Answer:
[tex]\boxed{\sf \ \ \ 2^0*3^0*7*47=329 \ \ }[/tex]
Step-by-step explanation:
hello,
let's try to divide by 7 329 it comes
329 = 47 * 7
and 329 is not divisible by 2 or 3 so
the solution is
x = 0
y = 0
z = 47
[tex]2^0*3^0*7*47=329[/tex]
hope this helps
(1) 10x’y' + 15xy? :
Answer:
factor: 5(2x'y'+3xy)
Step-by-step explanation:
thats for factoring, i didnt know what you needed
Answer:
25xy
Step-by-step explanation:
collect like terms
I need help with this problem ASAP please i have until tmrw to finish my course entirely so if anyone can help it would be greatly appreciated
Answer:
Equation: f(x) = -x² + 3
Step-by-step explanation:
If we want to find the roots/solve for x, we can either graph the problem or use quadratic formula to find when f(x) = 0:
To get the equation of the graph, our parent function is: f(x) = a(x - h)² + k, or f(x) = x². Since we are reflecting over the x-axis with a vertical stretch and vertically moving up to (0, 3), we are modifying a and k only.
A rectangle has an area of 524.4m2. One of the sides is 6.9m in length. Work out the perimeter of the rectangle. PLEASE ANSWER!!! SOON ASAP
Answer:
165.8 mSolution,
Area of rectangle= 524.4 m^2
Length(L)= 6.9 m
Breadth(B)=?
Now,
[tex]area = length \times breadth \\ or \: 524.4 = 6.9 \times b \\ or \: 524.4 = 6.9b \\ or \: b = \frac{524.4}{6.9} \\ b = 76 \: m[/tex]
Again,
Perimeter of rectangle:
[tex]2(l + b) \\ = 2(6.9 + 76) \\ = 2 \times 82.9 \\ = 165.8 \: m[/tex]
Hope this helps...
Good luck on your assignment.....
Answer:
The perimeter of the rectangle is 165.8cm
Step-by-step explanation:
Area of a rectangle = length × width
Area = 524.4m²
length = 6.9m
524.4 = 6.9 × width
width = 524.4 / 6.9
width = 76m
Perimeter of a rectangle =
2(length ) + 2(width)
length = 6.9m
width = 76m
Perimeter = 2( 6.9) + 2(76)
= 13.8 + 152
The final answer is
= 165.8cm
Hope this helps you
Which statement explains how the lines x+y=2 and y=x+4 are related?
(1) They are parallel.
(2) They are perpendicular.
(3) They are the same line.
4) They are not related.
Answer:
(2)They are perpendicular.
Step-by-step explanation:
Let R be the relation on the set of ordered pairs of positive integers such that ((a, b), (c, d)) ∈ R if and only if ad = bc. Arrange the proof of the given statement in correct order to show that R is an equivalence relation. (Prove the given relation is reflexive first, and then symmetric and transitive.)
Answer:
The given relation R is equivalence relation.
Step-by-step explanation:
Given that:
[tex]((a, b), (c, d))\in R[/tex]
Where [tex]R[/tex] is the relation on the set of ordered pairs of positive integers.
To prove, a relation R to be equivalence relation we need to prove that the relation is reflexive, symmetric and transitive.
1. First of all, let us check reflexive property:
Reflexive property means:
[tex]\forall a \in A \Rightarrow (a,a) \in R[/tex]
Here we need to prove:
[tex]\forall (a, b) \in A \Rightarrow ((a,b), (a,b)) \in R[/tex]
As per the given relation:
[tex]((a,b), (a,b) ) \Rightarrow ab =ab[/tex] which is true.
[tex]\therefore[/tex] R is reflexive.
