If an object on Earth weighs 100N what is its weight in pounds?

Answers

Answer 1

Answer:

10.2 lbs

Explanation:

m=F/g

m=100N/9.8

m=10.2040816 lbs

Answer 2

The weight of the object in pounds will be 220.46 pounds m/s².

We have an object on Earth whose weight is 100 N.

We have to determine its weight in pounds.

Pounds is used to represent which Physical quantity ?

Pounds is used to represent the mass of the body.

According tot the question -

Weight on earth = 100 N = 100 Kg . m/s²

1 Kg = 2.2046 Pounds

Therefore, the weight on earth in pounds will be = 100 x 2.2046 pounds m/s² = 220.46 pounds m/s².

Hence, the weight of the object in pounds will be 220.46 pounds m/s².

To solve more questions on Unit conversion, visit the link below-

https://brainly.com/question/14024722

#SPJ2


Related Questions

a heat engine with an efficiency of 30.0% performs 2500 j of work. how much heat is discharged to the lower temperature reservoir

Answers

Answer:

Q₂ = 5833.33 J

Explanation:

First we need to find the energy supplied to the heat engine. The formula for the efficiency of the heat engine is given as:

η = W/Q₁

where,

η = efficiency of engine = 30% = 0.3

W = Work done by engine = 2500 J

Q₁ = Heat supplied to the engine = ?

Therefore,

0.3 = 2500 J/Q₁

Q₁ = 2500 J/0.3

Q₁ = 8333.33 J

Now, we find the heat discharged to lower temperature reservoir by using the formula of work:

W = Q₁ - Q₂

Q₂ = Q₁ - W

where,

Q₂ = Heat discharged to the lower temperature reservoir = ?

Therefore,

Q₂ = 8333.33 J - 2500 J

Q₂ = 5833.33 J

You have a 2m long wire which you will make into a thin coil with N loops to generate a magnetic field of 3mT when the current in the wire is 1.2A. What is the radius of the coils and how many loops, N, are there

Answers

Answer:

radius of the loop =  7.9 mm

number of turns N ≅ 399 turns

Explanation:

length of wire L= 2 m

field strength B = 3 mT = 0.003 T

current I = 12 A

recall that field strength B = μnI

where n is the turn per unit length

vacuum permeability μ  = [tex]4\pi *10^{-7} T-m/A[/tex] = 1.256 x 10^-6 T-m/A

imputing values, we have

0.003 = 1.256 x 10^−6 x n x 12

0.003 = 1.507 x 10^-5 x n

n = 199.07 turns per unit length

for a length of 2 m,

number of loop N = 2 x 199.07 = 398.14 ≅ 399 turns

since  there are approximately 399 turns formed by the 2 m length of wire, it means that each loop is formed by 2/399 = 0.005 m of the wire.

this length is also equal to the circumference of each loop

the circumference of each loop = [tex]2\pi r[/tex]

0.005 = 2 x 3.142 x r

r = 0.005/6.284 = [tex]7.9*10^{-4} m[/tex] = 0.0079 m = 7.9 mm

Why can a magnetic monopole not exist, assuming Maxwell's Equations are currently correct and complete?

Answers

Answer:

Because closed magnetic field loops have to be formed between both ends of the magnet, a magnet will always have two poles.

Explanation:

Magnetic Monopoles do not exist in nature because a magnetic field always forms a loop that runs from one end of the magnet to the other.

Since this loop of the magnetic field has an origination and termination point which are at the two ends of the magnet (North and South poles).  A magnet will always be bipolar which is in this case, North and South; even at an atomic level.

The radius of he Earth orbit around the sun (assumed circular) is 1.50 X 10^8km, with T=365d. What is the radial acceleration of Earth towards the sun?

Answers

Answer:

ar = 5.86*10^-3 m/s^2

Explanation:

In order to calculate the radial acceleration of the Earth, you first take into account the linear speed of the Earth in its orbit.

You use the following formula:

[tex]v=\sqrt{\frac{GM_s}{r}}[/tex]         (1)

G: Cavendish's constant = 6.67*10^-11 m^3 kg^-1 s^-2

Ms: Sun's mass = 1.98*10^30 kg

r: distance between Sun ad Earth = 1.50*10^8 km = 1.50*10^11 m

Furthermore, you take into account that the radial acceleration is given by:

[tex]a_r=\frac{v^2}{r}[/tex]             (2)

You replace the equation (1) into the equation (2) and replace the values of all parameters:

[tex]a_r=\frac{1}{r}\frac{GM_s}{r}=\frac{GM_s}{r^2}\\\\a_r=\frac{(6.67*10^{-11}m^3kg^{-1}s^{-2})(1.98*10^{30}kg)}{(1.50*10^{11}m)^2}\\\\a_r=5.86*10^{-3}\frac{m}{s^2}[/tex]

The radial acceleration of the Earth, towards the sun is 5.86*10^-3 m/s^2

How much energy does the light bulb dissipate in 1 minmin when half that voltage is supplied? Express your answer in kilojoules to two significant figures.

