if the information 7/15 was shown on a pie chart what would be the angle

Answers

Answer 1
If the information 7/15 was shown on a pie chart, the angle would be approximately 168 degrees.

To find the angle, you can use the formula:

(angle) = (fraction of total) x 360 degrees

In this case, the fraction of the total represented by 7/15 is:

7/15 = 0.4667

Multiplying this by 360 degrees gives:

0.4667 x 360 = 168 degrees

Therefore, the angle on the pie chart representing 7/15 would be approximately 168 degrees.
Answer 2
Final answer:

The question asks about converting a fraction into an angle for a pie chart. You multiply the fraction (7/15) by the total degrees in a circle (360 degrees) which gives you approximately 168 degrees.

Explanation:

The subject is tied to the understanding of how data is represented in pie charts, specifically how fractions or percentages can be expressed in terms of angles in a pie chart. This question pertains to the interpretation of pie charts in mathematics, more specifically to fundamental aspects of geometry and data representation.

First, we must understand that a pie chart is a circular chart divided into sectors or 'pies', where the arc length of each sector (and consequently its central angle and area), is proportional to the quantity it represents. So the total measurement for a pie chart is 360 degrees - the same as a full circle. When you have a fraction like 7/15, it represents a portion of the whole. To convert this fraction into an angle for the pie chart, we need to multiply it by the total degrees in a circle.

So, the calculation would be (7/15) * 360. When you do the math, you get around 168 degrees. So if the information 7/15 was shown on a pie chart, it would open up an angle of approximately 168 degrees.

Learn more about Pie Chart Angle here:

https://brainly.com/question/36809318

#SPJ11


Related Questions

The profit from the supply of a certain commodity is modeled as
P(q) = 20 + 70 ln(q) thousand dollars
where q is the number of million units produced.
(a) Write an expression for average profit (in dollars per unit) when q million units are produced.
P(q) =

Answers

Thus, the expression for Average Profit (in dollars per unit) when q million units are produced is given as

P(q)/q = 20/q + 70

The given model of profit isP(q) = 20 + 70 ln(q)thousand dollars

Where q is the number of million units produced.

Therefore, Total profit (in thousand dollars) earned by producing 'q' million units

P(q) = 20 + 70 ln(q)thousand dollars

Average Profit is defined as the profit per unit produced.

We can calculate it by dividing the total profit with the number of units produced.

The total number of units produced is 'q' million units.

Therefore, the Average Profit per unit produced is

P(q)/q = (20 + 70 ln(q))/q thousand dollars/units

P(q)/q = 20/q + 70 ln(q)/q

To know more about dollars visit:

https://brainly.com/question/15169469

#SPJ11


Flip a coin that results in Heads with prob. 1/4, and Tails with
probability 3/4.
If the result is Heads, pick X to be Uniform(5,11)
If the result is Tails, pick X to be Uniform(10,20). Find
E(X).

Answers

Option (C) is correct.

Given:

- Flip a coin that results in Heads with a probability of 1/4 and Tails with a probability of 3/4.

- If the result is Heads, pick X to be Uniform(5,11).

- If the result is Tails, pick X to be Uniform(10,20).

We need to find E(X).

Formula used:

Expected value of a discrete random variable:

X: random variable

p: probability

f(x): probability distribution of X

μ = ∑[x * f(x)]

Case 1: Heads

If the coin flips Heads, then X is Uniform(5,11).

Therefore, f(x) = 1/6, 5 ≤ x ≤ 11, and 0 otherwise.

Using the formula, we have:

μ₁ = ∑[x * f(x)]

Where x varies from 5 to 11 and f(x) = 1/6

μ₁ = (5 * 1/6) + (6 * 1/6) + (7 * 1/6) + (8 * 1/6) + (9 * 1/6) + (10 * 1/6) + (11 * 1/6)

μ₁ = 35/6

Case 2: Tails

If the coin flips Tails, then X is Uniform(10,20).

Therefore, f(x) = 1/10, 10 ≤ x ≤ 20, and 0 otherwise.

Using the formula, we have:

μ₂ = ∑[x * f(x)]

Where x varies from 10 to 20 and f(x) = 1/10

μ₂ = (10 * 1/10) + (11 * 1/10) + (12 * 1/10) + (13 * 1/10) + (14 * 1/10) + (15 * 1/10) + (16 * 1/10) + (17 * 1/10) + (18 * 1/10) + (19 * 1/10) + (20 * 1/10)

μ₂ = 15

Case 3: Both of the above cases occur with probabilities 1/4 and 3/4, respectively.

Using the formula, we have:

E(X) = μ = μ₁ * P(Heads) + μ₂ * P(Tails)

E(X) = (35/6) * (1/4) + 15 * (3/4)

E(X) = (35/6) * (1/4) + (270/4)

E(X) = (35/24) + (270/24)

E(X) = (305/24)

Therefore, E(X) = 305/24.

Learn more about probability

https://brainly.com/question/31828911

#SPJ11

The first three questions refer to the following information: Suppose a basketball team had a season of games with the following characteristics: 60% of all the games were at-home games. Denote this by H (the remaining were away games). - 35% of all games were wins. Denote this by W (the remaining were losses). - 25% of all games were at-home wins. Question 1 of 5 Of the at-home games, we are interested in finding what proportion were wins. In order to figure this out, we need to find: P(H and W) P(W∣H) P(H∣W) P(H) P(W)

Answers

the answers are: - P(H and W) = 0.25

- P(W|H) ≈ 0.4167

- P(H|W) ≈ 0.7143

- P(H) = 0.60

- P(W) = 0.35

let's break down the given information:

P(H) represents the probability of an at-home game.

P(W) represents the probability of a win.

P(H and W) represents the probability of an at-home game and a win.

P(W|H) represents the conditional probability of a win given that it is an at-home game.

P(H|W) represents the conditional probability of an at-home game given that it is a win.

Given the information provided:

P(H) = 0.60 (60% of games were at-home games)

P(W) = 0.35 (35% of games were wins)

P(H and W) = 0.25 (25% of games were at-home wins)

To find the desired proportions:

1. P(W|H) = P(H and W) / P(H) = 0.25 / 0.60 ≈ 0.4167 (approximately 41.67% of at-home games were wins)

2. P(H|W) = P(H and W) / P(W) = 0.25 / 0.35 ≈ 0.7143 (approximately 71.43% of wins were at-home games)

To know more about probability visit:

brainly.com/question/31828911

#SPJ11

How many ways can you create words using the letters U,S,C where (i) each letter is used at least once; (ii) the total length is 6 ; (iii) at least as many U 's are used as S 's; (iv) at least as many S ′
's are used as C ′
's; (v) and the word is lexicographically first among all of its rearrangements.

