If Tanisha has $1,000 to invest at 7% per annum compounded monthly, how long will it be before she has $1,650? If the compounding is continuous, how long will it be? Compounding monthly, it will be about years before Tanisha has $1,650. (Round to two decimal places as needed.)

Answers

Answer 1

It will take approximately 5.85 years for Tanisha to accumulate $1,650 by investing $1,000 at an annual interest rate of 7% compounded monthly. However, if the interest is compounded continuously, it will take approximately 5.81 years.

To determine the time it will take for Tanisha to accumulate $1,650 with monthly compounding, we can use the formula for compound interest:

A = P[tex](1 + r/n)^{(nt)}[/tex]

Where:

A is the future value (in this case, $1,650),

P is the principal amount (initial investment of $1,000),

r is the annual interest rate (7% or 0.07),

n is the number of times the interest is compounded per year (12 for monthly compounding), and

t is the time in years.

Rearranging the formula to solve for t:

t = (log(A/P))/(n * log(1 + r/n))

Substituting the given values:

t = (log(1650/1000))/(12 * log(1 + 0.07/12))

≈ (0.2182)/(12 * 0.0058)

≈ 0.0182/0.0696

≈ 0.2616

Hence, it will take approximately 5.85 years (0.2616 years rounded to two decimal places) for Tanisha to accumulate $1,650 with monthly compounding.

For continuous compounding, the formula is:

A = P[tex]e^{(rt)}[/tex]

Using the same values, we can solve for t:

1650 = 1000[tex]e^{(0.07t)}[/tex]

Dividing both sides by 1000:

1.65 =[tex]e^{(0.07t)}[/tex]

Taking the natural logarithm of both sides:

ln(1.65) = 0.07t

Solving for t:

t ≈ ln(1.65)/0.07

≈ 0.5002/0.07

≈ 7.1457

Thus, it will take approximately 5.81 years (7.1457 years rounded to two decimal places) for Tanisha to accumulate $1,650 with continuous compounding.

Learn more about  compounded monthly here:

https://brainly.com/question/27433018

#SPJ11


Related Questions

Shante caught 17 ladybugs every 4 days. Hiw Mandy ladybugs dies Shante need to catch on the fifth day so that she will have caught an average of 20 laydybugs per day over 5 days? Solve this problem in two different ways and explain both solutions.

Answers

Shante will need to catch 32 ladybugs on the fifth day in order to have an average of 20 ladybugs per day over 5 days.

To get the required average of 20 ladybugs, Shante needs to catch 100 ladybugs in 5 days.

Let x be the number of ladybugs she has to catch on the fifth day.

She has caught 17 ladybugs every 4 days:

Thus, she would catch 4 sets of 17 ladybugs = 4 × 17 = 68 ladybugs in the first four days.

Hence, to get an average of 20 ladybugs in 5 days, Shante will have to catch 100 - 68 = 32 ladybugs in the fifth day.

Solution 1: To solve the problem algebraically:

Let x be the number of ladybugs she has to catch on the fifth day.

Therefore the equation becomes:17 × 4 + x = 100 => x = 100 - 68 => x = 32

Solution 2: To solve the problem using arithmetic:

To get an average of 20 ladybugs, Shante needs to catch 20 × 5 = 100 ladybugs in 5 days. She has already caught 17 × 4 = 68 ladybugs over the first 4 days.

Hence, on the fifth day, she needs to catch 100 - 68 = 32 ladybugs.

Therefore, the required number of ladybugs she needs to catch on the fifth day is 32.

Learn more about "average": https://brainly.com/question/20118982

#SPJ11

A family has a $134,829,30-year mortgage at 6% compounded monthly. Find the monthly payment. Also find the unpaid balance after the following periods of time. (A) 10 years (B) 20 years (C) 25 years The monthly payment is $ (Round to the nearest cent as needed.)

Answers

The unpaid balance after 25 years is $28,961.27.

To find the monthly payment, we can use the formula:

P = (A/i)/(1 - (1 + i)^(-n))

where P is the monthly payment, A is the loan amount, i is the monthly interest rate (6%/12 = 0.005), and n is the total number of payments (30 years x 12 months per year = 360).

Plugging in the values, we get:

P = (134829.3*0.005)/(1 - (1 + 0.005)^(-360)) = $805.23

Therefore, the monthly payment is $805.23.

To find the unpaid balance after 10 years (120 months), we can use the formula:

B = A*(1 + i)^n - (P/i)*((1 + i)^n - 1)

where B is the unpaid balance, n is the number of payments made so far (120), and A, i, and P are as defined above.

Plugging in the values, we get:

B = 134829.3*(1 + 0.005)^120 - (805.23/0.005)*((1 + 0.005)^120 - 1) = $91,955.54

Therefore, the unpaid balance after 10 years is $91,955.54.

To find the unpaid balance after 20 years (240 months), we can use the same formula with n = 240:

B = 134829.3*(1 + 0.005)^240 - (805.23/0.005)*((1 + 0.005)^240 - 1) = $45,734.89

Therefore, the unpaid balance after 20 years is $45,734.89.

To find the unpaid balance after 25 years (300 months), we can again use the same formula with n = 300:

B = 134829.3*(1 + 0.005)^300 - (805.23/0.005)*((1 + 0.005)^300 - 1) = $28,961.27

Therefore, the unpaid balance after 25 years is $28,961.27.

Learn more about unpaid balance here:

https://brainly.com/question/31065295

#SPJ11

solve for ( a)sin(s+t), (b) tan (s+t), and the quadrant s+t
Use the given information to find (a) sin (s+t), (b) tan (s+t), and (c) the quadrant of s+t. 3 and sint = -,s and t in quadrant IV 5' cos s= 12 13 ... (a) sin (s+t) = (Simplify your answer, including

Answers

The given values are:s = -3t = -3and

cos s= 12/13

(a) sin (s+t) = sin s cos t + cos s sin t

We know that:sin s = -3/5cos s

= 12/13sin t

= -3/5cos t

= -4/5

Therefore,sin (s+t) = (-3/5)×(-4/5) + (12/13)×(-3/5)sin (s+t)

= (12/65) - (36/65)sin (s+t)

= -24/65(b) tan (s+t)

= sin (s+t)/cos (s+t)tan (s+t)

= (-24/65)/(-12/13)tan (s+t)

= 2/5(c) Quadrant of s+t:

As per the given information, s and t are in the IV quadrant, which means their sum, i.e. s+t will be in the IV quadrant too.

The IV quadrant is characterized by negative values of x-axis and negative values of the y-axis.

Therefore, sin (s+t) and cos (s+t) will both be negative.

The values of sin (s+t) and tan (s+t) are given above.