Answers

Answer:

E = 15 P₀

Explanation:

The power dissipated in a light bulb is

       P = V I

       V = I R

       P = V² / R

the power is defined by

       P = W / t

work equals energy

       P = E / t

we substitute

       V² / R = E / t

        E = V² t / R

let's reduce the time to SI units

         t = 1 min = 60 s

let's calculate the dissipated energy

     

In the exercise it does not indicate the nominal voltage of the bulb, but in general this voltage is V₀= 120 V

         

The applied voltage is half the nominal voltage

      V = V₀ / 2

      V = 120/2 = 60 V

       

       E = (V₀ / 2)² t / R

       E = ¼ t   V₀² / R

       E = ¼ 60 P₀

       E = 15 P₀

Many times the nominal power (P₀) is written on the box of the bulb

What accurately depicts the change in average kinetic energy of the particles undergoes in matter as the temperature of the sample is decreased?

Answers

Answer:

As a sample of matter is continually cooled, the average kinetic energy of its particles decreases. Eventually, one would expect the particles to stop moving completely. Absolute zero is the temperature at which the motion of particles theoretically ceases.

Explanation:

Two plane mirrors are stood vertically making a right angle between them. How many images of an object close to and in front of the mirrors can be seen

Answers

Answer:

3

Explanation:

When two plane mirrors are placed side by side such that they make some angle, θ, with each other, the number of images, n, of an object placed close to and in front of these mirrors is given by;

n = (360 / θ) - 1         ------------(i)

From the question;

θ = 90°            [since they stood making a right angle with each other]

Substitute this value into equation (i) as follows;

n = (360 / 90) - 1

n = 4 - 1

n = 3

Therefore, the number of images formed is 3

HELP AGAIN A car going .80m/s accelerates uniformly at .20m/s^2 . What is the distance covered in 1.3 minutes? brainliest goes to person who shows formula/work

Answers

Answer:

initial speed (u) = 0.8 m/s

acceleration (a) = 0.2 m/s/s

time (t) = 1.3 min    OR        1.3*60 seconds

            = 78 seconds  

we will use the second equation of motion to find the distance

distance (s) = ut + 1/2 a(t^2)

s = 0.8 * 78 + 1/2 * 0.2 * (6084)

s = 62.4 + 608.4

s = 670.8 m

which statement did Ernest Rutherford make about atoms?

Answers

Answer:

Option A

Explanation:

Ernest Rutherford concluded that the atom has a small, dense center which constitutes the mass of the whole atom. He called it a "Nucleus". He also said that most of the space in the atom is empty.

Which observation have scientists used to support Einstein's general theory of relativity?
The orbital path of Mercury around the Sun has changed.
O GPS clocks function at the same rate on both Earth and in space.
O The Sun has gotten more massive over time.
Objects act differently in a gravity field than in an accelerating reference frame.

Answers

Answer:

Objects act differently in a gravity field than in an accelerating reference frame.

Explanation:

The main thrust of the theory general relativity as proposed by Albert Einstein boarders on space and time as the two fundamental aspects of spacetime. Spacetime is curved in the presence of gravity, matter, energy, and momentum. The theory of general relativity explains gravity based on the way space can 'curve', that is, it seeks to relate gravitational force to the changing geometry of space-time.

The Einstein general theory of relativity has replaced Newton's ideas proposed in earlier centuries as a means of predicting gravitational interactions. This concept is quite helpful but cannot be fitted into the context of quantum mechanics due to obvious incompatibilities.

Answer:

A - The orbital path of mercury around the sun has changed.

Explanation:

got right on edg.

