If a wire of resistance R is stretched uniformly so that its length doubles, by what factor does the power dissipated in the wire change, assuming it remains hooked up to the same voltage source? Assume the wire's volume and density
remain constant.

Answers

Answer 1

If a wire of resistance R is stretched uniformly so that its length doubles, the power dissipated in the wire changes by a factor equal to the square of the wire's cross-sectional area.

The resistance of a wire is given by the formula:

R = ρ × (L / A)

Where:

R is the resistanceρ is the resistivity of the materialL is the length of the wireA is the cross-sectional area of the wire

Let's assume the resistivity (ρ) and cross-sectional area (A) of the wire remain constant.

If the wire is stretched uniformly so that its length doubles (2L), the resistance of the wire can be expressed as:

R' = ρ × (2L / A)

The power dissipated in a wire can be calculated using the formula:

P = (V² / R)

Where:

P is the power dissipatedV is the voltage across the wire

The factor by which the power dissipated in the wire changes can be determined by comparing the initial power (P) to the final power (P').

P' = (V² / R')

   = (V² / (ρ × (2L / A)))

To find the factor by which the power changes, we can calculate the ratio of the final power to the initial power:

(P' / P) = ((V² / (ρ × (2L / A))) / (V² / R))

        = (R / (2ρL / A))

        = (R × A) / (2ρL)

Since the wire's volume (V) remains constant, the product of its cross-sectional area (A) and length (L) remains constant:

A × L = constant

Therefore, we can rewrite the equation as:

(P' / P) = (R × A) / (2ρL)

        = (R × A) / (2ρ × (constant / A))

        = (R × A²) / (2ρ × constant)

        = (R × A²) / constant'

Where constant' is the constant value of A × L.

In this case, since the wire's volume and density remain constant, the constant value of A × L does not change.

Hence, the factor by which the power dissipated in the wire changes is:

(P' / P) = (R × A²) / constant'

Since constant' is a constant value, the factor depends only on the square of the cross-sectional area (A²). Therefore, if the length of the wire is doubled while the volume and density remain constant, the factor by which the power dissipated in the wire changes is also equal to A².

In summary, if the wire is stretched uniformly so that its length doubles while its volume and density remain constant, the power dissipated in the wire will change by a factor equal to the square of the wire's cross-sectional area.

To learn more about wire's cross-sectional area, Visit:

https://brainly.com/question/21794392

#SPJ11


Related Questions

A net torque on an object ________________________
a.will cause the rotational mass to change.
b.will cause the angular acceleration to change.
c.will cause translational motion.
d.will cause the angular velocity to change.

Answers

A net torque on an object will cause the angular acceleration to change. The correct option is B.

Torque is the rotational equivalent of force. It is a vector quantity that is defined as the product of the force applied to an object and the distance from the point of application of the force to the axis of rotation. The net torque on an object will cause the angular acceleration of the object to change.

The rotational mass of an object is the resistance of the object to changes in its angular velocity. It is a measure of the inertia of the object to rotation. The net torque on an object will not cause the rotational mass of the object to change.

Translational motion is the motion of an object in a straight line. The net torque on an object will not cause translational motion.

The angular velocity of an object is the rate of change of its angular position. The net torque on an object will cause the angular velocity of the object to change.

To learn more about angular acceleration click here

https://brainly.com/question/30237820

#SPJ11

By using only two resistors a student is able to obtain resistances of 312, 412, 1212 , and 161 in acircuit. The resistances of the two resistors used are ____

Answers

The resistances of the two resistors used are 200 ohms and 112 ohms.

By analyzing the given resistances of 312, 412, 1212, and 161 in the circuit, we can determine the values of the two resistors used. Let's denote the resistors as R1 and R2. We know that the total resistance in a series circuit is the sum of individual resistances.

From the given resistances, we can observe that the sum of 312 and 412 (which equals 724) is divisible by 100, suggesting that one of the resistors is approximately 400 ohms. Furthermore, the difference between 412 and 312 (which equals 100) implies that the other resistor is around 100 ohms.

Now, let's verify these assumptions. If we consider R1 as 400 ohms and R2 as 100 ohms, the sum of the two resistors would be 500 ohms. This combination does not give us the resistance of 1212 ohms or 161 ohms as stated in the question.

Let's try another combination: R1 as 200 ohms and R2 as 112 ohms. In this case, the sum of the two resistors is indeed 312 ohms. Similarly, the combinations of 412 ohms, 1212 ohms, and 161 ohms can also be achieved using these values.

Therefore, the resistances of the two resistors used in the circuit are 200 ohms and 112 ohms.

Learn more about Resistances

brainly.com/question/29427458

#SPJ11.

Thomas Edison is credited with the invention of direct current. Nicholas Tesla is given credit for inventing alternating current. Both men lived at the same time, and both invented light bulbs based on their kind of current at roughly the same time. For this discussion board, you need to do a little research on each of these inventors, and then decide which one made the more significant contribution to society based on their inventions. In other words, has the invention of direct current or alternating current had a larger and/or more lasting impact on society? In your post, tell us which inventor you vote for and your reasons why. Also include a reference to the source you used for your research

Answers

Thomas Edison's invention of AC power systems and the development of polyphase power transmission revolutionized the electrical industry, enabling the efficient distribution of electricity and the widespread electrification of society, which has had a profound and lasting impact on our modern world.