Answers

We can create 19 words using the letters U, S, and C where each letter is used at least once and the total length is 6, and at least as many Us as Ss and at least as many Ss as Cs

The given letters are U, S, and C. There are 4 different cases we can create words using the letters U, S, and C.

All letters are distinct: In this case, we have 3 letters to choose from for the first letter, 2 letters to choose from for the second letter, and only 1 letter to choose from for the last letter.

So the total number of ways to create words using the letters U, S, and C is 3 x 2 x 1 = 6.

Two letters are the same and one letter is different: In this case, there are 3 ways to choose the letter that is different from the other two letters.

There are 3C2 = 3 ways to choose the positions of the two identical letters. The total number of ways to create words using the letters U, S, and C is 3 x 3 = 9.

Two letters are the same and the third letter is also the same: In this case, there are only 3 ways to create the word USC, USU, and USS.

All three letters are the same: In this case, we can only create one word, USC.So, the total number of ways to create words using the letters U, S, and C is 6 + 9 + 3 + 1 = 19

Therefore, we can create 19 words using the letters U, S, and C where each letter is used at least once and the total length is 6, and at least as many Us as Ss and at least as many Ss as Cs, and the word is lexicographically first among all of its rearrangements.

To know more about number of ways visit:

brainly.com/question/30649502

#SPJ11

Use the method of cylindrical shells to find the volume of the solid obtained by rotating the region bounded by the curves y=x2, y=0, x=1, and x=2 about the line x=4.

Answers

Volume of the solid obtained by rotating the region is 67π/6 .

Given,

Curves:

y=x², y=0, x=1, and x=2 .

The arc of the parabola runs from (1,1) to (2,4) with vertical lines from those points to the x-axis. Rotated around x=4 gives a solid with a missing circular center.

The height of the rectangle is determined by the function, which is x² . The base of the rectangle is the circumference of the circular object that it was wrapped around.

Circumference = 2πr

At first, the distance is from x=1 to x=4, so r=3.

It will diminish until x=2, when r=2.

For any given value of x from 1 to 2, the radius will be 4-x

The circumference at any given value of x,

= 2 * π * (4-x)

The area of the rectangular region is base x height,

= [tex]\int _1^22\pi \left(4-x\right)x^2dx[/tex]

= [tex]2\pi \cdot \int _1^2\left(4-x\right)x^2dx[/tex]

= [tex]2\pi \left(\int _1^24x^2dx-\int _1^2x^3dx\right)[/tex]

= [tex]2\pi \left(\frac{28}{3}-\frac{15}{4}\right)[/tex]

Therefore volume of the solid is,

= 67π/6

Know more about volume of solids,

https://brainly.com/question/23705404

#SPJ4

Write a slope-intercept equation for a line with the given characteristics. m=− 3/4, passes through (−3,−4)

Answers

The slope-intercept equation for the line with a slope of[tex]\(-3/4\)[/tex] and passing through the point [tex]\((-3, -4)\)[/tex]is:

[tex]\(y = -\frac{3}{4}x - \frac{25}{4}\)[/tex]

The slope-intercept form of a linear equation is given by y = mx + b, where \(m\) represents the slope and \(b\) represents the y-intercept.

In this case, the slope m is given as[tex]\(-3/4\),[/tex] and the line passes through the point [tex]\((-3, -4)\)[/tex].

To find the y-intercept [tex](\(b\)),[/tex] we can substitute the coordinates of the given point into the equation and solve for b.

So, we have:

[tex]\(-4 = \frac{-3}{4} \cdot (-3) + b\)[/tex]

Simplifying the equation:

[tex]\(-4 = \frac{9}{4} + b\)[/tex]

To isolate \(b\), we can subtract [tex]\(\frac{9}{4}\)[/tex]from both sides:

[tex]\(-4 - \frac{9}{4} = b\)[/tex]

Combining the terms:

[tex]\(-\frac{16}{4} - \frac{9}{4} = b\)[/tex]

Simplifying further:

[tex]\(-\frac{25}{4} = b\)[/tex]

Now we have the value of b, which is [tex]\(-\frac{25}{4}\)[/tex].

Learn more about slope-intercept here :-

https://brainly.com/question/30216543

#SPJ11

Given f(x)=2x2−3x+1 and g(x)=3x−1​, find the rules of the following functions: (i) 2f−3g (ii) fg (iii) g/f (iv) f∘g (v) g∘f (vi) f∘f (vii) g∘g

Answers

If f(x)=2x²−3x+1 and g(x)=3x−1, the rules of the functions:(i) 2f−3g= 4x² - 21x + 5, (ii) fg= 6x³ - 12x² + 6x - 1, (iii) g/f= 9x² - 5x, (iv) f∘g= 18x² - 21x + 2, (v) g∘f= 6x² - 9x + 2, (vi) f∘f= 8x⁴ - 24x³ + 16x² + 3x + 1, (vii) g∘g= 9x - 4

To find the rules of the function, follow these steps:

(i) 2f − 3g= 2(2x²−3x+1) − 3(3x−1) = 4x² - 12x + 2 - 9x + 3 = 4x² - 21x + 5. Rule is 4x² - 21x + 5

(ii) fg= (2x²−3x+1)(3x−1) = 6x³ - 9x² + 3x - 3x² + 3x - 1 = 6x³ - 12x² + 6x - 1. Rule is 6x³ - 12x² + 6x - 1

(iii) g/f= (3x-1) / (2x² - 3x + 1)(g/f)(2x² - 3x + 1) = 3x-1(g/f)(2x²) - (g/f)(3x) + (g/f) = 3x - 1(g/f)(2x²) - (g/f)(3x) + (g/f) = (2x² - 3x + 1)(3x - 1)(2x) - (g/f)(3x)(2x² - 3x + 1) + (g/f)(2x²) = 6x³ - 2x - 3x(2x²) + 9x² - 3x - 2x² = 6x³ - 2x - 6x³ + 9x² - 3x - 2x² = 9x² - 5x. Rule is 9x² - 5x

(iv)Composite function f ∘ g= f(g(x))= f(3x-1)= 2(3x-1)² - 3(3x-1) + 1= 2(9x² - 6x + 1) - 9x + 2= 18x² - 21x + 2. Rule is 18x² - 21x + 2