The value of cos (s+t) can be determined using the formula:cos^2 (s+t) = 1 - sin^2 (s+t)cos^2 (s+t)

= 1 - (-24/65)^2cos^2 (s+t)

= 1 - 576/4225cos^2 (s+t)

= 3649/4225cos (s+t)

= -sqrt(3649/4225)cos (s+t)

= -61/65

Now, s+t is in the IV quadrant, so cos (s+t) is negative.

Therefore,cos (s+t) = -61/65

To know more about cos visit :-

https://brainly.com/question/24305408

#SPJ11

Example: Describe the domain of definition. a. \( f(z)=\frac{1}{z^{2}+1} \) b. \( f(z)=\frac{z}{z+\bar{z}} \)

Answers

The domain of definition for [tex]\(f(z) = \frac{1}{z^2+1}\)[/tex] is the set of all complex numbers. The domain of definition for [tex]\(f(z) = \frac{z}{z+\bar{z}}\)[/tex] is the set of all complex numbers excluding the imaginary axis.

a. The domain of definition for the function  [tex]\(f(z) = \frac{1}{z^2+1}\)[/tex], we need to determine the values of for which the function is defined. In this case, the function is undefined when the denominator z² + 1 equals zero, as division by zero is not allowed.

To find the values of z that make the denominator zero, we solve the equation z² + 1 = 0 for z. This equation represents a quadratic equation with no real solutions, as the discriminant [tex](\(b^2-4ac\))[/tex] is negative (0 - 4 (1)(1) = -4. Therefore, the equation z² + 1 = 0 has no real solutions, and the function f(z) is defined for all complex numbers z.

Thus, the domain of definition for [tex]\(f(z) = \frac{1}{z^2+1}\)[/tex]is the set of all complex numbers.

b. For the function [tex]\(f(z) = \frac{z}{z+\bar{z}}\)[/tex], where [tex]\(\bar{z}\)[/tex] represents the complex conjugate of z, we need to consider the values of z  that make the denominator[tex](z+\bar{z}\))[/tex] equal to zero.

The complex conjugate of a complex number [tex]\(z=a+bi\)[/tex] is given by [tex]\(\bar{z}=a-bi\)[/tex]. Therefore, the denominator [tex]\(z+\bar{z}\)[/tex] is equal to [tex]\(2\text{Re}(z)\)[/tex], where [tex]\(\text{Re}(z)\)[/tex] represents the real part of z.

Since the denominator [tex]\(2\text{Re}(z)\)[/tex] is zero when [tex]\(\text{Re}(z)=0\)[/tex], the function f(z) is undefined for values of z that have a purely imaginary real part. In other words, the function is undefined when z lies on the imaginary axis.

Therefore, the domain of definition for [tex]\(f(z) = \frac{z}{z+\bar{z}}[/tex] is the set of all complex numbers excluding the imaginary axis.

In summary, the domain of definition for [tex]\(f(z) = \frac{1}{z^2+1}\)[/tex] is the set of all complex numbers, while the domain of definition for [tex]\(f(z) = \frac{z}{z+\bar{z}}\)[/tex] is the set of all complex numbers excluding the imaginary axis.

To know more about domain of definition refer here:

https://brainly.com/question/33602646#

#SPJ11

Complete Question:

Example: Describe the domain of definition.

a. [tex]\( f(z)=\frac{1}{z^{2}+1} \)[/tex]

b. [tex]\( f(z)=\frac{z}{z+\bar{z}} \)[/tex]

Use the function value to find the indicated trigonometric value in the specified quadrant. Function Value Quadrant Trigonometric Value sec(0) = _ 17 III cot(8) 14 cot(8) =

Answers

Quadrants of trigonometry: Quadrants refer to the four sections into which the coordinate plane is split. Each quadrant is identified using Roman numerals (I, II, III, IV) and has its own unique properties.

For example, in Quadrant I, both the x- and y-coordinates are positive. In Quadrant II, the x-coordinate is negative, but the y-coordinate is positive; in Quadrant III, both coordinates are negative; and in Quadrant IV, the x-coordinate is positive, but the y-coordinate is negative. These quadrants are labelled as shown below:

Given that sec 0 = _ 17 and cot 8 = 14, we are supposed to find the trigonometric value for these functions in the specified quadrant. Let's find the trigonometric values of these functions:

Finding the trigonometric value for sec(0) in the third quadrant:

In the third quadrant, cos 0 and sec 0 are both negative.

Hence, sec(0) = -17

is the required trigonometric value of sec(0) in the third quadrant. Finding the trigonometric value for cot(8) in the first quadrant:

Both x and y are positive, hence the tangent value is also positive. However, we need to find cot(8), which is equal to 1/tan(8)Hence, cot(8) = 14 is the required trigonometric value of cot(8) in the first quadrant.

To know more about Quadrants of trigonometry visit:

https://brainly.com/question/11016599

#SPJ11

is the solution region to the system below bounded or unbounded? 8x+y ≤ 16 X20 y20 The solution region is because it a circle
Test: Exam#z solution region to the system below bounded or unbounded?

Answers

The solution region is bounded because it is a closed circle

How to determine the boundary of the solution

from the question, we have the following parameters that can be used in our computation:

8x+y ≤ 16

In the above, we have the inequality to be ≤

The above inequality is less than or equal to

And it uses a closed circle

As a general rule

All closed circles are bounded solutions

Hence, the solution region is bounded because it is a closed circle

Read more about inequality at

https://brainly.com/question/32124899

#SPJ4

calculate 2v+O
v=(-2,8)

Answers

The result of the expression 2v + O is the vector (-4,16). This means that each component of v is doubled, resulting in the vector (0, 16).

We are given the vector v=(-2,8) and the zero vector O=(0,0). To calculate 2v + O, we need to multiply each component of v by 2 and add it to the corresponding component of O.

First, we multiply each component of v by 2: 2v = 2*(-2,8) = (-4,16).

Next, we add the corresponding components of 2v and O. Since O is the zero vector, adding it to any vector will not change the vector. Therefore, we have 2v + O = (-4,16) + (0,0) = (-4+0, 16+0) = (-4,16).

Thus, the result of the expression 2v + O is the vector (-4,16). This means that each component of v is doubled, resulting in the vector (0, 16).

Learn more about expression here:

https://brainly.com/question/28170201

#SPJ11

1. Let you invest the amount of money equal to the last 6 digits of your student id. If the interest earned id \( 9.95 \% \) compounded monthly, what will be the balance in your account after 7 years?

Answers

The balance in the account after 7 years would be $1,596,677.14 (approx)

Interest Rate (r) = 9.95% compounded monthly

Time (t) = 7 years

Number of Compounding periods (n) = 12 months in a year

Hence, the periodic interest rate, i = (r / n)

use the formula for calculating the compound interest, which is given as:

[tex]\[A = P{(1 + i)}^{nt}\][/tex]

Where, P is the principal amount is the time n is the number of times interest is compounded per year and A is the amount of money accumulated after n years. Since the given interest rate is compounded monthly, first convert the time into the number of months.

t = 7 years,

Number of months in 7 years

= 7 x 12

= 84 months.