A fluid moves through a tube of length 1 meter and radius r=0.002±0.0002 meters under a pressure p=4⋅105±1750 pascals, at a rate v=0.5⋅10−9 m3 per unit time. Use differentials to estimate the maximum error in the viscosity η given by

Answers

Answer:

The  maximum error is  [tex]\Delta \eta = 2032.9[/tex]

Explanation:

From the question we are told that

     The length  is  [tex]l = 1\ m[/tex]

      The radius is  [tex]r = 0.002 \pm 0.0002 \ m[/tex]

        The pressure is  [tex]P = 4 *10^{5} \ \pm 1750[/tex]

        The  rate  is  [tex]v = 0.5*10^{-9} \ m^3 /t[/tex]

       The viscosity is  [tex]\eta = \frac{\pi}{8} * \frac{P * r^4}{v}[/tex]

The error in the viscosity is mathematically represented  as

       [tex]\Delta \eta = | \frac{\delta \eta}{\delta P}| * \Delta P + |\frac{\delta \eta}{\delta r} |* \Delta r + |\frac{\delta \eta}{\delta v} |* \Delta v[/tex]

   Where  [tex]\frac{\delta \eta }{\delta P} = \frac{\pi}{8} * \frac{r^4}{v}[/tex]

and         [tex]\frac{\delta \eta }{\delta r} = \frac{\pi}{8} * \frac{4* Pr^3}{v}[/tex]

and          [tex]\frac{\delta \eta }{\delta v} = - \frac{\pi}{8} * \frac{Pr^4}{v^2}[/tex]

So  

             [tex]\Delta \eta = \frac{\pi}{8} [ |\frac{r^4}{v} | * \Delta P + | \frac{4 * P * r^3}{v} |* \Delta r + |-\frac{P* r^4}{v^2} |* \Delta v][/tex]

substituting values

            [tex]\Delta \eta = \frac{\pi}{8} [ |\frac{(0.002)^4}{0.5*10^{-9}} | * 1750 + | \frac{4 * 4 *10^{5} * (0.002)^3}{0.5*10^{-9}} |* 0.0002 + |-\frac{ 4*10^{5}* (0.002)^4}{(0.5*10^{-9})^2} |* 0 ][/tex]

  [tex]\Delta \eta = \frac{\pi}{8} [56 + 5120 ][/tex]

   [tex]\Delta \eta = 647 \pi[/tex]

    [tex]\Delta \eta = 2032.9[/tex]

A 5000 kg railcar hits a bumper (a spring) at 1 m/s, and the spring compresses 0.1 meters. Assume no damping. a) Find the spring constant k.

Answers

Answer:

k = 0.5 MN/m

Explanation:

Mass of the railcar, m = 5000 kg

Speed of the rail car, v = 1 m/s

The Kinetic energy(KE) of the railcar is given by the equation:

KE = 0.5 mv²

KE = 0.5 * 5000 * 1²

KE = 2500 J

The spring's compression, x = 0.1 m

The potential energy(PE) stored in the spring is given by the equation:

PE = 0.5kx²

PE = 0.5 * k * 0.1²

PE = 0.005k

According to the principle of energy conservation, Kinetic energy of the railcar equals the potential energy stored in the spring

KE = PE

2500 = 0.005k

k = 2500/0.005

k = 500000 N/m

k = 0.5 MN/m

A resistor, inductor, and capacitor are connected in series, each with effective (rms) voltage of 65 V, 140 V, and 80 V respectively. What is the value of the effective (rms) voltage of the applied source in the circuit

Answers

Answer:

The value of the effective (rms) voltage of the applied source in the circuit is 132 V

Explanation:

Given;

effective (rms) voltage of the resistor, [tex]V_R[/tex] = 65 V

effective (rms) voltage of the inductor, [tex]V_L[/tex] = 140 V

effective (rms) voltage of the capacitor, [tex]V_C[/tex] = 80 V

Determine the value of the effective (rms) voltage of the applied source in the circuit;

[tex]V= \sqrt{V_R^2 + (V_L^2-V_C^2} )\\\\V= \sqrt{65^2 + (140^2-80^2} )\\\\V = \sqrt{4225+ 13200} \\\\V = \sqrt{17425} \\\\V = 132 \ V[/tex]

Therefore, the value of the effective (rms) voltage of the applied source in the circuit is 132 V.

A tightly wound toroid of inner radius 1.2 cm and outer radius 2.4 cm has 960 turns of wire and carries a current of 2.5 A.

Requried:
a. What is the magnetic field at a distance of 0.9 cm from the center?
b. What is the field 1.2 cm from the center?