(v) Composite function g ∘ f= g(f(x))= g(2x²−3x+1)= 3(2x²−3x+1)−1= 6x² - 9x + 2. Rule is 6x² - 9x + 2

(vi)Composite function f ∘ f= f(f(x))= f(2x²−3x+1)= 2(2x²−3x+1)²−3(2x²−3x+1)+1= 2(4x⁴ - 12x³ + 13x² - 6x + 1) - 6x² + 9x + 1= 8x⁴ - 24x³ + 16x² + 3x + 1. Rule is 8x⁴ - 24x³ + 16x² + 3x + 1

(vii)Composite function g ∘ g= g(g(x))= g(3x-1)= 3(3x-1)-1= 9x - 4. Rule is 9x - 4

Learn more about function:

brainly.com/question/11624077

#SPJ11

Which property was used incorrectly going from Line 2 to Line 3 ? [Line 1] -3(m-3)+6=21 [Line 2] -3(m-3)=15 [Line 3] -3m-9=15 [Line 4] -3m=24 [Line 5] m=-8

Answers

Distributive property was used incorrectly going from Line 2 to Line 3

The line which used property incorrectly while going from Line 2 to Line 3 is Line 3.

The expressions:

Line 1: -3(m - 3) + 6 = 21

Line 2: -3(m - 3) = 15

Line 3: -3m - 9 = 15

Line 4: -3m = 24

Line 5: m = -8

The distributive property is used incorrectly going from Line 2 to Line 3. Because when we distribute the coefficient -3 to m and -3, we get -3m + 9 instead of -3m - 9 which was incorrectly calculated.

Therefore, -3m - 9 = 15 is incorrect.

In this case, the correct expression for Line 3 should have been as follows:

-3(m - 3) = 15-3m + 9 = 15

Now, we can simplify the above equation as:

-3m = 6 (subtract 9 from both sides)or m = -2 (divide by -3 on both sides)

Therefore, the correct answer is "Distributive property".

know more about about distributive property here

https://brainly.com/question/12192455#

#SPJ11

1. Which of the following are differential cquations? Circle all that apply. (a) m dtdx =p (c) y ′ =4x 2 +x+1 (b) f(x,y)=x 2e 3xy (d) dt 2d 2 z​ =x+21 2. Determine the order of the DE:dy/dx+2=−9x.

Answers

The order of the given differential equation dy/dx + 2 = -9x is 1.

The differential equations among the given options are:

(a) m dtdx = p

(c) y' = 4x^2 + x + 1

(d) dt^2 d^2z/dx^2 = x + 2

Therefore, options (a), (c), and (d) are differential equations.

Now, let's determine the order of the differential equation dy/dx + 2 = -9x.

The order of a differential equation is determined by the highest order derivative present in the equation. In this case, the highest order derivative is dy/dx, which is a first-order derivative.

Learn more about differential equation here

https://brainly.com/question/32645495

#SPJ11

Today's spot rate of the Mexican peso is $.12. Assume that purchasing power parity holds. The U.S. inflation rate over this year is expected to be 8% , whereas Mexican inflation over this year is expected to be 2%. Miami Co. plans to import products from Mexico and will need 10 million Mexican pesos in one year. Based on this information, the expected amount of dollars to be paid by Miami Co. for the pesos in one year is:$1,378,893.20$2,478,192,46$1,894,350,33$2,170,858,42$1,270,588.24

Answers

The expected amount of dollars to be paid by Miami Co. for the pesos in one year is approximately $1,270,588.24. option e is correct.

We need to consider the inflation rates and the concept of purchasing power parity (PPP).

Purchasing power parity (PPP) states that the exchange rate between two currencies should equal the ratio of their price levels.

Let us assume that PPP holds, meaning that the change in exchange rates will be proportional to the inflation rates.

First, let's calculate the expected exchange rate in one year based on the inflation differentials:

Expected exchange rate = Spot rate × (1 + U.S. inflation rate) / (1 + Mexican inflation rate)

= 0.12× (1 + 0.08) / (1 + 0.02)

= 0.12 × 1.08 / 1.02

= 0.1270588235

Now, we calculate the expected amount of dollars to be paid by Miami Co. for 10 million Mexican pesos in one year:

Expected amount of dollars = Expected exchange rate × Amount of Mexican pesos

Expected amount of dollars = 0.1270588235 × 10,000,000

Expected amount of dollars = $1,270,588.24

Therefore, the expected amount of dollars to be paid by Miami Co. for the pesos in one year is approximately $1,270,588.24.

To learn more on Purchasing power parity  click:

https://brainly.com/question/29614240

#SPJ4

If matrix A has det(A)=−2, and B is the matrix foed when two elementary row operations are perfoed on A, what is det(B) ? det(B)=−2 det(B)=4 det(B)=−4 More infoation is needed to find the deteinant. det(B)=2

Answers

The determinant of the matrix B is (a) det(A) = -2

How to calculate the determinant of the matrix B

from the question, we have the following parameters that can be used in our computation:

det(A) = -2

We understand that

B is the matrix formed when two elementary row operations are performed on A

By definition;

The determinant of a matrix is unaffected by elementary row operations.

using the above as a guide, we have the following:

det(B) = det(A) = -2.

Hence, the determinant of the matrix B is -2

Read more about matrix at

https://brainly.com/question/11989522

#SPJ1

The sum of the digits of a two-digit number is seventeen. The number with the digits reversed is thirty more than 5 times the tens' digit of the original number. What is the original number?

Answers

The original number is 10t + o = 10(10) + 7 = 107.

Let's call the tens digit of the original number "t" and the ones digit "o".

From the problem statement, we know that:

t + o = 17   (Equation 1)

And we also know that the number with the digits reversed is thirty more than 5 times the tens' digit of the original number. We can express this as an equation:

10o + t = 5t + 30   (Equation 2)

We can simplify Equation 2 by subtracting t from both sides:

10o = 4t + 30

Now we can substitute Equation 1 into this equation to eliminate o:

10(17-t) = 4t + 30

Simplifying this equation gives us:

170 - 10t = 4t + 30

Combining like terms gives us:

140 = 14t

Dividing both sides by 14 gives us:

t = 10

Now we can use Equation 1 to solve for o:

10 + o = 17

o = 7

So the original number is 10t + o = 10(10) + 7 = 107.