The principal amount is equal to the last 6 digits of the student ID.

[tex]A = P{(1 + i)}^{nt}[/tex]

put the values in the formula and calculate the amount accumulated.

[tex]A = P{(1 + i)}^{nt}[/tex]

[tex]A = 793505{(1 + 0.0995/12)}^{(12 * 7)}[/tex]

A = 793505 × 2.01510273....

A = 1,596,677.14 (approx)

To learn more about compound interest,

https://brainly.com/question/20406888

#SPJ11

Please answer the following astrophisics questions with explanations.Thank you we value your time and efforts. (b) Consider another binary with orbital period T = 49.94 yr. The com- ponents A and B have masses MA and MB respectively. Assume that the orbits are circular, with radii TA and rg respectively. (i) Apply Kepler's law to both this system and the Sun-Earth system. Hence, show that the orbital period expressed in years (Tyrs), is given by (a/A)³ T² yrs [(MA + MB)/Mo] = where A is the mean sun-earth distance. [ 5 marks] (ii) The trigonometric parallax of the system is P = 0.377" while the an- gular extent a of the semi-major axis of the relative ellipse is 7.62". Sketch a diagram of the system, showing both the separation a between the compo- nents and a. Hence, determine the ratio a/A for the system. [6 marks] (iii) The ratio of the distances of A and B from the centre of mass is 0.466. Determine the mass of each component in terms of the mass of the Sun. [ 6 marks] 3

Answers

(i) The required relation is (MA + MB)/Mo = (a/A)³ T² yrs.

(ii) The required ratio is 7.20.

(iii) MA/Mo = 0.413 and MB/Mo = 0.587.

Part (i) We are given the period T of the binary star system as 49.94 years.

The masses of the two components are MA and MB respectively.

Their orbits are circular and have radii TA and TB.

By Kepler's law: (MA + MB) TA² = (4π²)TA³/(G T²) (MA + MB) TB² = (4π²)TB³/(G T²) where G is the universal gravitational constant.

Now, let A be the mean sun-earth distance.

Therefore, TA/A = (1 au)/(TA/A) and TB/A = (1 au)/(TB/A).

Hence, (MA + MB)/Mo = ((TA/A)³ T² yrs)/[(A/TA)³ G yrs²/Mo] = ((TB/A)³ T² yrs)/[(A/TB)³ G yrs²/Mo] where Mo is the mass of the sun.

Thus, (MA + MB)/Mo = (TA/TB)³ = (TB/TA)³.

Hence, (MA + MB)/Mo = [(TB/A)/(TA/A)]³ = (a/A)³, where a is the separation between the stars.

Therefore, (MA + MB)/Mo = (a/A)³.

Hence, the required relation is (MA + MB)/Mo = (a/A)³ T² yrs.

This relation is identical to that for the Sun-Earth system, with a different factor in front of it.

Part (ii) Let the distance to the binary system be D.

Therefore, D = 1/P = 2.65 kpc (kiloparsec).

Now, let M be the relative mass of the two components of the binary system.

Therefore, M = MB/MA. By Kepler's law, we have TA/TB = (MA/MB)^(1/3).

Therefore, TB = TA (MA/MB)^(2/3) and rg = a (MB/(MA + MB)).

We are given a = 7.62" and P = 0.377".

Therefore, TA = (P/A)" = 7.62 × (A/206265)" = 0.000037 A, and rg = 0.0000138 a.

Therefore, TB = TA(MA/MB)^(2/3) = (0.000037 A)(M)^(2/3), and rg = 0.0000138 a = 0.000105 A(M/(1 + M)).

We are required to find a/A = rg/TA. Hence, (a/A) = (rg/TA)(1/P) = 0.000105/0.000037(0.377) = 7.20.

Therefore, the required ratio is 7.20.

Part (iii) The ratio of the distances of A and B from the center  of mass is 0.466.

Therefore, let x be the distance of A from the center of mass.

Hence, the distance of B from the center of mass is 1 - x.

Therefore, MAx = MB(1 - x), and x/(1 - x) = 0.466.

Therefore, x = 0.316.

Hence, MA/MB = (1 - x)/x = 1.16.

Therefore, MA + MB = Mo.

Thus, MA = Mo/(1 + 1.16) = 0.413 Mo and MB = 0.587 Mo.

Therefore, MA/Mo = 0.413 and MB/Mo = 0.587.

(i) The required relation is (MA + MB)/Mo = (a/A)³ T² yrs.

(ii) The required ratio is 7.20.

(iii) MA/Mo = 0.413 and MB/Mo = 0.587.

Learn more about center of mass

brainly.com/question/8662931

#SPJ11

What's the numerator for the following
rational expression?
3 5 ?
+
k
74
k
k
Enter the correct answer.

Answers

The numerator for the given rational expression is 3 + 5k.

In the given rational expression, (3 + 5k) represents the numerator. The numerator is the part of the fraction that is located above the division line or the horizontal bar.

In this case, the expression 3 + 5k is the numerator because it is the sum of 3 and 5k. The term 3 is a constant, and 5k represents the product of 5 and k, which is a variable.

The numerator consists of the terms 3 and 5k, which are combined using addition (+). Therefore, the numerator can be written as 3 + 5k.

To clarify, the numerator is the value that contributes to the overall value of the fraction. In this case, it is the sum of 3 and 5k.

Hence, the correct answer for the numerator of the given rational expression (3 + 5k) / (74/k^2) is 3 + 5k.

For more such questions on rational expression, click on:

https://brainly.com/question/29061047

#SPJ8

emember that rectangular form is z=a+bi and that polar form is
z=r(cosθ+isinθ)
Take following number in polar form and convert it to
rectangular form:
3.61(cos8+isin8)
(Round to the nearest hundredt

Answers

The polar form of a complex number is given byz=r(cosθ+isinθ). Therefore, the answer is z = 3.5800 + i0.5022.

Here,

r = 3.61 and

θ = 8°

So, the polar form of the complex number is3.61(cos8+isin8)We have to convert the given number to rectangular form. The rectangular form of a complex number is given

byz=a+bi,

where a and b are real numbers. To find the rectangular form of the given complex number, we substitute the values of r and θ in the formula for polar form of a complex number to obtain the rectangular form.

z=r(cosθ+isinθ)=3.61(cos8°+isin8°)

Now,

cos 8° = 0.9903

and

sin 8° = 0.1392So,

z= 3.61(0.9903 + i0.1392)= 3.5800 + i0.5022

Therefore, the rectangular form of the given complex number is

z = 3.5800 + i0.5022

(rounded to the nearest hundredth).