Answers

Answer:

a

  [tex]B = 0.0533 \ T[/tex]

b

  [tex]B = 0.04 \ T[/tex]

Explanation:

From the question we are told that

   The inner radius is [tex]r = 1.2 \ cm = 0.012 \ m[/tex]

   The  outer radius is  [tex]r_o = 2.4 \ cm = \frac{2.4}{100} = 0.024 \ m[/tex]

    The nu umber of turns is  [tex]N = 960[/tex]

    The current it is carrying is  [tex]I = 2. 5 A[/tex]

Generally the magnetic field is mathematically represented as

      [tex]B = \frac{\mu_o * N* I }{2 * \pi * r }[/tex]

Where  [tex]\mu_o[/tex] is the permeability of free space with a constant value    

            [tex]\mu = 4\pi * 10^{-7} N/A^2[/tex]

And the given distance where the magnetic field is felt is  r =  0.9 cm  =  0.009 m

Now  substituting values

     [tex]B = \frac{ 4\pi * 10^{-7} * 960* 2.5 }{2 * 3.142 * 0.009 }[/tex]

    [tex]B = 0.0533 \ T[/tex]

    Fro the second question the distance of the position considered from the center is  r =  1.2 cm  =  0.012 m

So the  magnetic field is  

        [tex]B = \frac{ 4\pi * 10^{-7} * 960* 2.5 }{2 * 3.142 * 0.012 }[/tex]

        [tex]B = 0.04 \ T[/tex]

The magnetic field at a distance of 0.9 cm from the center of the toroid is 0.053 T.

The magnetic field at a distance of 1.2 cm from the center of the toroid is 0.04 T.

The given parameters;

radius of the toroid, r = 1.2 cm = 0.012 mouter radius of the toroid, R = 2.4 cm = 0.024 mnumber of turns, N = 960 turnscurrent in wire, I = 2.5 A

The magnetic field at a distance of 0.9 cm from the center of the toroid is calculated as follows;

[tex]B = \frac{\mu_o NI}{2\pi r} \\\\B = \frac{(4\pi \times 10^{-7})\times (960) \times (2.5)}{2\pi \times 0.009} \\\\B = 0.053 \ T[/tex]

The magnetic field at a distance of 1.2 cm from the center of the toroid is calculated as follows;

[tex]B = \frac{\mu_o NI}{2\pi r} \\\\B = \frac{(4\pi \times 10^{-7})\times (960) \times (2.5)}{2\pi \times 0.012} \\\\B = 0.04 \ T[/tex]

Learn more here:https://brainly.com/question/19564329

How fast is the spaceship traveling towards the Sun? The radius of the orbit of Jupiter is 43.2 light-minutes, and that of the orbit of Mars is 12.6 light-minutes.

Answers

Question:

A spaceship enters the solar system moving toward the Sun at a constant speed relative to the Sun. By its own clock, the time elapsed between the time it crosses the orbit of Jupiter and the time it crosses the orbit of Mars is 35.0 minutes

How fast is the spaceship traveling towards the Sun? The radius of the orbit of Jupiter is 43.2 light-minutes, and that of the orbit of Mars is 12.6 light-minutes.

Answer:

S = 5.508 × 10¹¹m

V = 2.62 × 10⁸ m/s

Explanation:

The radius of the orbit of Jupiter, Rj is 43.2 light-minutes

radius of the orbit of Mars, Rm is 12.6 light-minutes

Distance travelled S = (Rj - Rm)

= 43.2 - 12.6 = 30.6 light- minutes

= 30.6 × (3 ×10⁸m/s) × 60 s

= 5.508 × 10¹¹m

time = 35mins = (35 × 60 secs)

= 2100 secs

speed = distance/time

V = 5.508 × 10¹¹m / 2100 s

V = 2.62 × 10⁸ m/s

A length of organ pipe is closed at one end. If the speed of sound is 344 m/s, what length of pipe (in cm) is needed to obtain a fundamental frequency of 50 Hz

Answers

Answer:

The length = 27.52m

Explanation:

v=f x wavelength

A particle with kinetic energy equal to 282 J has a momentum of magnitude 26.4 kg · m/s. Calculate the speed (in m/s) and the mass (in kg) of the particle.

Answers

Answer:

[tex]v=21.36\,\,\frac{m}{s}\\[/tex]

[tex]m=1.2357\,\,kg[/tex]

Explanation:

Recall the formula for linear momentum (p):

[tex]p = m\,v[/tex]  which in our case equals 26.4 kg m/s

and notice that the kinetic energy can be written in terms of the linear momentum (p) as shown below:

[tex]K=\frac{1}{2} m\,v^2=\frac{1}{2} \frac{m^2\,v^2}{m} =\frac{1}{2}\frac{(m\,v)^2}{m} =\frac{p^2}{2\,m}[/tex]

Then, we can solve for the mass (m) given the information we have on the kinetic energy and momentum of the particle:

