A and B are independent events, P(A) = 0.25, and P(B) = 0.3, what is P(AB)?
O A. 0.25
B. 0.3
C. 0.15
O D. 0.075
Answer:
[tex] P(A) = 0.25, P(B= 0.3[/tex]
And if we want to find [tex] P(A \cap B)[/tex] we can use this formula from the definition of independent events :
[tex] P(A \cap B) =P(A) *P(B) = 0.25*0.3= 0.075[/tex]
And the best option would be:
[tex] P(A \cap B) =0.075[/tex]
Step-by-step explanation:
For this case we have the following events A and B and we also have the probabilities for each one given:
[tex] P(A) = 0.25, P(B= 0.3[/tex]
And if we want to find [tex] P(A \cap B)[/tex] we can use this formula from the definition of independent events :
[tex] P(A \cap B) =P(A) *P(B) = 0.25*0.3= 0.075[/tex]
And the best option would be:
[tex] P(A \cap B) =0.075[/tex]