2. Now, let us check symmetric property:
Symmetric property means:
[tex]\forall \{a,b\} \in A\ if\ (a,b) \in R \Rightarrow (b,a) \in R[/tex]
Here we need to prove:
[tex]\forall {(a, b),(c,d)} \in A \ if\ ((a,b),(c,d)) \in R \Rightarrow ((c,d),(a,b)) \in R[/tex]
As per the given relation:
[tex]((a,b),(c,d)) \in R[/tex] means [tex]ad = bc[/tex]
[tex]((c,d),(a,b)) \in R[/tex] means [tex]cb = da\ or\ ad =bc[/tex]
Hence true.
[tex]\therefore[/tex] R is symmetric.
3. R to be transitive, we need to prove:
[tex]if ((a,b),(c,d)),((c,d),(e,f)) \in R \Rightarrow ((a,b),(e,f)) \in R[/tex]
[tex]((a,b),(c,d)) \in R[/tex] means [tex]ad = cb[/tex].... (1)
[tex]((c,d), (e,f)) \in R[/tex] means [tex]fc = ed[/tex] ...... (2)
To prove:
To be [tex]((a,b), (e,f)) \in R[/tex] we need to prove: [tex]fa = be[/tex]
Multiply (1) with (2):
[tex]adcf = bcde\\\Rightarrow fa = be[/tex]
So, R is transitive as well.
Hence proved that R is an equivalence relation.
The relation R is an equivalence if it is reflexive, symmetric and transitive.
The order to options required to show that R is an equivalence relation are;
((a, b), (a, b)) ∈ R since a·b = b·aTherefore, R is reflexiveIf ((a, b), (c, d)) ∈ R then a·d = b·c, which gives c·b = d·a, then ((c, d), (a, b)) ∈ RTherefore, R is symmetricIf ((c, d), (e, f)) ∈ R, and ((a, b), (c, d)) ∈ R therefore, c·f = d·e, and a·d = b·cMultiplying gives, a·f·c·d = b·e·c·d, which gives, a·f = b·e, then ((a, b), (e, f)) ∈RTherefore R is transitiveFrom the above proofs, the relation R is reflexive, symmetric, and transitive, therefore, R is an equivalent relation.Reasons:
Prove that the relation R is reflexive
Reflexive property is a property is the property that a number has a value that it posses (it is equal to itself)
The given relation is ((a, b), (c, d)) ∈ R if and only if a·d = b·c
By multiplication property of equality; a·b = b·a
Therefore;
((a, b), (a, b)) ∈ R
The relation, R, is reflexive.Prove that the relation, R, is symmetric
Given that if ((a, b), (c, d)) ∈ R then we have, a·d = b·c
Therefore, c·b = d·a implies ((c, d), (a, b)) ∈ R
((a, b), (c, d)) and ((c, d), (a, b)) are symmetric.
Therefore, the relation, R, is symmetric.Prove that R is transitive
Symbolically, transitive property is as follows; If x = y, and y = z, then x = z
From the given relation, ((a, b), (c, d)) ∈ R, then a·d = b·c
Therefore, ((c, d), (e, f)) ∈ R, then c·f = d·e
By multiplication, a·d × c·f = b·c × d·e
a·d·c·f = b·c·d·e
Therefore;
a·f·c·d = b·e·c·d
a·f = b·e
Which gives;
((a, b), (e, f)) ∈ R, therefore, the relation, R, is transitive.Therefore;
R is an equivalence relation, since R is reflexive, symmetric, and transitive.
Based on a similar question posted online, it is required to rank the given options in the order to show that R is an equivalence relation.
Learn more about equivalent relations here:
https://brainly.com/question/1503196
10. 80 machines can produce 4800 identical pens in 5 hours. At this rate
a) how many pens would one machine produce in one hour?
b) how many pens would 25 machines produce in 7 hours?