Given complex number in polar form

isz = 3.61(cos8+isin8)

The formula to convert a complex number from polar to rectangular form is

z = r(cosθ+isinθ) where

z = x + yi and

r = sqrt(x^2 + y^2)

Using the above formula, we have:

r = 3.61 and

θ = 8°

cos8 = 0.9903 and

sin8 = 0.1392

So the rectangular form

isz = 3.61(0.9903+ i0.1392)

z = 3.5800 + 0.5022ii.e.,

z = 3.5800 + i0.5022.

(rounded to the nearest hundredth).Therefore, the answer is z = 3.5800 + i0.5022.

To know more about number visit:

https://brainly.com/question/3589540

#SPJ11

Let A, B be nonempty subsets of R that are bounded below. Prove that if A ⊂ B, then inf A ≥ inf B.

Answers

Therefore, we have proved that if A ⊂ B, then inf A ≥ inf B.

Let A, B be nonempty subsets of R that are bounded below. We have to prove that if A ⊂ B, then inf A ≥ inf B.

Let's begin the proof:

We know that since A is a non-empty subset of R and is bounded below, therefore, inf A exists.

Similarly, since B is a non-empty subset of R and is bounded below, therefore, inf B exists. Also, we know that A ⊂ B, which means that every element of A is also an element of B. As a result, we can conclude that inf B ≤ inf A because inf B is less than or equal to each element of B and since each element of B is an element of A, therefore, inf B is less than or equal to each element of A as well.

Therefore, we have proved that if A ⊂ B, then inf A ≥ inf B.

To know more about subsets visit:

https://brainly.com/question/28705656

#SPJ11

Let V be the vector space of polynomials in t with inner product defined by ⟨f,g⟩=∫ −1
1

f(t)g(t)dt Apply the Gram-Schmidt algorith to the set {1,t,t 2
,t 3
} to obtain an orthonormal set {p 0

,p 1

,p 2

,p 3

}
Previous question

Answers

The Gram-Schmidt algorithm is a way to transform a set of linearly independent vectors into an orthogonal set with the same span. Let V be the vector space of polynomials in t with inner product defined by ⟨f,g⟩=∫ −1
1
. We need to apply the Gram-Schmidt algorithm to the set {1, t, t², t³} to obtain an orthonormal set {p₀, p₁, p₂, p₃}. Here's the To apply the Gram-Schmidt algorithm, we first choose a nonzero vector from the set as the first vector in the orthogonal set. We take 1 as the first vector, so p₀ = 1.To get the second vector, we subtract the projection of t onto 1 from t. We know that the projection of t onto 1 is given byproj₁

(t) = (⟨t, 1⟩ / ⟨1, 1⟩) 1= (1/2) 1, since ⟨t, 1⟩ = ∫ −1
1

t dt = 0 and ⟨1, 1⟩ = ∫ −1
1


t² dt = 2/3 and ⟨t², p₁⟩ = ∫ −1
1


1

t³ dt = 0, ⟨t³, p₁⟩ = ∫ −1
1

(t³)(sqrt(2)(t - 1/2)) dt = 0, and ⟨t³, p₂⟩ = ∫ −1
1
​To know more about polynomials visit:

https://brainly.com/question/11536910

#SPJ11

If log 2 = x and log, 3 = y, evaluate the following in terms of x and y: (a) log, 24 = (b) log, 1296 (c) logt log, 27 (d) log, 2 = = =

Answers

The expression log 24 is 3x + y and log 1296 is 4x + 4y. The expression logt log 27 cannot be simplified further without knowing the specific base value of logarithm t.

To evaluate the expressions in terms of x and y, we can use the properties of logarithms. Here are the evaluations:

(a) log 24:

We can express 24 as a product of powers of 2 and 3: 24 = 2^3 * 3^1.

Using the properties of logarithms, we can rewrite this expression:

log 24 = log(2^3 * 3^1) = log(2^3) + log(3^1) = 3 * log 2 + log 3 = 3x + y.

(b) log 1296:

We can express 1296 as a power of 2: 1296 = 2^4 * 3^4.

Using the properties of logarithms, we can rewrite this expression:

log 1296 = log(2^4 * 3^4) = log(2^4) + log(3^4) = 4 * log 2 + 4 * log 3 = 4x + 4y.

(c) logt log 27:

We know that log 27 = 3 (since 3^3 = 27).

Using the properties of logarithms, we can rewrite this expression:

logt log 27 = logt 3 = logt (2^x * 3^y).

We don't have an explicit logarithm base for t, so we can't simplify it further without more information.

(d) log 2 = = =

It seems there might be a typographical error in the expression you provided.

To know more about logarithms refer here:

https://brainly.com/question/30226560#

#SPJ11

find the common factor between
36y2z2,24yz,30y3z4

Answers

The common factor among the expressions 36y^2z^2, 24yz, and 30y^3z^4 is 2 * 3 * y * z^2.

To find the common factors among the given expressions, we need to factorize each expression and identify the common factors.

Let's factorize each expression:

36y^2z^2:

We can break down 36 into its prime factors as 2^2 * 3^2. So, we have:

36y^2z^2 = (2^2 * 3^2) * y^2 * z^2 = (2 * 2 * 3 * 3) * y^2 * z^2 = 2^2 * 3^2 * y^2 * z^2

24yz:

We can break down 24 into its prime factors as 2^3 * 3. So, we have:

24yz = (2^3) * 3 * y * z = 2^3 * 3 * y * z

30y^3z^4:

We can break down 30 into its prime factors as 2 * 3 * 5. So, we have:

30y^3z^4 = (2 * 3 * 5) * y^3 * z^4 = 2 * 3 * 5 * y^3 * z^4

Now, let's compare the expressions and identify the common factors:

The common factors among the given expressions are 2, 3, y, and z^2. These factors appear in each of the expressions: 36y^2z^2, 24yz, and 30y^3z^4.

Therefore, the common factor between 36y^2z^2, 24yz, and 30y^3z^4 is 2 * 3 * y * z^2.

Learn more about expressions here:

https://brainly.com/question/28170201

#SPJ11

Which of the following statements is ALWAYS true? Pr[A∪B]=Pr[A]+Pr[B]
Pr[A∩B]=Pr[A]⋅Pr[B]
Pr[A∣B]=Pr[B∣A]
Pr[A]=1−Pr[A′ ]

Answers

The correct option is, “Pr[A∩B]=Pr[A]⋅Pr[B].” as it is always true.

The correct option is, “Pr[A∩B]=Pr[A]⋅Pr[B]. Probabilities of A and B are the probability of two events in which the probability of A can occur, B can occur, or both can occur.

Therefore, the probability of A or B or both happening is the sum of their probabilities. In mathematical notation, it is stated as: Pr[A∪B]=Pr[A]+Pr[B] The probability of the intersection of A and B is the probability of both A and B happening.

The probability of both happening is calculated by multiplying their probabilities. This relationship can be expressed as: Pr[A∩B]=Pr[A]⋅Pr[B] The probability of A happening given that B has occurred is written as: Pr[A∣B]=Pr[A∩B]/Pr[B]The probability of A not happening is written as A′.