[tex]K=\frac{p^2}{2\,m}\\282=\frac{26.4^2}{2\,m}\\m=\frac{26.4^2}{2\,(282)}\,kg\\m=1.2357\,\,kg[/tex]

Now by knowing the particle's mass, we use the momentum formula to find its speed:

[tex]p=m\,v\\26.4=1.2357\,v\\v=\frac{26.4}{1.2357} \,\frac{m}{s} \\v=21.36\,\,\frac{m}{s}[/tex]

Water flowing through a garden hose of diameter 2.76 cm fills a 20.0-L bucket in 1.45 min. (a) What is the speed of the water leaving the end of the hose

Answers

Answer:

v = 31.84 cm/s or 0.318 m/s

the speed of the water leaving the end of the hose is 31.84 cm/s or 0.318 m/s

Explanation:

Given;

Diameter of hose d = 2.76 cm

Volume filled V = 20.0 L = 20,000 cm^3

Time t = 1.45 min = 105 seconds

The volumetric flow rate of water is;

F = V/t = 20,000cm^3 ÷ 105 seconds

F = 190.48 cm^3/s

The volumetric flow rate is equal the cross sectional area of pipe multiply by the speed of flow.

F = Av

v = F/A

Area A = πd^2/4

Speed v = F/(πd^2/4)

v = 4F/πd^2 ......1

Substituting the given values;

v = (4×190.48)/(π×2.76^2)

v = 31.83767439628 cm/s

v = 31.84 cm/s or 0.318 m/s

the speed of the water leaving the end of the hose is 31.84 cm/s or 0.318 m/s

A building is located on earth's equator. As the earth rotates about its axis, which floor of the building has the greatest angular speed?

Answers

Answer:

The angular speed of the earth rotation is equal. Therefore

Our angular speed due to Earth’s rotation is same at every point on the earth irrespective of the elevation. So your angular speed due to earth’s rotation on the top floor of the building will be same as it is on the ground floor.

Explanation:

Consider a heat engine that inputs 10 kJ of heat and outputs 5 kJ of work. What are the signs on the total heat transfer and total work transfer

Answers

Answer:

Total heat transfer is positive

Total work transfer is positive

Explanation:

The first law of thermodynamics states that when a system interacts with its surrounding, the amount of energy gained by the system must be equal to the amount of energy lost by the surrounding. In a closed system, exchange of energy with the surrounding can be done through heat and work transfer.

Heat transfer to a system is positive and that transferred from the system is negative.

Also, work done by a system is positive while the work done on the system is negative.

Therefore, from the question, since the heat engine inputs 10kJ of heat, then heat is being transferred to the system. Hence, the sign of the total heat transfer is positive (+ve)

Also, since the heat engine outputs 5kJ of work, it implies that work is being done by the system. Hence the sign of the total work transfer is also positive (+ve).

In an experiment different wavelengths of light, all able to eject photoelectrons, shine on a freshly prepared (oxide-free) zinc surface. Which statement is true

Answers

Answer:

the energy of the photons is greater than the work function of the zinc oxide.

                     h f> = Ф

Explanation:

In this experiment on the photoelectric effect, it is explained by the Einstein relation that considers the light beam formed by discrete energy packages.

                    K_max = h f - Ф

in the exercise phase, they indicate that different wavelengths can inject electrons, so the energy of the photons is greater than the work function of the zinc oxide.

                     h f > = Ф

A pulley system is used at a dock to lift shipments of fish off a boat. If you apply a force of 100 N to the pulley, it pulls the shipment with a force of 830 N. a. What is the mechanical advantage of the pulley? b. The pulley has an efficiency of 80%. If you perform 600 J of work, how much useful work does the pulley do?

Answers

Explanation:

a. Mechanical advantage = force out / force in

MA = 830 / 100

MA = 8.3

b. Efficiency = work out / work in

0.80 = W / 600 J

W = 480 J

a certain plane parallel capacitor stores energy E when the plates have a charge Q on each plate. Then distance between the plates is double. In order to store triply as much energy, how much charge should it have in its plates

Answers

Answer:

[tex]Q'=\sqrt{6}Q[/tex]

Explanation:

You have that a parallel plate capacitor has a total energy of E when the distance between the plates is d and the charge on each plate is Q.

You take into account the following formula for the stored energy in the capacitor:

[tex]E=\frac{1}{2}\frac{Q^2}{C}[/tex]          (1)

The capacitance C of the parallel plate capacitor is given by the following formula is:

[tex]C=\epsilon_o\frac{A}{d}[/tex]          (2)

A: area of the plates

ε0: dielectric permittivity of vacuum

You replace the expression (2) into the equation (1):

[tex]E=\frac{1}{2}\frac{Q^2A}{\epsilon_o d}[/tex]       (3)

the previous formula is the expression for the total energy stored for the given parameters A, d and Q.