Answer:
a) 12 (Simply divide 4800/5 to get 960. Then divide 960/80 to get 12)
b) 2100 (Simply multiply 12 by 25 by 7)
Hope it helps <3
Can someone help me out with this please
Answer:
143.81
Step-by-step explanation:
Trapezoid Area
A = 2b/2 * h
A = 9 + 23/2 * 7
A = 32/2 * 7
A = 16 * 7
A = 112
Semi-circle Area
A = πr²/2
A = π4.5²/2
A = π20.25/2
A = 63.62/2
A = 38.81
Total Area
112 + 38.81
143.81
Find the value of x in the following
a) x:2 = 10:4 b) 3:x= 6:8
Answer:
a) x = 5
b) x = 4
Step-by-step explanation:
a) x:2 = 10:4
Product of extremes = Product of means
=> x*4 = 10*2
=> 4x = 20
Dividing both sides by 4
=> x = 5
b) 3:x = 6:8
Product of extremes = Product of Means
=> 3*8 = 6*x
=> 24 = 6x
Dividing both sides by 6
=> x = 4
Answer:
a. X= 5b. X= 4Solution,
[tex]a. \: \: \frac{x}{2} = \frac{10}{4} \\ \: \: or \: x \times 4 = 10 \times 2 \: ( \: cross \: multiplication) \\ \: \: or \: 4x = 20 \\ or \:x = \frac{20}{4} \\ \: \: \: x = 5[/tex]
[tex]b. \: \frac{3}{x} = \frac{6}{8} \\ or \: 6 \times x = 3 \times 8 \: ( \: cross \: multiplication) \\ or \: 6x = 24 \\ \: or \: x = \frac{24}{6} \\ x = 4[/tex]
Hope this helps...
Good luck on your assignment
help me answer this question please with full working
Answer:
A y=1/2x(powerof)2+5
B 17.5
C x=√42 or x=−√42
Step-by-step explanation:
Answer:
a. y = x^2 + 10
b. when x=5, y = 35
c. when y = 26, x = +4 or -4
Step-by-step explanation:
Given
y = k (x^2/2 + 5), and
(2,14) is on the curve.
Solution:
Substitute x=2 and y=14 in the above equation
14 = k (2^2/2 + 5)
14 = k (2+5)
14 = 7k
k = 14/7 = 2
a. equation connecting x and y is
y = 2 (x^2/2 + 5), or
y = x^2 + 10
b. when x=5
y = 5^2 + 10 = 25 + 10 = 35
c. when y = 26
26 = x^2 + 10
x^2 = 26-10 = 16
x= sqrt(16) = +4 or -4
PLZ HELP ME!!! I WILL NAME BRAINLIEST! (:
Answer:
Options 2, 4, and 5 are correct (from top to bottom)
Step-by-step explanation:
g(0)=0
g(1)=1
g(-1)=1
g(4)≠-2
g(4)=2
g(1)≠-1
g(1)=1
Options 2, 4, and 5 are correct (from top to bottom)
Grey’s Labs is testing a new growth inhibitor for a certain type of bacteria. The bacteria naturally grows exponentially at a rate of 4.7% each hour. The lab technicians know that the growth inhibitor will make the growth rate of the bacteria less than or equal to its natural growth rate. The current sample contains 90 bacteria. Once a standard tube contains more than 270 bacteria, the sample will stop growing. So, to analyze the effect of the inhibitor over longer spans of time, the lab technicians move the bacteria to larger containers, essentially increasing the container size at a constant rate. This adaptation accommodates 100 more bacteria each hour. The research team wants to track the number of bacteria over time given these two conditions. Select the two inequalities they can use to model this situation.
P ≥ 90e^(0.047t)
P ≤ 270 + 100t
P ≤ 270 – 100t
P ≤ 0.047e^(90t)
P ≤ 90e^(0.047t)
Answer:
The two inequalities are;
P ≤ 90e^(0.047t)
P ≤ 270 + 100·t
Step-by-step explanation:
The parameters given for the testing of the new growth inhibitor are;
The growth rate of the bacteria = 4.7% exponentially
The growth inhibitor lowers the growth rate
The population of bacteria after time, t = P
The increase in the number of bacteria per unit time in the 100
The maximum number of bacteria in the standard tube = 270
Therefore, the number of bacteria after the first filling of the tube is P ≤ 270 + 100·t
The equation for exponential growth is [tex]A_0 e^{kt}[/tex]
Where:
A₀ = Initial population = 90
k = Percentage growth rate as percentage
t = Time
The equation for the population of bacteria under the influence of the inhibitor is therefore;
P ≤ [tex]90 \times e^{0.047 \cdot t}[/tex] which is P ≤ 90e^(0.047t).