Therefore, the probability of A happening is the complement of the probability of A not happening. This relationship is expressed as: Pr[A]=1−Pr[A′]

Hence, the correct option is, “Pr[A∩B]=Pr[A]⋅Pr[B].” as it is always true.

To know more about always visit:

brainly.com/question/31721690

#SPJ11

A Gallup poll of 1500 adults 18 and older living in all 50 states found that 3% of US adults believe that high school students are very prepared for success in college, and 22% believe graduates are prepared. 56% believe high school graduates are somewhat prepared and 17% believe they are not prepared at all. 5. What is the population represented here? 6. What is the sample? 7. Determine whether the poll was fair or biased. Justify your choice. 8. If the margin of error is reported to be 2.6%, calculate a confidence interval for the proportion of Americans who believe high school graduates are prepared for college. 9. Interpret the confidence interval for the above interval in a meaningful sentence. Remember the margin of error provided is 95% certain.

Answers

5. The population represented here is all adults 18 and older living in all 50 states in the United States.

6. The sample is the 1,500 adults 18 and older who participated in the Gallup poll.

8. the confidence interval for the proportion of Americans who believe high school graduates are prepared for college is approximately (0, 0.02634) with a 95% confidence level.

7. To determine whether the poll was fair or biased, we need more information about the methodology used for sampling. The sample should be representative of the population to ensure fairness. If the sampling method was random and ensured a diverse and unbiased representation of the adult population across all 50 states, then the poll can be considered fair. However, without specific information about the sampling methodology, it is difficult to make a definitive judgment.

8. To calculate the confidence interval, we can use the formula:

  Margin of Error = z * √(p * (1 - p) / n)

   Where:

   - z is the z-score corresponding to the desired confidence level (for 95% confidence, it is approximately 1.96).

   - p is the proportion of adults who believe high school graduates are prepared.

   - n is the sample size.

   We can rearrange the formula to solve for the proportion:

   p = (Margin of Error / z)²

   Plugging in the values:

   p = (0.026 / 1.96)² ≈ 0.0003406

   The confidence interval can be calculated as follows:

   Lower bound = p - Margin of Error

   Upper bound = p + Margin of Error

   Lower bound = 0.0003406 - 0.026 ≈ -0.0256594

   Upper bound = 0.0003406 + 0.026 ≈ 0.0263406

However, since the proportion cannot be negative or greater than 1, we need to adjust the interval limits to ensure they are within the valid range:

Adjusted lower bound = max(0, Lower bound) = max(0, -0.0256594) = 0

Adjusted upper bound = min(1, Upper bound) = min(1, 0.0263406) ≈ 0.0263406

Therefore, the confidence interval for the proportion of Americans who believe high school graduates are prepared for college is approximately (0, 0.02634) with a 95% confidence level.

9. This confidence interval suggests that with 95% confidence, the proportion of Americans who believe high school graduates are prepared for college lies between 0% and 2.634%. This means that based on the sample data, we can estimate that the true proportion of Americans who believe high school graduates are prepared falls within this range. However, we should keep in mind that there is some uncertainty due to sampling variability, and the true proportion could be slightly different.

Learn more about confidence interval here:

https://brainly.com/question/32546207

#SPJ11

Define a set T by {1} ∈ T (note the set braces!) and if {k} ∈ T,
then {1, 2, ..., k + 1} ∈ T. What is |T|?

Answers

The cardinality of set T, denoted as |T|, is infinite or uncountably infinite.

The set T is defined recursively as follows:

The set {1} is an element of T.

If {k} is an element of T, then the set {1, 2, ..., k + 1} is also an element of T.

Starting with {1}, we can generate new sets in T by applying the recursive rule. For example:

{1} ∈ T

{1, 2} ∈ T

{1, 2, 3} ∈ T

{1, 2, 3, 4} ∈ T

...

Each new set in T has one more element than the previous set. As a result, the cardinality of T is infinite or uncountably infinite because there is no upper limit to the number of elements in each set. Therefore, |T| cannot be determined as a finite value or a countable number.

You can learn more about cardinality  at

https://brainly.com/question/30425571

#SPJ11

Evaluate functions from their graph h (0)

Answers

The numeric value of the function h(x) at x = 0 is given as follows:

h(0) = 5.

How to obtain the numeric value of the function?

The graph of the function in this problem is given by the image presented at the end of the answer.

At x = 0, we have that the function is at the y-axis.

The point marked on the y-axis is y = 5, hence the numeric value of the function h(x) at x = 0 is given as follows:

h(0) = 5.

A similar problem, also featuring numeric values of a function, is given at brainly.com/question/28367050

#SPJ1

Which of the following rates are equivalent to the rate 55 pounds per 44 months?
Check ALL boxes that correspond to correct answers.
5454 pounds per month
1.251.25 pounds per month
10 pounds every 8 months
one pound per 4545 months
60 pounds per year

Answers

To find the equivalent rates to the given rate 55 pounds per 44 months, we need to convert the given rate into different units. Let's begin:To convert the given rate into pounds per month, we multiply the numerator and denominator by 12 (number of months in a year).

$$\frac{55 \text{ pounds}}{44 \text{ months}}\cdot\frac{12 \text{ months}}{12 \text{ months}}=\frac{660 \text{ pounds}}{528 \text{ months}}

=\frac{55}{44}\cdot\frac{12}{1}

= 82.5\text{ pounds per month}$$Therefore, 54 and 1.25 pounds per month are not equivalent to the rate 55 pounds per 44 months.Therefore, 10 pounds every 8 months is equivalent to the rate 55 pounds per 44 months.To convert the given rate into pounds per 45 months, we multiply the numerator and denominator by 45 (number of months):$$\frac{55 \text{ pounds}}{44 \text{ months}}\cdot\frac{45 \text{ months}}{45 \text{ months}}=\frac{2475 \text{ pounds}}{1980 \text{ months}}

=\frac{55}{44}\cdot\frac{45}{1}

= 68.75\text{ pounds per 45 months}$$Therefore, one pound per 45 months is not equivalent to the rate 55 pounds per 44 months.Thus, the following rates are equivalent to the rate 55 pounds per 44 months:$$\text{• }82.5\text{ pounds per month}$$$$\text{• }10\text{ pounds every 8 months}$$Hence, the correct answers are:5454 pounds per month10 pounds every 8 months.

To know more about pounds visit:
https://brainly.com/question/29173298

#SPJ11

The product of two consecutive odd integers is 35 . If x is the smallest of the integers, write an equation in terms of x that describes the situation, and then find all such pairs of integers. The equation that describes the situation is The positive set of integers is The negative set of integers is

Answers

The equation that describes the situation is: x(x + 2) = 35.

Let x be the smallest odd integer. Since we are looking for consecutive odd integers, the next odd integer would be x + 2.

The product of these two consecutive odd integers is given as 35. So, we can write the equation x(x + 2) = 35 to represent the situation.