Learn more about number  from

https://brainly.com/question/27894163

#SPJ11

In 2012 the mean number of wins for Major League Baseball teams was 79 with a standard deviation of 9.3. If the Boston Red Socks had 69 wins. Find the z-score. Round your answer to the nearest hundredth

Answers

The z-score for the Boston Red Sox, with 69 wins, is approximately -1.08.

To find the z-score for the Boston Red Sox, we can use the formula:

z = (x - μ) / σ

Where:

x is the value we want to convert to a z-score (69 wins for the Red Sox),

μ is the mean of the dataset (79),

σ is the standard deviation of the dataset (9.3).

Substituting the given values into the formula:

z = (69 - 79) / 9.3

Calculating the numerator:

z = -10 / 9.3

Dividing:

z ≈ -1.08

Rounding the z-score to the nearest hundredth, we get approximately z = -1.08.

learn more about "standard deviation":- https://brainly.com/question/475676

#SPJ11

Prove or disprove each of the following statements.
(i) For all integers a, b and c, if a | b and a | c then for all integers m and n, a | mb + nc.
(ii) For all integers x, if 3 | 2x then 3 | x.
(iii) For all integers x, there exists an integer y so that 3 | x + y and 3 | x − y.

Answers

(i) The statement is true. If a divides both b and c, then a also divides any linear combination of b and c with integer coefficients.

(ii) The statement is false. There exist integers for which 3 divides 2x but does not divide x.

(iii) The statement is true. For any integer x, choosing y = x satisfies the divisibility conditions.

(i) Statement: For all integers a, b, and c, if a divides b and a divides c, then for all integers m and n, a divides (mb + nc).

To prove this statement, we can use the property of divisibility. If a divides b, it means there exists an integer k such that b = ak. Similarly, if a divides c, there exists an integer l such that c = al.

Now, let's consider the expression mb + nc. We can write it as mb + nc = mak + nal, where m and n are integers. Rearranging, we have mb + nc = a(mk + nl).

Since mk + nl is also an integer, let's say it is represented by the integer p. Therefore, mb + nc = ap.

This shows that a divides (mb + nc), as it can be expressed as a multiplied by an integer p. Hence, the statement is true.

(ii) Statement: For all integers x, if 3 divides 2x, then 3 divides x.

To disprove this statement, we need to provide a counterexample where the statement is false.

Let's consider x = 4. If we substitute x = 4 into the statement, we get: if 3 divides 2(4), then 3 divides 4.

2(4) = 8, and 3 does not divide 8 evenly. Therefore, the statement is false because there exists an integer (x = 4) for which 3 divides 2x, but 3 does not divide x.

(iii) Statement: For all integers x, there exists an integer y such that 3 divides (x + y) and 3 divides (x - y).

To prove this statement, we can provide a general construction for y that satisfies the divisibility conditions.

Let's consider y = x. If we substitute y = x into the statement, we have: 3 divides (x + x) and 3 divides (x - x).

(x + x) = 2x and (x - x) = 0. It is clear that 3 divides 2x (as it is an even number), and 3 divides 0.

Therefore, by choosing y = x, we can always find an integer y that satisfies the divisibility conditions for any given integer x. Hence, the statement is true.

To learn more about property of divisibility visit : https://brainly.com/question/9462805

#SPJ11

A random sample of 200 marathon runners were surveyed in March 2018 and asked about how often they did a full practice schedule in the week before a scheduled marathon. In this survey, 75%(95%Cl70−77%) stated that they did not run a full practice schedule in the week before their competition. A year later, in March 2019, the same sample group were surveyed and 61%(95%Cl57−64%) stated that they did not run a full practice schedule in the week before their competition. These results suggest: Select one: a. There was no statistically significant change in the completion of full practice schedules between March 2018 and March 2019. b. We cannot say whether participation in full practice schedules has changed. c. The participation in full practice schedules demonstrated a statistically significant decrease between March 2018 and March 2019. d. We cannot say whether the completion of full practice schedules changed because the sample is of only 200 marathon runners.

Answers

Option D, "We cannot say whether the completion of full practice schedules changed because the sample is of only 200 marathon runners," is incorrect.

The participation in full practice schedules demonstrated a statistically significant decrease between March 2018 and March 2019. A random sample of 200 marathon runners was surveyed in March 2018 and March 2019 to determine how often they did a full practice schedule in the week before their scheduled marathon.

In the March 2018 survey, 75%(95%Cl70−77%) of the sample did not complete a full practice schedule in the week before their scheduled marathon.

A year later, in March 2019, the same sample group was surveyed, and 61%(95%Cl57−64%) stated that they did not run a full practice schedule in the week before their competition.

The results suggest that participation in full practice schedules has decreased significantly between March 2018 and March 2019.

The reason why we know that there was a statistically significant decrease is that the confidence interval for the 2019 survey did not overlap with the confidence interval for the 2018 survey.

Because the confidence intervals do not overlap, we can conclude that there was a significant change in the completion of full practice schedules between March 2018 and March 2019.

Therefore, option C, "The participation in full practice schedules demonstrated a statistically significant decrease between March 2018 and March 2019," is the correct answer.

The sample size of 200 marathon runners is adequate to draw a conclusion since the sample was drawn at random. Therefore, option D, "We cannot say whether the completion of full practice schedules changed because the sample is of only 200 marathon runners," is incorrect.

To know more about confidence intervals visit:

brainly.com/question/32546207

#SPJ11

Identify the correct implementation of using the "first principle" to determine the derivative of the function: f(x)=-48-8x^2 + 3x

Answers

The derivative of the function f(x)=-48-8x^2 + 3x, using the "first principle," is f'(x) = -16x + 3.

To determine the derivative of a function using the "first principle," we need to use the definition of the derivative, which is:

f'(x) = lim(h->0) [f(x+h) - f(x)] / h

Therefore, for the given function f(x)=-48-8x^2 + 3x, we can find its derivative as follows:

f'(x) = lim(h->0) [f(x+h) - f(x)] / h

= lim(h->0) [-48 - 8(x+h)^2 + 3(x+h) + 48 + 8x^2 - 3x] / h

= lim(h->0) [-48 - 8x^2 -16hx -8h^2 + 3x + 3h + 48 + 8x^2 - 3x] / h

= lim(h->0) [-16hx -8h^2 + 3h] / h

= lim(h->0) (-16x -8h + 3)

= -16x + 3

Therefore, the derivative of the function f(x)=-48-8x^2 + 3x, using the "first principle," is f'(x) = -16x + 3.