Answer:
P≤270+100t
P≤90e^(0.047t)
If a family threw away 2.4 Kg of aluminum in a month, how many cans did they throw away?
Answer:
150 cans
Step-by-step explanation:
Mrs. Sing invests $12,876 for her business at an annual interest rate of 7 percent for 3 years. Which number will Mrs. Sing substitute for r in the simple interest formula? I = p r t
Answer:
she wills substitute r with 7%.
Step-by-step explanation:
Just did it.
Answer:
R = 7%
Principal (P)
Rate (R)
Time (t)
Step-by-step explanation:
The full intrest rate formula is i=prt
You are looking for r
R is the interest rate 7%
So i = 12,876*7%*3years will be the full equation.
here are the ingredients for making pineapple sorbet for 6 people. 800 g pineapple 4 egg whites 1/2 lemon 100 g caster sugar Dan makes pineapple sorbet. he uses 2 and a 1/2 lemons How many people does he make pineapple sorbet for?
Answer:
30 people
Step-by-step explanation:
If you start off with 1/2 a lemon for 6 people, then 1 whole would be 12. 1 1/2 would be 18 people and 2 whole lemons would be 24. so 2 1/2 is 30 people.
Please answer is question in two minutes
Answer:
C: 38 units
hope this helps!!
There are 200 people in a cinema. 25% of the people are men. 1⁄5 of the people are women. The rest of the people are children. Work out how many children are in the cinema.
Answer:
110
Step-by-step explanation:
There are 200 people in a cinema- This is our total amount.
25 % of the people are men.
.25 times 200= 50
There are 50 men.
1/5 (20%) of the people are women.
.2 times 200 = 40
There are 40 women.
50+40 = 90
There are 90 adults in the cinema.
If there are 200 total people in the cinema, and 90 of them are adult, then 110 of them are children.
The percentage is 55%.
The simplified fraction is 11/20.
The decimal is .55
3. In the polygon below, what kind of
angle is P?
A Acute
B Obtuse
C Right
D Straight
Answer:a
Step-by-step explanation:
If x - 10 is a factor of x2 - 8x - 20, what is the other
factor?
X +
Answer:
(x + 2)
Step-by-step explanation:
When we factor the expression x² - 8x - 20, we should get (x + 2)(x - 10).
Alternatively, we can use synthetic division or long division to get our answer.
Answer:
x + 2
Step-by-step explanation:
got it right edg '22
is 0.14 rational and irrational
Answer:
Rational.
Step-by-step explanation:
Irrational numbers are real numbers that can't be written as fractions.
One clue is that the decimal goes on forever (doesn't terminate) without repeating. (pi)
.14 can be written as a fraction: 14/100
Answer:
It's rational
Step-by-step explanation:
Because irrational numbers cannot be written s a fraction and rational numbers can
Identify the volume of the composite figure. Round to the nearest tenth. HELP PLS options: 143.8 in ^3 162.7in^3 4,712.4in^3 187.7in^3
Answer:
The volume of the composite figure is 162.7 in^3
Step-by-step explanation:
Here, we have a cylinder placed over a cube
The volume of the cube is L^3
With L being the length of its side = 5
The volume of the cube is 5^3 = 125 in^3
The volume of the cylinder is pi * r^2 * h
with r = 2 in and h = 3 in
The volume of the cylinder = 22/7 * 2^2 * 3 = 37.699 = 37.7 in*3
Total volume is thus;
37.7 + 125 = 162.7 in^3
Derive the equation of the parabola with a focus at (6, 2) and a directrix of y = 1. f(x) = −one half(x − 6)2 + three halves f(x) = one half(x − 6)2 + three halves f(x) = −one half(x + three halves)2 + 6 f(x) = one half(x + three halves)2 + 6
Answer:
Second choice.
f(x) = 1/2(x - 6)^2 + 3/2.