To find the solutions, we solve the quadratic equation x^2 + 2x - 35 = 0. This equation can be factored as (x + 7)(x - 5) = 0.

Setting each factor equal to zero, we get x + 7 = 0 or x - 5 = 0. Solving for x, we find x = -7 or x = 5.

Therefore, the positive set of integers that satisfies the equation is {5, 7}, and the negative set of integers is {-7, -5}. These are the pairs of consecutive odd integers whose product is 35.

to learn more about equation click here:

brainly.com/question/29174899

#SPJ11

Problem 15. (6 points) A biologist has been observing a tree's height. 12 months into the observation, the tree was 12.72 feet tall. 20 months into the observation, the tree was 13.6 foot tall Let z be the number of months passed since the observations started, and let y be the tree's height at that time. Use a linear equation to model the tree's height as the number of months pass a. This line's slope-intercept equation is b. 27 months after the observations started, the tree would be feet in height. 6 months after the observation started, the tree would be 18 feet tall, Note: You can earn partial credit on this problem.

Answers

6 months after the observation started, the tree would be approximately 12.06 feet tall.

To model the tree's height as the number of months pass, we need to find the equation of a straight line that represents the relationship between the number of months (z) and the tree's height (y).

Let's start by finding the slope of the line. The slope (m) of a line can be calculated using the formula:

m = (y2 - y1) / (z2 - z1)

where (z1, y1) and (z2, y2) are two points on the line.

Using the given data:

(z1, y1) = (12, 12.72)

(z2, y2) = (20, 13.6)

We can plug these values into the slope formula:

m = (13.6 - 12.72) / (20 - 12)

 = 0.88 / 8

 = 0.11

So the slope of the line is 0.11.

Now, we can use the point-slope form of a linear equation to find the equation of the line:

y - y1 = m(z - z1)

Using the point (z1, y1) = (12, 12.72):

y - 12.72 = 0.11(z - 12)

Next, let's simplify the equation:

y - 12.72 = 0.11z - 1.32

Now, let's rearrange the equation to the slope-intercept form (y = mx + b):

y = 0.11z + (12.72 - 1.32)

y = 0.11z + 11.40

So, the slope-intercept equation that models the tree's height as the number of months pass is y = 0.11z + 11.40.

Now, let's answer the given questions:

a. 27 months after the observations started, we can plug z = 27 into the equation:

y = 0.11 * 27 + 11.40

y = 2.97 + 11.40

y = 14.37

Therefore, 27 months after the observations started, the tree would be approximately 14.37 feet in height.

b. 6 months after the observation started, we can plug z = 6 into the equation:

y = 0.11 * 6 + 11.40

y = 0.66 + 11.40

y = 12.06

Therefore, 6 months after the observation started, the tree would be approximately 12.06 feet tall.

Learn more about linear equation here:

https://brainly.com/question/32634451

#SPJ11

Insurance policv holderc / rlsime in 2017 Average car insurance cost and claim value by age group (2017) No. of policy holders No. of claims On average, for which age group must a driver have the highest number of accident-free years before making a claim for the insurance company to make a profit? Insurance policy holders / claims in 2017 Average car insurance cost and claim value by age group (2017) No. of policy holders No. of claims In 2017, 4.5\% of policy holders aged 18-21 made insurance claims. What was the average number of claims made per policy holder?

Answers

On average, for which age group must a driver have the highest number of accident-free years before making a claim for the insurance company to make a profit.

The age group for which a driver must have the highest number of accident-free years before making a claim for the insurance company to make a profit is 65 years and above. Since the insurance claims decline as the age increases, hence the policyholders of this age group will make fewer claims.

The average number of claims made per policyholder in 2017, 4.5% of policyholders aged 18-21 made insurance claims is 0.045.What is the No. of policyholders and claims for the Average car insurance cost and claim value by age group (2017)?Sorry, there is no data provided for No. of policyholders and claims for the Average car insurance cost and claim value by age group (2017).

To know more about number visit :

https://brainly.com/question/3589540

#SPJ11

3. Calculate the Reynolds number, Re for water flow in a circular pipe. The diameter of the pipe is 50 mm, the density of water is 998 kg/m", the volumetric oil flowrate is 720 L/min, and the dynamic viscosity of water is 1.2 centipoise

Answers

The Reynolds number (Re) for water flow in the circular pipe is approximately 160,920.

The Reynolds number (Re) is calculated using the formula:

Re = (density * velocity * diameter) / viscosity

Given:

Diameter of the pipe = 50 mm = 0.05 m

Density of water = 998 kg/m^3

Volumetric flow rate of water = 720 L/min = 0.012 m^3/s

Dynamic viscosity of water = 1.2 centipoise = 0.0012 kg/(m·s)

First, we need to convert the volumetric flow rate from L/min to m^3/s:

Volumetric flow rate = 720 L/min * (1/1000) m^3/L * (1/60) min/s = 0.012 m^3/s

Now we can calculate the velocity:

Velocity = Volumetric flow rate / Cross-sectional area

Cross-sectional area = π * (diameter/2)^2

Velocity = 0.012 m^3/s / (π * (0.05/2)^2) = 3.83 m/s

Finally, we can calculate the Reynolds number:

Re = (density * velocity * diameter) / viscosity

Re = (998 kg/m^3 * 3.83 m/s * 0.05 m) / (0.0012 kg/(m·s)) = 160,920.

LEARN MORE ABOUT Reynolds number here: brainly.com/question/31298157

#SPJ11

The answer above is NOT correct. Let f(x)=11x3−12. Find f−1(x) f−1(x)=

Answers

The inverse function of [tex]\( f(x) = 11x^3 - 12 \)[/tex]  is given by [tex]\( f^{-1}(x) = \sqrt[3]{\frac{x + 12}{11}} \)[/tex]

To find the inverse of the function \( f(x) = 11x^3 - 12 \), we can follow these steps:

Step 1: Replace \( f(x) \) with \( y \):

\( y = 11x^3 - 12 \)

Step 2: Swap \( x \) and \( y \):

\( x = 11y^3 - 12 \)

Step 3: Solve the equation for \( y \):

\( 11y^3 = x + 12 \)

Step 4: Divide both sides by 11:

\( y^3 = \frac{x + 12}{11} \)

Step 5: Take the cube root of both sides:

\( y = \sqrt[3]{\frac{x + 12}{11}} \)

Therefore, the inverse function of \( f(x) = 11x^3 - 12 \) is given by:

\( f^{-1}(x) = \sqrt[3]{\frac{x + 12}{11}} \)

Please note that the cube root symbol (\sqrt[3]{}) represents the principal cube root, which means it gives the real root of the equation.