If the distance between the plates is twice and it is required that the energy is three times the initial energy, to find the value of the charge you use the equation (3):

[tex]E'=\frac{1}{2}\frac{Q'^2A}{\epsilon_o d'}[/tex]        (4)

d' = 2d

E' = 3E

Q': required charge

You replace the values of d' and E' in the equation (4) and then divide the result with the equation (3):

[tex]3E=\frac{1}{2}\frac{Q'^2A}{\epsilon_o(2d)}=\frac{1}{4}\frac{Q'^2A}{\epsilon_od}\\\\\frac{3E}{E}=\frac{1/4\frac{Q'^2A}{\epsilon_od}}{1/2\frac{Q^2A}{\epsilon_o d}}\\\\3=\frac{1}{2}\frac{Q'^2}{Q^2}[/tex]

Finally, you solve for Q':

[tex]3=\frac{1}{2}\frac{Q'^2}{Q^2}\\\\Q'=\sqrt{6}Q[/tex]

Then, the required charge is √6Q , to obtain three times the initial energy E, when the distance between plates is doubled.

A particle is released as part of an experiment. Its speed t seconds after release is given by v (t )equalsnegative 0.4 t squared plus 2 t​, where v (t )is in meters per second. ​a) How far does the particle travel during the first 2 ​sec? ​b) How far does it travel during the second 2 ​sec?

Answers

Answer:

a) 2.933 m

b) 4.534 m

Explanation:

We're given the equation

v(t) = -0.4t² + 2t

If we're to find the distance, then we'd have to integrate the velocity, since integration of velocity gives distance, just as differentiation of distance gives velocity.

See attachment for the calculations

The conclusion of the attachment will be

7.467 - 2.933 and that is 4.534 m

Thus, The distance it travels in the second 2 sec is 4.534 m

what is drift speed ? {electricity}​

Answers

Answer: In physics a drift velocity is the average velocity attained by charged particles, such as electrons, in a material due to an electric field.

Explanation:

A railroad boxcar rolls on a track at 2.90 m/s toward two identical coupled boxcars, which are rolling in the same direction as the first, but at a speed of 1.20 m/s. The first reaches the second two and all couple together. The mass of each is 3.05 ✕ 104 kg.(a)What is the speed (in m/s) of the three coupled cars after the first couples with the other two? (Round your answer to at least two decimal places.)Incorrect: Your answer is incorrect.What is the momentum of the two coupled cars? What is the momentum of the first car in terms of its mass and initial speed? Note all cars are initially traveling in the same direction. Apply conservation of momentum to find the final speed. m/s(b)Find the (absolute value of the) amount of kinetic energy (in J) converted to other forms during the collision.J

Answers

Answer:

momentum of the coupled cars V =  1.77 m/s

kinetic energy coverted to other forms during the collision ΔK.E = -2.892×10⁴J

Explanation:

given

m₁ =3.05 × 10⁴kg

u₁ =2.90m/s

m₂=6.10× 10⁴kg

u₂=1.20m/s

using law of conservation of momentum

m₁u₁ + m₂u₂ = (m₁ + m₂) V

3.05 × 10⁴ ×2.90 + 6.10× 10⁴× 1.20 = (9.15×10⁴)V

V =  1.617×10⁵/9.15×10⁴

V = 1.77m/s

K.E =1/2mV²

ΔK.E = K.E(final) - K.E(initial)

ΔK.E = ¹/₂ × 9.15×10⁴ ×(1.77)² -  ¹/₂ ×3.05 × 10⁴ × (2.90)² -¹/₂ × 6.10× 10⁴× (1.20)²

ΔK.E = ¹/₂ × (28.67-25.65-8.784) ×10⁴

ΔK.E = -2.892×10⁴J

The final speed is 1.77 m/s

The initial momentum is 8.84 × 10⁴ kgm/s [first car] and 7.3 × 10⁴ kgm/s [coupled car]

2.892×10⁴J of energy is converted.

Inelastic collision:

Since the first boxcar collides and couples with the two coupled boxcars, the collision is inelastic. In an inelastic collision, the momentum of the system is conserved but there is a loss in the total kinetic energy of the system.