Step-by-step explanation:
The distance of a point (x, y) from the focus = the distance of the point from the directrix, so:
(x - 6)^2 + (y - 2)^2 = (y - 1)^2
x^2 - 12x + 36 + y^2 - 4y + 4 = y^2 - 2y + 1
x^2 -12x + 39 = 2y
y = f(x) = 1/2 (x^2 - 12x + 39)
I see you want the answer in vertex for so it is:
f(x) = 1/2 [ (x - 6)^2 - 36) + 39)
f(x) = 1/2(x - 6)^2 + 3)
f(x) = 1/2(x - 6)^2 + 3/2.
A parabola is a plane that is approximately U-shaped.
The equation of the parabola is: [tex]\mathbf{y = \frac{1}{2}(x - 6)^2 + \frac 32}[/tex]
The given parameters are:
[tex]\mathbf{Focus = (6,2)}[/tex]
[tex]\mathbf{Directrix: y = 1}[/tex]
First, equate the directrix to 0
[tex]\mathbf{y - 1 = 0}[/tex]
The equation is then calculated as:
[tex]\mathbf{(x - a)^2 + (y - b)^2 = (y- 1)^2}[/tex]
Where:
[tex]\mathbf{(a,b) = (6,2)}[/tex]
So, we have:
[tex]\mathbf{(x - 6)^2 + (y - 2)^2 = (y- 1)^2}[/tex]
Expand
[tex]\mathbf{x^2 - 12x +36 + y^2 - 4y + 4 = y^2 - 2y + 1}[/tex]
Subtract y^2 from both sides
[tex]\mathbf{x^2 - 12x +36 - 4y + 4 =- 2y + 1}[/tex]
Collect like terms
[tex]\mathbf{x^2 - 12x +36 + 4 - 1 =4y - 2y}[/tex]
[tex]\mathbf{x^2 - 12x +39 =2y}[/tex]
Divide through by 2
[tex]\mathbf{y = \frac{1}{2}(x^2 - 12x +39)}[/tex]
Express 39 as 36 + 3
[tex]\mathbf{y = \frac{1}{2}(x^2 - 12x +36 + 3)}[/tex]
Factor out 3/2
[tex]\mathbf{y = \frac{1}{2}(x^2 - 12x +36) + \frac 32}[/tex]
Expand the bracket
[tex]\mathbf{y = \frac{1}{2}(x^2 - 6x - 6x +36) + \frac 32}[/tex]
Factorize
[tex]\mathbf{y = \frac{1}{2}(x(x - 6) - 6(x -6)) + \frac 32}[/tex]
Factor out x - 6
[tex]\mathbf{y = \frac{1}{2}((x - 6) (x -6)) + \frac 32}[/tex]
Express as squares
[tex]\mathbf{y = \frac{1}{2}(x - 6)^2 + \frac 32}[/tex]
Hence, the equation of the parabola is: [tex]\mathbf{y = \frac{1}{2}(x - 6)^2 + \frac 32}[/tex]
Read more about equations of parabola at:
https://brainly.com/question/4074088
The pictogram shows what people ate when they went to a restaurant.
a) 32 people ate chicken.
How many people does
represent?
Chicken
Beef
Fish
Vegetarian
b) Altogether, how many people
went to the restaurant?
pls help
Answer:
Step-by-step explanation: so you calculate how many people ate chicken, beef, fish or are vegetarian then you will add it all together
chicken=128
beef= 80
fish=32
vegetarian=112
128+80+32+112= 352 people ate at the restaurant
Answer:
Altogether, 88 people went to the restaurant.
Step-by-step explanation:
Find the difference in area between the large circle and the small circle. Click on the answer until the correct answer is showing.