Learn more about inverse function here

https://brainly.com/question/11735394

#SPJ11

Differential Equation
Non-homogeneous linear equation with constant coefficients
Using Reduction of Order find the yc,yp and general solution and particular solution
1. (D2 - 1)y = x - 1.
2. (D2 - 4D + 4)y =ex
3. (D2—5D + 6)y = 2ex.
4. (D2+4)y = sin x.
5. (D2+ l)y = sec x.

Answers

The general solution and particular solution are;

1. [tex]y(x) = c_1e^x + c_2e^(-x) + xe^x - e^x - C_1e^(-x) + C_2e^x - 1.[/tex]

2. [tex]y = c_1 e^(2x) + c_2 x e^(2x) + e^x[/tex]

3. [tex]y = (c_1 + c_3) e^(2x) + (c_2 + c_4) e^(3x) + (1/2) e^x[/tex]

4[tex]y= c_1*cos(2x) + c_2*sin(2x) + (1/10)*sin(x)*cos(2x) * [c_1*cos(2x) + c_2*sin(2x)][/tex]

5. [tex]y_p = (1/10)*sin(x)*cos(2x) * [c_1*cos(2x) + c_2*sin(2x)][/tex]

1) Given Differential equation is (D² - 1)y = x - 1

The solution is obtained by applying the Reduction of Order method and assuming that [tex]y_2(x) = v(x)e^x[/tex]

Therefore, the general solution to the homogeneous equation is:

[tex]y_c(x) = c_1e^x + c_2e^(-x)[/tex]

[tex]y_p = v(x)e^x[/tex]

Substituting :

[tex](D^2 - 1)(v(x)e^x) = x - 1[/tex]

Taking derivatives: [tex](D - 1)(v(x)e^x) = ∫(x - 1)e^x dx = xe^x - e^x + C_1D(v(x)e^x) = xe^x + C_1e^(-x)[/tex]

Integrating :

[tex]v(x)e^x = ∫(xe^x + C_1e^(-x)) dx = xe^x - e^x - C_1e^(-x) + C_2v(x) = x - 1 - C_1e^(-2x) + C_2e^(-x)[/tex]

Therefore, the particular solution is:

[tex]y_p(x) = (x - 1 - C_1e^(-2x) + C_2e^(-x))e^x.[/tex]

The general solution to the differential equation is:

[tex]y(x) = c_1e^x + c_2e^(-x) + xe^x - e^x - C_1e^(-x) + C_2e^x - 1.[/tex]

2. [tex](D^2 - 4D + 4)y =e^x[/tex]

[tex]y_p = e^x[/tex]

The general solution is the sum of the complementary function and the particular integral, i.e.,

[tex]y = y_c + y_p[/tex]

[tex]y = c_1 e^(2x) + c_2 x e^(2x) + e^x[/tex]

3. [tex](D^2-5D + 6)y = 2e^x.[/tex]

[tex]y = y_c + y_py = c_1 e^(2x) + c_2 e^(3x) + c_3 e^(2x) + c_4 e^(3x) + (1/2) e^x[/tex]

[tex]y = (c_1 + c_3) e^(2x) + (c_2 + c_4) e^(3x) + (1/2) e^x[/tex]

Hence, the general solution is obtained.

4.[tex](D^2+4)y = sin x.[/tex]

[tex]y_p = (1/10)*sin(x)*cos(2x) * [c_1*cos(2x) + c_2*sin(2x)][/tex]

thus, the general solution is the sum of the complementary and particular solutions:

[tex]y = y_c + y_p \\\\y= c_1*cos(2x) + c_2*sin(2x) + (1/10)*sin(x)*cos(2x) * [c_1*cos(2x) + c_2*sin(2x)][/tex]

5. [tex](D^2+ 1)y = sec x.[/tex]

[tex]y_p = (1/10)*sin(x)*cos(2x) * [c_1*cos(2x) + c_2*sin(2x)][/tex]

To know more about differentiation, visit:

brainly.com/question/32625961

#SPJ4

An executive committee consists of 13 members: 6 men and 7 women. 5 members are selected at random to attend a meeting in Hawail. The names are drawn from a hat. What is the probability that all 5 selected are men? The probability that all selected are men is (Simplify your answer. Type an integer or a simplified fraction)

Answers

There are 6 men and 7 women on the executive committee. 5 of them are randomly chosen to attend a meeting in Hawaii, so we have a sample size of 13, and we are selecting 5 from this sample to attend the meeting.

The sample space is the number of ways we can select 5 people from 13:13C5 = 1287. For the probability that all 5 members selected are men, we need to consider only the ways in which we can select all 5 men:6C5 x 7C0 = 6 x 1

= 6.Therefore, the probability of selecting all 5 men is 6/1287. Answer:6/1287.

To know more about meeting visit:
https://brainly.com/question/6428649

#SPJ11

- How many ways can you select a group/set of 5 players, without regard to order, out of a total of 12 ? Answer: How many ways can you assign by position/Order Matters (e.g., Left \& Right Tackles; Left \& Right Guards \& center) 5 players out of a total of 12? Answer:

Answers

The number of ways of selecting a group of 5 players out of a total of 12 without regard to order. To solve this problem, we can use the combination formula, which is:nCk= n!/(k!(n-k)!)where n is the total number of players and k is the number of players we want to select.

Substituting the given values into the formula, we get:

12C5= 12!/(5!(12-5)!)

= (12x11x10x9x8)/(5x4x3x2x1)

= 792.

There are 792 ways of selecting a group of 5 players out of a total of 12 without regard to order. The question asks us to determine the number of ways of assigning 5 players by position out of a total of 12. Since order matters in this case, we can use the permutation formula, which is: nPk= n!/(n-k)!where n is the total number of players and k is the number of players we want to assign to specific positions.

Substituting the given values into the formula, we get:

12P5= 12!/(12-5)!

= (12x11x10x9x8)/(7x6x5x4x3x2x1)

= 95,040

There are 95,040 ways of assigning 5 players by position out of a total of 12.

To know more about combination visit:

https://brainly.com/question/31586670

#SPJ11

Find the common difference, \( d \), in the given sequence: \[ a_{1}=3 x+4 y, \quad a_{2}=7 x+5 y, \quad a_{3}=11 x+6 y \]

Answers

A sequence is defined as a list of numbers in a particular order, where each number is referred to as a term in the sequence. The sequence's terms are generated by a formula that is dependent on a specific pattern and a common difference.

The difference between any two consecutive terms of a sequence is referred to as the common difference. In this case, we have the sequence \[a_{1}=3 x+4 y, \quad a_{2}=7 x+5 y, \quad a_{3}=11 x+6 y\]. Using the formula to determine the common difference of an arithmetic sequence, we have that the common difference is:\[{a_{n}} - {a_{n - 1}} = {a_{2}} - {a_{1}}\]\[\begin{aligned}({a_{n}} - {a_{n - 1}}) &= [(11 x+6 y) - (7 x+5 y)] \\ &= 4x + y\end{aligned}\], the common difference of the given sequence is \[4x+y\].The answer is less than 100 words, but it is accurate and comprehensive.