Let the mass of the railroad boxcar be m₁ =3.05 × 10⁴kg

The initial speed of the railroad boxcar is u₁ = 2.90m/s

Mass of the two coupled boxcars m₂ = 2 × 3.05 × 10⁴kg = 6.10× 10⁴kg

And the initial speed be u₂ = 1.20m/s

The initial momentum of the first car is:

m₁u₁ = 3.05 × 10⁴ × 2.90 =  8.84 × 10⁴ kgm/s

The initial momentum of the coupled car is:

m₁u₁ = 6.10 × 10⁴ × 1.20 = 7.3 × 10⁴ kgm/s

Let the final speed after all the boxcars are coupled be v

From the law of conservation of momentum, we get:

m₁u₁ + m₂u₂ = (m₁ + m₂)v

3.05 × 10⁴ ×2.90 + 6.10× 10⁴× 1.20 = (9.15×10⁴)Vv

v =  1.617×10⁵/9.15×10⁴

v = 1.77m/s

The difference between initial and final kinetic energies is the amount of energy converted into other forms, which is given as follows:

ΔKE = K.E(final) - K.E(initial)

ΔKE = ¹/₂ × 9.15×10⁴ ×(1.77)² -  ¹/₂ ×3.05 × 10⁴ × (2.90)² -¹/₂ × 6.10× 10⁴× (1.20)²

ΔKE = ¹/₂ × (28.67-25.65-8.784) ×10⁴

ΔKE = -2.892×10⁴J

Learn more about inelastic collision:

https://brainly.com/question/13861542?referrer=searchResults

If a pickup is placed 16.25 cm from one of the fixed ends of a 65.00-cm-long string, which of the harmonics from n=1 to n=12 will not be "picked up" by this pickup?

Answers

Answer:

The answer to this question can be defined as follows:

Explanation:

Therefore the 4th harmonicas its node is right and over the pickup so, can not be captured from 16.25, which is 1:4 out of 65. Normally, it's only conceptual for the certain harmonic, this will be low, would still be heard by the catcher.

Instead, every harmonic node has maximum fractions along its string; the very first node is the complete string length and the second node is half a mile to the third node, which is one-third up and so on.

Answer:

b

Explanation:

because:/

What force is required so that a particle of mass m has the position function r(t) = t3 i + 7t2 j + t3 k?

Answers

Answer:

[tex]F(t)=m\,\,a(t)=6\,m\,t\,\hat i+14\,m\,\hat j+6\,m\,t\,\hat k\\F(t)=\,(6\,m\,t,14\,m,6\,m\,t)[/tex]

Explanation:

Recall that force is defined as mass times acceleration, and acceleration is the second derivative with respect to time of the position. Since the position comes in terms of time, and with separate functions for each component in the three dimensional space, we first calculate the velocity (with the first derivative, and then the acceleration as the second derivative:

[tex]r(t)=t^3\,\hat i+7\,t^2\,\hat j+t^3\,\hat k\\v(t)=3\,t^2\,\hat i+14\,t\,\hat j+3\,t^2\,\hat k\\a(t)=6\,t\,\hat i+14\,\hat j+6\,t\,\hat k[/tex]

Therefore, the force will be given by the product of this acceleration times the mass "m":

[tex]F(t)=m\,\,a(t)=6\,m\,t\,\hat i+14\,m\,\hat j+6\,m\,t\,\hat k[/tex]

What is the change in internal energy of an engine if you put 15 gallon of gasoline into its tank? The energy content of gasoline is 1.5 x 106 J/gallon. All other factors, such as the engine’s temperature, are constant. How many hours the engine can work if the power of the engine’s motor is 600 W? (8 marks)

Answers

Answer:

ΔU = 2.25 x 10⁸ J

t = 104.17 s

Explanation:

The change in internal energy of the engine can be given by the following formula:

ΔU = (Mass of Gasoline)(Energy Content of Gasoline)

ΔU = (1.5 x 10⁶ J/gallon)(15 gallon)

ΔU = 2.25 x 10⁸ J

Now, for the time of operation, we use the following formula of power.

P = W/t = ΔU/t

t = ΔU/P

where,

t = time of operation = ?

ΔU = Change in internal energy = 2.25 x 10⁸ J

P = Power of motor = 600 W

Therefore,

t = (2.25 x 10⁸ J)/(600 W)

t = (375000 s)(1 h/3600 s)

t = 104.17 s

An amusement park ride has a vertical cylinder with an inner radius of 3.4 m, which rotates about its vertical axis. Riders stand inside against the carpeted surface and rotate with the cylinder while it accelerates to its full angular velocity. At that point the floor drops away and friction between the riders and the cylinder prevents them from sliding downward. The coefficient of static friction between the riders and the cylinder is 0.87. What minimum angular velocity in radians/second is necessary to assure that the riders will not slide down the wall?