A=4[tex]\pi -8[/tex]
that is your answer :-)
Answer:
[tex]A = 4\pi - 8[/tex]
Step-by-step explanation:
ody
Please help with this 3a² = 27. Find a
Answer:
[tex]a = 3[/tex]
Step-by-step explanation:
[tex]3 {a}^{2} = 27 \\ \frac{3 {a}^{2} }{3} = \frac{27}{3} \\ {a}^{2} = 9 \\ a = \sqrt{9} \\ a = 3[/tex]
Answer: 9
Step-by-step explanation:
First divide both sides by 3
[tex]a^2=9[/tex]
Then root both sides([tex]\sqrt{a^2}=\sqrt{9}[/tex])
a = 9
Hope it helps <3
Edit: :o this is my 250th answer
the total surface area of a cube is 294cm2. work out the volume of the cube.
Answer: 343 cm³
Step-by-step explanation:
The surface area of a cube is 6s^2, where s is the side length of a square. Thus, first do 294/6 to get 49. Then take the square root of 49 to get that each side of the cube is 7. The volume of a cube is s^2, so simply do 7*7*7 to get that the volume of the cube is 343cm^3
Hope it helps <3
Answer:
V =343 cm^3
Step-by-step explanation:
The surface area of a cube is given by
SA = 6s^2 where s is the side length
294 = 6s^2
Divide by 6
294 / 6 = s^2
49 = s^2
Take the square root of each side
sqrt(49) = sqrt(s^2)
7 =s
The volume of a cube is
V = s^3
V = 7^3
V =343 cm^3
It costs $20 for each metre of
border edge for a rectangular area.
What is the greatest area someone can enclose by spending $4500?
A SQUARE CARPET IS LAID IN ONE CORNER OF A RECTANGULAR ROOM, LEAVING STRIPS OF UNCOVERED FLOOR 2M WIDE ALONG ONE SIDE AND 1M ALONG OTHER . THE AREA OF THE ROOM IS 56m SQUARED .FIND THE DIMENSIONS OF THE CARPET
Answer:
Step-by-step explanation:
A square has equal sides. Let x represent the length of each side of the square carpet. The diagram representing the room and the carpet is shown in the attached photo. Therefore, the length of the room would be (x + 2)m while the width of the room would be (x + 1)m
Since the area of the room is 56m², it means that
(x + 2)(x + 1) = 56
x² + x + 2x + 2 = 56
x² + 3x + 2 - 56 = 0
x² + 3x - 54 = 0
x² + 9x - 6x - 54 = 0
x(x + 9) - 6(x + 9) = 0
x - 6 = 0 or x + 9 = 0
x = 6 or x = - 9
Since the dimension of the carpet cannot be negative, then x = 6
The dimension of the carpet is 6m × 6m
use the bionomial theorem to write the binomial expansion
[tex]( \frac{1}{2}x + 3y) ^{4} [/tex]
Answer:
[tex]$\left(\frac{x}{2} + 3 y\right)^{4}=\frac{x^{4}}{16} + \frac{3}{2} x^{3} y + \frac{27}{2} x^{2} y^{2} + 54 x y^{3} + 81 y^{4}$[/tex]
Step-by-step explanation:
[tex]$\left(\frac{1}{2}x+3y \right)^4=\left(\frac{x}{2}+3y \right)^4\\$[/tex]
Binomial Expansion Formula:
[tex]$(a+b)^n=\sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$[/tex], also [tex]$\binom{n}{k}=\frac{n!}{(n-k)!k!}$[/tex]
We have to solve [tex]$\left(\frac{x}{2} + 3 y\right)^{4}=\sum_{k=0}^{4} \binom{4}{k} \left(3 y\right)^{4-k} \left(\frac{x}{2}\right)^k$[/tex]