To know more about numbers visit:

https://brainly.com/question/24908711

#SPJ11

hurry please! show all work!

Answers

The surface area of the sphere is 1018.29 [tex]cm^{2}[/tex]The volume of the sphere is 3054.86 [tex]cm^{3}[/tex]

What is Sphere?

Sphere is a three-dimensional geometrical figure that is round in shape. The sphere is three dimensional solid, that has surface area and volume.

How to determine this

The surface area of a sphere = [tex]4\pi r^{2}[/tex]

Where π = 22/7

r = Diameter/2 = 18/2 = 9 cm

Surface area = 4 * 22/7 * [tex]9 ^{2}[/tex]

Surface area = 88/7 * 81

Surface area = 7128/7

Surface area = 1018.29 [tex]cm^{2}[/tex]

To find the volume of the sphere

Volume of sphere = [tex]\frac{4}{3} * \pi *r^{3}[/tex]

Where π = 22/7

r = 9 cm

Volume of sphere = 4/3 * 22/7 * [tex]9^{3}[/tex]

Volume of sphere = 88/21 * 729

Volume of sphere = 64152/21

Volume of sphere = 3054.86 [tex]cm^{3}[/tex]

Read more about Sphere

https://brainly.com/question/32275231

#SPJ1

Other Questions
In a small hydro power station , electricity generation is highly related to the performance of a turbine . Thus , reliability and quality are very crucial . As an example , reliability function , R ( t ) of a turbine represented by the following equation : R ( 1 ) = ( 1-1 / t . ) 01to Where , to is the maximum life of the blade 1 . Prove that the blades are experiencing wear out . ii . Compute the Mean Time to Failure ( MTTF ) as a function of the maximum life . iii . If the maximum life is 2000 operating hours , determine the design life for a reliability of 0.90 ? 4. Write a vector equation of the line in each case a) Line through the points A(4,5,3) and B(3,7,1) b) Line parallel to the y-axis and containing the point (1,3,5) c) perpendicular to the y-plane and through (0,1,2) 5. Write the scalar equation of this plane [x,y,z]=[2,1,4]+i[2,5,3]+s[1,0,5] Q4. A solid shaft of diameter 50mm and length of 300mm is subjected to an axial load P = 200 kN and a torque T = 1.5 kN-m. (a) Determine the maximum normal stress and the maximum shear stress. (b) Repeat part (a) but for a hollow shaft with a wall thickness of 5 mm. discuss the current issue of equal pay for work of equal valueand pay compression Question 35 The enzyme responsible for digesting sucrose is known as sucrase which breaks sucrose down into O glucose and galactose O glucose and glucose O glucose and fructose O fructose and fructose simply imaging something pleasant is not sufficient to stimulate the release of dopamine in the nucleus accumbens; the event must actually be experienced. a. true b. false A shaft is carried on two bearings which are 370 mm apart. At the centre is a gear with a pitch circle diameter of 200 mm. The gear causes a radial load of 0,8 kN, an end thrust of 2 kN and a torque of 240 N.m. The speed of rotation is 500 r/min. If the allowable stress in the shaft is 42 MPa in shear, find a suitable shaft diameter and select a suitable ball bearing for each end of the shaft. Which of the following issues would not be included in a food safety management system?The number of pieces of egg shell in powdered milk. The heating instructions on the package say "do not microwave this food" but the consumer microwaves and then eats the food. The concentration of N2(g) in a modified atmosphere package. The receiving temperature of a fluid milk product arriving at an ice cream manufacturer. Regarding single-speed bay service layout, which of the following is true?A. A good working area around a vehicle is necessaryB. All of the aboveC. It is bound to operate where vehicle population density is highD. Designed to achieve continuous repeating of certain types of servicing workE. The equipment is distributed along a line with a continuous flow of vehicles move along the line how much of the increase in consumer surplus was additional consumer surplus for people who would have bought bottled water at $2 per bottle anyway? multiple choice $25 $300 $50 $600 A 50-ree phase induction motor is drawing 60A at 0 85 FF 19 pog fixlar) V. The stator cupper losses are 2 kW, and the s W The friction and windage losses are 600 W, the core losses my are negligible. The air-gap power Pag in kW is b) 36.8 a) 38.6 11 1. Describe a scenario in which it would be appropriate to use azithromycin to treat AOM.2. Review the literature for evidence supporting antibiotic prophylaxis therapy in children with frequent ear infections. Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters the turbine at 10MPa and 500 C and is cooled in the condenser at a pressure of 20kPa.a) determine the quality of steam at the turbine exitb) determine the thermal efficiency of the cyclec) determine the mass flow rate of the steam The dry products of combustion have the following molar percentages: CO 2.7% 025.3% H20.9% CO2 16.3% N2 74.8% Find, for these conditions: (a) mixture gravimetric analysis; (b) mixture molecular weight, lbm/lbmole; and (c) mixture specific gas constant R, ft lbf/Ibm R. Bacteria use a number of ways to control gene expression. The enzymes required for the biosynthesis of the amino acid tryptophan are synthesized only if tryptophan is not available in the growth medium, ie trp operon is expressed only in the absence of tryptophan. The trp operon of E. coli is not only controlled through a regulatory protein but also by transcription attenuation.Answer all questions-1. What is gene expression?2. List different methods that bacteria can use to regulate gene expression at the transcription step.3. Describe the regulation of trp operon by attenuating transcription in the presence of tryptophan.4. Describe the regulation of trp operon by attenuating transcription in the absence of tryptophan. For the reaction Use the References to access important values if needed for this question. CH (9) + HO(g) CH, CHOH(9) AG=-4.62 kJ and AS-125.7 J/K at 326 K and 1 atm. This reaction is In Windsor area of New South Wales, flood flow needs to be drained from a small locality at a rate of 120 m/s in uniform flow using an open channel (n = 0.018). Given the bottom slope as 0.0013 calculate the dimensions of the best cross section if the shape of the channel is (a) circular of diameter D and (b) trapezoidal of bottom width b. (Related to Checkpoint 5.6) (Solving for i) You are considering investing in a security that will pay you 5000$ in 31 years. a.If the appropriate discount rate is 11 percent, what is the present value of this investment? b.Assume these investments sell for $948 in return for which you receive $5000 in 31 years. What is the rate of return investors earn on this investment if they buy it for 948$? Question content area bottom Part 1 a.If the appropriate discount rate is 11 percent, the present value of this investment is $?enter your response here. (Round to the nearest cent.) 5. Computer files A,B and C occupies 31240 kb,1267000 bytes and 1.317 GB of memory respectively. Calculate in megabytes, the amount of storage space left after moving all the three files into a 2gb capacity storage device. Use the ions and match them to the appropriate scenario. What ion is important in muscle contraction cycle? [Choose his ion passes through the resting neuron's cell membrane the easiest. [Choose [Choo