Learn more about function from

https://brainly.com/question/11624077

#SPJ11

A 99 confidence interval for p given that p=0.39 and n=500
Margin Error=??? T
he 99% confidence interval is ?? to ??

Answers

The 99% confidence interval for the population proportion (p) is approximately 0.323 to 0.457, and the margin of error is approximately 0.067.

The margin of error and confidence interval can be calculated as follows:

First, we need to find the standard error of the proportion:

SE = sqrt[p(1-p)/n]

where:

p is the sample proportion (0.39 in this case)

n is the sample size (500 in this case)

Substituting the values, we get:

SE = sqrt[(0.39)(1-0.39)/500] ≈ 0.026

Next, we can find the margin of error (ME) using the formula:

ME = z*SE

where:

z is the critical value for the desired confidence level (99% in this case). From a standard normal distribution table or calculator, the z-value corresponding to the 99% confidence level is approximately 2.576.

Substituting the values, we get:

ME = 2.576 * 0.026 ≈ 0.067

This means that we can be 99% confident that the true population proportion falls within a range of 0.39 ± 0.067.

Finally, we can calculate the confidence interval by subtracting and adding the margin of error from the sample proportion:

CI = [p - ME, p + ME]

Substituting the values, we get:

CI = [0.39 - 0.067, 0.39 + 0.067] ≈ [0.323, 0.457]

Therefore, the 99% confidence interval for the population proportion (p) is approximately 0.323 to 0.457, and the margin of error is approximately 0.067.

Learn more about population from

https://brainly.com/question/25896797

#SPJ11

Consider the ODE dxdy​=2sech(4x)y7−x4y,x>0,y>0. Using the substitution u=y−6, the ODE can be written as dxdu​ (give your answer in terms of u and x only).

Answers

This equation represents the original ODE after the substitution has been made. dx/du = 2sech(4x)((u + 6)^7 - x^4(u + 6))

To find the ODE in terms of u and x using the given substitution, we start by expressing y in terms of u:

u = y - 6

Rearranging the equation, we get:

y = u + 6

Next, we differentiate both sides of the equation with respect to x:

dy/dx = du/dx

Now, we substitute the expressions for y and dy/dx back into the original ODE:

dx/dy = 2sech(4x)(y^7 - x^4y)

Replacing y with u + 6, we have:

dx/dy = 2sech(4x)((u + 6)^7 - x^4(u + 6))

Finally, we substitute dy/dx = du/dx back into the equation:

dx/du = 2sech(4x)((u + 6)^7 - x^4(u + 6))

Thus, the ODE in terms of u and x is:

dx/du = 2sech(4x)((u + 6)^7 - x^4(u + 6))

This equation represents the original ODE after the substitution has been made.

Learn more about ODE

https://brainly.com/question/31593405

#SPJ11

B. Solve using Substitution Techniques (10 points each):
(2) (x + y − 1)² dx +9dy = 0; (3) (x + y) dy = (2x+2y-3)dx

Answers

To solve the equation (x + y - 1)² dx + 9dy = 0 using substitution techniques, we can substitute u = x + y - 1. This will help us simplify the equation and solve for u.

Let's start by substituting u = x + y - 1 into the equation:

(u)² dx + 9dy = 0

To solve for dx and dy, we differentiate u = x + y - 1 with respect to x:

du = dx + dy

Rearranging this equation, we have:

dx = du - dy

Substituting dx and dy into the equation (u)² dx + 9dy = 0:

(u)² (du - dy) + 9dy = 0

Expanding and rearranging the terms:

u² du - u² dy + 9dy = 0

Now, we can separate the variables by moving all terms involving du to one side and terms involving dy to the other side:

u² du = (u² - 9) dy

Dividing both sides by (u² - 9):

du/dy = (u²)/(u² - 9)

Now, we have a separable differential equation that can be solved by integrating both sides:

∫(1/(u² - 9)) du = ∫dy

Integrating the left side gives us:

(1/6) ln|u + 3| - (1/6) ln|u - 3| = y + C

Simplifying further:

ln|u + 3| - ln|u - 3| = 6y + 6C

Using the properties of logarithms:

ln| (u + 3)/(u - 3) | = 6y + 6C

Exponentiating both sides:

| (u + 3)/(u - 3) | = e^(6y + 6C)

Taking the absolute value, we have two cases to consider:

(u + 3)/(u - 3) = e^(6y + 6C) or (u + 3)/(u - 3) = -e^(6y + 6C)

Solving each case for u in terms of x and y will give us the solution to the original differential equation.

Learn more about variables here:

brainly.com/question/15078630

#SPJ11

Give the normal vector n1, for the plane 4x + 16y - 12z = 1.
Find n1 = Give the normal vector n₂ for the plane -6x + 12y + 14z = 0.
Find n2= Find n1.n2 = ___________
Determine whether the planes are parallel, perpendicular, or neither.
parallel
perpendicular
neither
If neither, find the angle between them. (Use degrees and round to one decimal place. If the planes are parallel or perpendicular, enter PARALLEL or PERPENDICULAR, respectively.

Answers

The planes are neither parallel nor perpendicular, and the angle between them is approximately 88.1 degrees.

4. Determine whether the planes are parallel, perpendicular, or neither.

If the two normal vectors are orthogonal, then the planes are perpendicular.

If the two normal vectors are scalar multiples of each other, then the planes are parallel.

Since the two normal vectors are not scalar multiples of each other and their dot product is not equal to zero, the planes are neither parallel nor perpendicular.

To find the angle between the planes, use the formula for the angle between two nonparallel vectors.

cos θ = (n1 . n2) / ||n1|| ||n2||

= 0.4 / √(3² + 6² + 2²) √(6² + 3² + (-2)²)

≈ 0.0109θ

≈ 88.1°.

Therefore, the planes are neither parallel nor perpendicular, and the angle between them is approximately 88.1 degrees.

Know more about perpendicular here:

https://brainly.com/question/1202004

#SPJ11

Wendy's cupcakes cost P^(10) a box. If the cupcakes are sold for P^(16), what is the percent of mark -up based on cost?

Answers

The percent markup based on cost is (P^(6) - 1) x 100%.

To calculate the percent markup based on cost, we need to find the difference between the selling price and the cost, divide that difference by the cost, and then express the result as a percentage.