Answers

Answer:

The minimum angular velocity necessary to assure that the riders will not slide down the wall is 1.58 rad/second.

Explanation:

The riders will experience a centripetal force from the cylinder

[tex]F_{C}[/tex] = mrω^2    .... equ 1

where

m is the mass of the rider

r is the inner radius of the cylinder = 3.4 m

ω is the angular speed of of the rider

For the riders not to slide downwards, this centripetal force is balanced by the friction between the riders and the cylinder. The frictional force is given as

[tex]F_{f}[/tex] = μR       ....equ 2

where

μ = coefficient of friction = 0.87

R is the normal force from the rider = mg

where

m is the rider's mass

g is the acceleration due to gravity = 9.81 m/s

substitute mg for R in equ 2, we'll have

[tex]F_{f}[/tex] = μmg     ....equ 3

Equating centripetal force of equ 1 and frictional force of equ 3, we'll get

mrω^2 = μmg

the mass of the rider cancels out, and we are left with

rω^2 = μg

ω^2 = μg/r

ω = [tex]\sqrt{\frac{ug}{r} }[/tex]

ω = [tex]\sqrt{\frac{0.87*9.81}{3.4} }[/tex]

ω = 1.58 rad/second

The minimum angular velocity necessary so that the riders will not slide down the wall is 1.58 rad/s

The riders will experience a  centripetal force from the cylinder

[tex]F = mrw^2[/tex]

where  m is the mass of the rider

r is the inner radius of the cylinder = 3.4 m

ω is the angular speed of the rider

For the riders not to slide downwards, this centripetal force must be balanced by friction. The frictional force is given as

f = μN

where

μ = coefficient of friction = 0.87

N is the normal force = mg

f = μmg  

Equating centripetal force of and frictional force of we'll get

[tex]mrw^2 = umg[/tex]

[tex]rw^2 = ug[/tex]

[tex]w^2 = ug/r[/tex]

[tex]w= \sqrt{ug/r}[/tex]

[tex]w= \sqrt{0.87*9.8/3.4}[/tex]  

ω = 1.58 rad/s is the minimum angular velocity needed to prevent the rider from sliding.

Learn more:

https://brainly.com/question/24638181

Other Questions
What is the length of AC? b. Describe how the above factors create barriers for maintaining your mental and emotional health.what are some strategies you could use to get past these barriers Use this free trade agreements resource to complete the following chart for two of the countries listed (except Mexico and Canada). For a more complete picture of each trade agreement you select, find two additional websites and review them for additional information. List these websites in the spaces provided in the table. find m^4+1/m^4, if m-1/m=3 HELP ME PLEASE I NEED IT IN LIKE 2 MINUTES In lines 1832, the womanspeaks roughly to the boy.Circle what the boy says inresponse. What do theselines of dialogue, or conver-sation, suggest about theboy's feelings? Can someone please help me I really need help please help me thank you 4. Which subatomic particle takes up most of the space of an atom?A. protonB. electronC. neutronD. nucleus help asap please math 10! If x y and y z, then _____ solve for x x + 9=2 5 This questic concerns a tablet thathas remained in storage for 2 yearssince manufacture. From the drugmonograph the decompositionrate constant (k) was found to be 6x 10-2 year-1. The degradationreaction is known to proceed viafirst-order kinetics. Which one ofthe following is the remainingpercentage of the original drug? concentration Drama key words! Rewrite the sentence with the missing words: The set design includes all of the______, ______ and ______ on the stage. EXTRA POINTS The amount of people diagnosed is 3,131,953 and the amount of deaths is 132,056 what is the percentage of people who die from the disease? Can someone pls write me a short biography about the author of the unknown, J W Lynne. And pls do not include any absurd answers or phrases.. PLs. I will mark brainliest. I will report any absurd answers. The mean age of 10 women in an office is 30 years old. The mean age of 10 men in an office is 29 years old. What is the mean age (nearest year) of all the people in the office? Which type of mutation occurs only in gametes? germline mutation somatic mutation point mutation frameshift mutation Find the value of X in the figure PQ is tangent to O at P Which of the following are examples of statistical questions? aHow many pairs of shoes do you own? bWhat types of music does the 6th grade like? cHow many sodas do Jack and his friends drink in a week? dHow many cats does Jack have? Will give brainliest, can somebody help me with this question ANSWER ASAP!!! Using context clues, determine the meaning of the bolded word. As they walked through the desert, the ACRID climate made their mouths feel parched. rainy moist dry windy