Now we should calculate for [tex]k=0, k=1, k=2, k=3 \text{ and } k =4;[/tex]
First, for [tex]k=0[/tex]
[tex]$\binom{4}{0} \left(3 y\right)^{4-0} \left(\frac{x}{2}\right)^{0}=\frac{4!}{(4-0)! 0!}\left(3 y\right)^{4} \left(\frac{x}{2}\right)^{0}=\frac{4!}{4!}(81y^4)\cdot 1 =81 y^{4}$[/tex]
It is the same procedure for the other:
For [tex]k=1[/tex]
[tex]$\binom{4}{1} \left(3 y\right)^{4-1} \left(\frac{x}{2}\right)^{1}=54 x y^{3}$[/tex]
For [tex]k=2[/tex]
[tex]$\binom{4}{2} \left(3 y\right)^{4-2} \left(\frac{x}{2}\right)^{2}=\frac{27}{2} x^{2} y^{2}$[/tex]
For [tex]k=3[/tex]
[tex]$\binom{4}{3} \left(3 y\right)^{4-3} \left(\frac{x}{2}\right)^{3}=\frac{3}{2} x^{3} y$[/tex]
For [tex]k=4[/tex]
[tex]$\binom{4}{4} \left(3 y\right)^{4-4} \left(\frac{x}{2}\right)^{4}=\frac{x^{4}}{16}$[/tex]
You can perform the calculations, I will not type everything.
The answer is the sum of elements calculated.
Just organizing:
[tex]$\left(\frac{x}{2} + 3 y\right)^{4}=\frac{x^{4}}{16} + \frac{3}{2} x^{3} y + \frac{27}{2} x^{2} y^{2} + 54 x y^{3} + 81 y^{4}$[/tex]
Answer: [tex]\bold{\dfrac{1}{16}x^4 + \dfrac{3}{2}x^3y + \dfrac{27}{2}x^2y^2 +54xy^3+81y^4}[/tex]
Step-by-step explanation:
Binomial Tree
n=0 1
n=1 1 1
n=2 1 2 1
n=3 1 3 3 1
n=4 1 4 6 4 1
Using the Binomial Theorem
[tex]\bigg(\dfrac{1}{2}x+3y\bigg)^4\\\\\\=1\bigg(\dfrac{1}{2}x\bigg)^4(3y)^0\quad \rightarrow \quad \dfrac{1}{16}x^4\\\\+4\bigg(\dfrac{1}{2}x\bigg)^3(3y)^1\quad \rightarrow \quad \dfrac{3}{2}x^3y\\\\+6\bigg(\dfrac{1}{2}x\bigg)^2(3y)^2\quad \rightarrow \quad \dfrac{27}{2}x^2y^2\\\\+4\bigg(\dfrac{1}{2}x\bigg)^1(3y)^3\quad \rightarrow \quad 54xy^3\\\\+1\bigg(\dfrac{1}{2}x\bigg)^0(3y)^4\quad \rightarrow \quad 81y^4[/tex]
______________________
[tex]= \dfrac{1}{16}x^4 + \dfrac{3}{2}x^3y + \dfrac{27}{2}x^2y^2 +54xy^3+81y^4[/tex]
At the deli, Alberto paid $24.33 for 7.4
pounds of sliced ham. What was the
price of one pound of sliced ham?
Answer:
About $3.28
Step-by-step explanation:
Divide 24.33 by 7.4
Answer:
3.28783783784...
Step-by-step explanation:
You're description could turn into 24.33 : 7.4.
You turn 7.4 into 1, and divide 7.4 / 1.
(It is 7.4)
Then, you divide 24.33 / 7.4.
It is 3.28783783784.......
or, If you want you're answer close to an natural number, It is 3.
The summer has ended and it’s time to drain the swimming pool. 20 minutes after pulling the plug, there is still 45 000L of water in the pool. The pool is empty after 70 minutes.
Calculate the rate that the water is draining out of the pool. (Hint: remember this line is sloping down to the right)
Answer:
900L per minute
Step-by-step explanation:
1- 70 - 20 = 50
2- in this 50 min the 45000L has been drawned
3- 45000L / 50 = 900L
.. ..