The cost of a box of Wendy's cupcakes is P^(10). The selling price is P^(16). So the difference between the selling price and the cost is:

P^(16) - P^(10)

We can simplify this expression by factoring out P^(10):

P^(16) - P^(10) = P^(10) (P^(6) - 1)

Now we can divide the difference by the cost:

(P^(16) - P^(10)) / P^(10) = (P^(10) (P^(6) - 1)) / P^(10) = P^(6) - 1

Finally, we can express the result as a percentage by multiplying by 100:

(P^(6) - 1) x 100%

Therefore, the percent markup based on cost is (P^(6) - 1) x 100%.

learn more about percent markup here

https://brainly.com/question/5189512

#SPJ11

{(-1,-6),(5,-8),(-2,8),(3,-2),(-4,-2),(-5,-5)} Determine the values in the domain and range of the relation. Enter repeated values only once.

Answers

Domain: {-1, 5, -2, 3, -4, -5}, Range: {-6, -8, 8, -2, -5}. These sets represent the distinct values that appear as inputs and outputs in the given relation.

To determine the values in the domain and range of the given relation, we can examine the set of ordered pairs provided.

The given set of ordered pairs is: {(-1, -6), (5, -8), (-2, 8), (3, -2), (-4, -2), (-5, -5)}

(a) Domain: The domain refers to the set of all possible input values (x-values) in the relation. We can determine the domain by collecting all unique x-values from the given ordered pairs.

From the set of ordered pairs, we have the following x-values: -1, 5, -2, 3, -4, -5

Therefore, the domain of the relation is {-1, 5, -2, 3, -4, -5}.

(b) Range: The range represents the set of all possible output values (y-values) in the relation. Similarly, we need to collect all unique y-values from the given ordered pairs.

From the set of ordered pairs, we have the following y-values: -6, -8, 8, -2, -5

Therefore, the range of the relation is {-6, -8, 8, -2, -5}

It's worth noting that the order in which the elements are listed in the sets does not matter, as sets are typically unordered.

It's important to understand that the domain and range of a relation can vary depending on the specific set of ordered pairs provided. In this case, the given set uniquely determines the domain and range of the relation.

Learn more about set at: brainly.com/question/30705181

#SPJ11

Assuming the population has an approximate normal distribution, if a sample size n = 30 has a sample mean = 41 with a sample standard deviation s = 10, find the margin of error at a 98% confidence level.
("Margin of error" is the same as "EBM - Error Bound for a population Mean" in your text and notesheet.) Round the answer to two decimal places.

Answers

The margin of error at a 98% confidence level is approximately 4.26.To find the margin of error (EBM - Error Bound for a Population Mean) at a 98% confidence level.

We need to use the formula:

Margin of Error = Z * (s / sqrt(n))

where Z is the z-score corresponding to the desired confidence level, s is the sample standard deviation, and n is the sample size.

For a 98% confidence level, the corresponding z-score is 2.33 (obtained from the standard normal distribution table).

Plugging in the values into the formula:

Margin of Error = 2.33 * (10 / sqrt(30))

Calculating the square root and performing the division:

Margin of Error ≈ 2.33 * (10 / 5.477)

Margin of Error ≈ 4.26

Therefore, the margin of error at a 98% confidence level is approximately 4.26.

Learn more about margin of error here:

https://brainly.com/question/29100795


#SPJ11

Assume a Poisson distribution. a. If λ=2.5, find P(X=3). b. If λ=8.0, find P(X=9). c. If λ=0.5, find P(X=4). d. If λ=3.7, find P(X=1).

Answers

The probability that X=1 for condition

λ=3.7 is 0.0134.

Assuming a Poisson distribution, to find the probability of a random variable X, that can take values from 0 to infinity, for a given parameter λ of the Poisson distribution, we use the formula

P(X=x) = ((e^-λ) * (λ^x))/x!

where x is the random variable value, e is the Euler's number which is approximately equal to 2.718, and x! is the factorial of x.

Using these formulas, we can calculate the probabilities of the given values of x for the given values of λ.

a. Given λ=2.5, we need to find P(X=3).

Using the formula for Poisson distribution

P(X=3) = ((e^-2.5) * (2.5^3))/3!

P(X=3) = ((e^-2.5) * (15.625))/6

P(X=3) = 0.0667 (rounded to 4 decimal places)

Therefore, the probability that X=3 when

λ=2.5 is 0.0667.

b. Given λ=8.0,

we need to find P(X=9).

Using the formula for Poisson distribution

P(X=9) = ((e^-8.0) * (8.0^9))/9!

P(X=9) = ((e^-8.0) * 262144.0))/362880

P(X=9) = 0.1054 (rounded to 4 decimal places)

Therefore, the probability that X=9 when

λ=8.0 is 0.1054.

c. Given λ=0.5, we need to find P(X=4).

Using the formula for Poisson distribution

P(X=4) = ((e^-0.5) * (0.5^4))/4!

P(X=4) = ((e^-0.5) * 0.0625))/24

P(X=4) = 0.0111 (rounded to 4 decimal places)

Therefore, the probability that X=4 when

λ=0.5 is 0.0111.

d. Given λ=3.7, we need to find P(X=1).

Using the formula for Poisson distribution

P(X=1) = ((e^-3.7) * (3.7^1))/1!

P(X=1) = ((e^-3.7) * 3.7))/1

P(X=1) = 0.0134 (rounded to 4 decimal places)

Therefore, the probability that X=1 when

λ=3.7 is 0.0134.

To know more about probability visit

https://brainly.com/question/32004014

#SPJ11

A placement test for state university freshmen has a normal distribution with a mean of 900 and a standard deviation of 20. The bottom 3% of students must take a summer session. What is the minimum score you would need to stay out of this group?

Answers

The minimum score a student would need to stay out of the group that must take a summer session is 862.4.

We need to find the minimum score that a student needs to avoid being in the bottom 3%.

To do this, we can use the z-score formula:

z = (x - μ) / σ

where x is the score we want to find, μ is the mean, and σ is the standard deviation.

If we can find the z-score that corresponds to the bottom 3% of the distribution, we can then use it to find the corresponding score.

Using a standard normal table or calculator, we can find that the z-score that corresponds to the bottom 3% of the distribution is approximately -1.88. This means that the bottom 3% of students have scores that are more than 1.88 standard deviations below the mean.

Now we can plug in the values we know and solve for x:

-1.88 = (x - 900) / 20

Multiplying both sides by 20, we get:

-1.88 * 20 = x - 900

Simplifying, we get:

x = 862.4

Therefore, the minimum score a student would need to stay out of the group that must take a summer session is 862.4.

Learn more about minimum score from

https://brainly.com/question/11014015

#SPJ11

For the statement S := ∀n ≥ 20, (2^n > 100n), consider the following proof for the inductive
step:
(1) 2(k+1) = 2 × 2k
(2) > 2 × 100k
(3) = 100k + 100k
(4) > 100(k + 1)
In which step is the inductive hypothesis used?
A. 2
B. 3
C. 4
D. 1

Answers

The inductive hypothesis is used in step C.

In step C, the inequality "100k + 100k > 100(k + 1)" is obtained by adding 100k to both sides of the inequality in step B.

The inductive hypothesis is that the inequality "2^k > 100k" holds for some value k. By using this hypothesis, we can substitute "2^k" with "100k" in step B, which allows us to perform the addition and obtain the inequality in step C.

Therefore, the answer is:

C. 4

Learn more about inductive hypothesis here

https://brainly.com/question/31703254

#SPJ11

Give three examples of Bernoulli rv's (other than those in the text). (Select all that apply.) X=1 if a randomly selected lightbulb needs to be replaced and X=0 otherwise. X - the number of food items purchased by a randomly selected shopper at a department store and X=0 if there are none. X= the number of lightbulbs that needs to be replaced in a randomly selected building and X=0 if there are none. X= the number of days in a year where the high temperature exceeds 100 degrees and X=0 if there are none. X=1 if a randomly selected shopper purchases a food item at a department store and X=0 otherwise. X=1 if a randomly selected day has a high temperature of over 100 degrees and X=0 otherwise.

Answers

A Bernoulli distribution represents the probability distribution of a random variable with only two possible outcomes.

Three examples of Bernoulli rv's are as follows:

X = 1 if a randomly selected lightbulb needs to be replaced and X = 0 otherwise X = 1 if a randomly selected shopper purchases a food item at a department store and X = 0 otherwise X = 1 if a randomly selected day has a high temperature of over 100 degrees and X = 0 otherwise. These are the Bernoulli random variables. A Bernoulli trial is a random experiment that has two outcomes: success and failure. These trials are used to create Bernoulli random variables (r.v. ) that follow a Bernoulli distribution.

In Bernoulli's distribution, p denotes the probability of success, and q = 1 - p denotes the probability of failure. It's a type of discrete probability distribution that describes the probability of a single Bernoulli trial. the above three Bernoulli rv's that are different from those given in the text.

A Bernoulli distribution represents the probability distribution of a random variable with only two possible outcomes.

To know more about probability visit:

brainly.com/question/31828911

#SPJ11

Determine limx→[infinity]​f(x) and limx→−[infinity]​f(x) for the following function. Then give the horizontal asymptotes of f, if any. f(x)=36x+66x​ Evaluate limx→[infinity]​f(x). Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. limx→[infinity]​36x+66x​=( Simplify your answer. ) B. The limit does not exist and is neither [infinity] nor −[infinity]. Evaluate limx→−[infinity]​f(x). Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. limx→−[infinity]​36x+66x​= (Simplify your answer.) B. The limit does not exist and is neither [infinity] nor −[infinity]. Give the horizontal asymptotes of f, if any. Select the correct choice below and, if necessary, fill in the answer box(es) to complete your choice. A. The function has one horizontal asymptote, (Type an equation.) B. The function has two horizontal asymptotes. The top asymptote is and the bottom asymptote is (Type equations.) C. The function has no horizontal asymptotes.

Answers

The limit limx→[infinity]​f(x) = 36, limx→−[infinity]​f(x) = 36. The function has one horizontal asymptote, y = 36. Option (a) is correct.

Given function is f(x) = 36x + 66x⁻¹We need to evaluate limx→∞​f(x) and limx→-∞​f(x) and find horizontal asymptotes, if any.Evaluate limx→∞​f(x):limx→∞​f(x) = limx→∞​(36x + 66x⁻¹)= limx→∞​(36x/x + 66/x⁻¹)We get  ∞/∞ form and hence we apply L'Hospital's rulelimx→∞​f(x) = limx→∞​(36 - 66/x²) = 36

The limit exists and is finite. Hence the correct choice is A) limx→∞​36x+66x​=36.Evaluate limx→−∞​f(x):limx→-∞​f(x) = limx→-∞​(36x + 66x⁻¹)= limx→-∞​(36x/x + 66/x⁻¹)

We get -∞/∞ form and hence we apply L'Hospital's rulelimx→-∞​f(x) = limx→-∞​(36 + 66/x²) = 36

The limit exists and is finite. Hence the correct choice is A) limx→−∞​36x+66x​=36.  Hence the horizontal asymptote is y = 36. Hence the correct choice is A) The function has one horizontal asymptote, y = 36.

The limit limx→[infinity]​f(x) = 36, limx→−[infinity]​f(x) = 36. The function has one horizontal asymptote, y = 36.

To know more about function visit :

https://brainly.com/question/30594198

#SPJ11

Find an equation of the line below. Slope is −2;(7,2) on line

Answers

The equation of the line is found to be y = -2x + 16.

The slope-intercept form of a linear equation is y = mx + b, where m is the slope of the line, and b is the y-intercept of the line.

The point-slope form of the linear equation is given by

y - y₁ = m(x - x₁),

where m is the slope of the line and (x₁, y₁) is any point on the line.

So, substituting the values, we have;

y - 2 = -2(x - 7)

On simplifying the above equation, we get:

y - 2 = -2x + 14

y = -2x + 14 + 2

y = -2x + 16

Therefore, the equation of the line is y = -2x + 16.

know more about the slope-intercept form

https://brainly.com/question/1884491

#SPJ11

Solve the equation.
2x+3-2x = -+²x+5
42
If necessary:
Combine Terms
Apply properties:
Add
Multiply
Subtract
Divide

Answers

The solution to the equation is -1.5 or -3/2.

How to solve equations?

We have the equation:

x² + 3-2x= 1+ x² +5

Combine Terms and subtract x² from both sides:

x² - x² + 3 -2x = 1 + 5 + x² - x²

3 -2x = 1 + 5

Add:

3 -2x = 6

Combine Terms and subtract 3 from both sides:

-2x + 3 -3 = 6 - 3

-2x = 3

Dividing by -2 we get:

x = 3/(-2)

x = -3/2

x = -1.5

Learn more about equations on:

brainly.com/question/19297665

#SPJ1

Other Questions
Toula owns the Pita Pan restaurant. She needs to order supplies for the upcoming weekend rush. She needs 150 bags of pita bread. The bread come in crates of 50, and each crate costs $15.00. She also needs 65 containers of hummus dip. There are 5 containers in a box, and each box costs $20.00 What expressions can Toula use to determine how much the pita bread and hummus dips will cost? What will the total be? What is nominal ordinal interval and ratio scale? the four activities of poma have start and end conditions. they do not overlap. Suppose the MPC (marginal propensity to consume) is 0.6. For a given magnitude of fiscal policy (lets say an increase in government spending by $100 b or a decrease in taxes (lump-sum) by $100 b ), compare the magnitude of change in real GDP as a result of increase in government spending to the magnitude of change in real GDP as a result of tax cut. 10mg/1ml pure herring sperm diluted with 10ml sterile distilled water to C1 of 1000g/ml. C1 Concentration of stock (1000g/ml) V1 Volume of stock needed (l) C2 Final Concentration (g/ml) O 100 80 75 70 60 50 30 25 5 V2 Final volume (2,000l) 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 Volume of H0 required (l) Use water as a diluent and blank Mix each standard by inversion and measure the absorbance at 260nm (A260) with a UV - compatible cuvette. Graph your standard curve. On the graph include coefficient of regression (R) and line graph equation (Y = mx + C). In your own words, explain the reasons why a researcher will want to use panel data. Also provide some real-life examples where panel data is used in South Africa. enlightenment ideals and the concept of nationalism swept the atlantic world from 1750 to 1900 as people developed new standards of freedom and self-determination. develop an argument that evaluates the extent to which intellectual and ideological causes influenced the revolutions that occurred in the atlantic world during that era. DRUG PRICES: MARKET PRICING OR PRICE GOUGING? Drug makers persist in raising prices far beyond the rate of inflation. 2-Why would pharmaceutical companies choose to raise prices in direct contradiction to the President's request to hold them level? Which of the following is a measured value? A. 20 desks B. 9 kilograms C. 4.67 centimeters D. 1 yard =3 feet a. A only b. Conly c. A&D d. B&C e. B,C&D A sociologist found that in a sample of 45 retired men, the average number of jobs they had during their lifetimes was 7.3. The population standard deviation is 2.3Find the 90% confidence interval of the mean number of jobs. Round intermediate and final answers to one decimal placeFind the 99% confidence interval of the mean number of jobs. Round intermediate and final answers to one decimal place.Which is smaller? Explain why. Aneko Company reports the following: net sales of $19,500 for Year 2 and $18,525 for Year 1 , end-of-year total assets of $18,800 for Year 2 and $17,700 for Year 1 1. Compute its total asset tumover for Year 2. 2. Aneko's competitor has a turnover of 20 . Is Aneko performing better or worse than its competitor based on total asset turnover? Complete this question by entering your answere in the tabs below. Compute its total asset turnover for Year 2. Aneko Company reports the following: net sales of $19,500 for Year 2 and $18,525 for Year 1 ; end-of-year total assets of $18.300 for Year 2 and $17,700 for Year 1 1. Compute its total asset tumover for Year 2 . 2. Aneko's competitor has a tumover of 20 . is Aneko performing better or worse than its compettor based on total asset furnover? Complete this question by entering your answers in the tabs below. Aneko's competitor has a tumover of 2.0. Is Aneko performing better or worse than its competitor based on total asset turnover? Is Aneko performing better or worse than its competitor based on total asset turnoves? Triangle NMO has vertices at N(5, 2), M(2, 1), and O(3 , 3). Determine the vertices of image NMO if the preimage is reflected over x = 1. N(5, 2), M(2, 1), O(3, 3) N(5, 5), M(2, 3), O(3, 7) N(3, 2), M(0, 1), O(1, 3) N(5, 2), M(2, 1), O(3, 3) 2. Plot a direction field for each of the following differential equations along with a few on their integral curves. You may use dfield or any other direction (aka slope) field plotter, or Python. (a) y =cos(t+y). (b) y = 1+y 2 z . Find the value of the trigonometric ratio: tan zz 37, x 35, y 12 23. Is it an SRS? A corporation employs 2000 male and 500 female engineers. A stratified random sumple of 200 male and 50 female engineers gives each engineer I chance in 10 to be chosen. This sample design gives every individual in the population the same chance to be chosen for the sample. Is it an SRS? Explain your answer. 25. High-speed Internet laying fiber-optic cable is expensive. Cable companics want to make sure that if they extend their lines out to less dense suburban or rural areas, there will be sufficient demand and the work will be costeffective. They decide to conduct a survey to deterumine the proportion of homsehokds in a rural subdivision that would buy the service. They select a simple tandom sample of 5 blocks in the subdivision and survey each family that lives on one of those blocks. (a) What is the name for this kind of sampling method? (b) Give a possible reason why the cable company chose this method. what is the typical wind directionin North Carolina after the passage of a warm front?a. southwesterlyb. northeasterlyc. northwesterly aging of receivables schedule july 31 customer balance not past due 1-30 days past due 31-60 days past due 61-90 days past due over 90 days past due subtotals 1,050,000 600,000 220,000 115,000 85,000 30,000 boyd industries 36,000 36,000 hodges company 11,500 11,500 kent creek inc. 6,600 6,600 lockwood company 7,400 7,400 van epps company 13,000 13,000 totals 1,124,500 607,400 233,000 121,600 96,500 66,000 percentage uncollectible 1% 3% 12% 30% 75% allowance for doubtful accounts 106,106 6,074 6,990 14,592 28,950 49,500 assume that the allowance for doubtful accounts for evers industries has a credit balance of $8,240 before adjustment on july 31. journalize the adjusting entry for uncollectible accounts as of july 31. if an amount box does not require an entry, leave it blank. july 31 bad debt expense bad debt expense bad debt expense 0 allowance for doubtful accounts allowance for doubtful accounts 0 allowance for doubtful accounts feedback area a pair of blue jeans is best associated with which cultural subsystem? in a speech about the global economy, rachel starts with a story about a local grocery store. she is establishing _______. What are the definitions of the following words1. Data hierarchy2. Traditional File Environment3. Access Methods4. File-based ApproachQuestion 2What are the Disadvantages of using the DBMS approach over the Traditional File System?