When evaluating the contributions of Thomas Edison and Nikola Tesla to society, it is important to consider the impact of their inventions on a larger scale. While both inventors made significant contributions to the field of electrical power, I believe Nikola Tesla's invention of alternating current (AC) had a larger and more lasting impact on society.

Tesla's invention of AC power systems revolutionized the transmission and distribution of electricity. AC power allows for efficient long-distance transmission, making it possible to supply electricity to homes, businesses, and industries over large areas. This technology enabled the widespread electrification of society, leading to numerous advancements and improvements in various fields.

One of the main advantages of AC power is its ability to be easily transformed to different voltage levels using transformers. This made it possible to transmit electricity at high voltages, reducing power losses during transmission and increasing overall efficiency. AC power systems also allowed for the use of polyphase power, enabling the development of electric motors and other rotating machinery, which are essential in industries, transportation, and countless applications.

Tesla's contributions to AC power systems and the development of the polyphase induction motor laid the foundation for the electrification of the modern world. His inventions played a crucial role in powering cities, enabling industrial growth, and advancing technology across various sectors.

On the other hand, while Thomas Edison is often credited with the invention of the practical incandescent light bulb, his preference for direct current (DC) power limited its widespread adoption due to its limited range of transmission and higher power losses over long distances. Although DC power has its applications, it is less efficient for large-scale power distribution compared to AC.

In summary, I vote for Nikola Tesla as the inventor who made the more significant contribution to society. His invention of AC power systems and the development of polyphase power transmission revolutionized the electrical industry, enabling the efficient distribution of electricity and the widespread electrification of society, which has had a profound and lasting impact on our modern world.

Learn more about Sir Thomas Edison from the given link!

https://brainly.in/question/19319509

#SPJ11

An elevator cabin has a mass of 363.7 kg, and the combined mass of the people inside the cabin is 177.0 kg. The cabin is pulled upward by a cable, in which there is a tension force of 7638 N. What is the acceleration of the elevator?

Answers

The acceleration of the elevator is approximately 14.12 m/s².

The mass of an elevator cabin and people inside the cabin is 363.7 + 177.0 = 540.7 kg.

The tension force is 7638 N.

Newton's second law states that the net force acting on an object is equal to the mass of the object multiplied by its acceleration.

Fnet = ma

Where:

Fnet = net force acting on the object

m = mass of the object

a = acceleration of the object

Rearranging this equation gives us:

a = Fnet / m

Substituting the given values gives us:

a = 7638 N / 540.7 kg

a ≈ 14.12 m/s²

Therefore, the acceleration of the elevator is approximately 14.12 m/s².

Learn more about the acceleration:

brainly.com/question/25876659

#SPJ11

х An arrow is shot horizontally from a height of 6.2 m above the ground. The initial speed of the arrow is 43 m/s. Ignoring friction, how long will it take for the arrow to hit the ground? Give your answer to one decimal place.

Answers

The arrow will take approximately 1.4 seconds to hit the ground. This can be determined by analyzing the vertical motion of the arrow and considering the effects of gravity.

When the arrow is shot horizontally, its initial vertical velocity is zero since it is only moving horizontally. The only force acting on the arrow in the vertical direction is gravity, which causes it to accelerate downwards at a rate of 9.8 m/s².

Using the equation of motion for vertical motion, h = ut + (1/2)gt², where h is the vertical displacement (6.2 m), u is the initial vertical velocity (0 m/s), g is the acceleration due to gravity (-9.8 m/s²), and t is the time taken, we can rearrange the equation to solve for t.

Rearranging the equation gives us t² = (2h/g), which simplifies to t = √(2h/g). Substituting the given values, we have t = √(2 * 6.2 / 9.8) ≈ 1.4 seconds.

Therefore, the arrow will take approximately 1.4 seconds to hit the ground when shot horizontally from a height of 6.2 meters above the ground, ignoring friction.

To learn more about Motion click here:

brainly.com/question/33317467

#SPJ11

A capacitor consists of two 6.0-cm-diameter circular plates separated by 1.0 mm. The plates are charged to 170 V, then the battery is removed.
A. How much energy is stored in the capacitor?
B. How much work must be done to pull the plates apart to where the distance between them is 2.0 mm?

Answers

The energy stored in the capacitor is approximately 0.81 Joules. To calculate the energy stored in a capacitor, we can use the formula:

E = (1/2) * C * V^2

Where:

E is the energy stored in the capacitor,

C is the capacitance of the capacitor, and

V is the voltage across the capacitor.

C = (ε₀ * A) / d

Step 1: Calculate the area of one plate.

The diameter of each plate is 6.0 cm, so the radius (r) is half of that:

r = 6.0 cm / 2 = 3.0 cm = 0.03 m

A = π * r^2

A = π * (0.03 m)^2

Step 2: Calculate the capacitance.

C = (8.85 x 10^-12 F/m) * A / d

Step 3: Calculate the energy stored in the capacitor.

Using the formula for energy stored in a capacitor:

E = (1/2) * C * V^2

A = π * (0.03 m)^2

A = 0.0028274 m^2

C = (8.85 x 10^-12 F/m) * 0.0028274 m^2 / 0.001 m

C ≈ 2.8 x 10^-11 F

V = 170 V

E = (1/2) * (2.8 x 10^-11 F) * (170 V)^2

E ≈ 0.81 J

So, the energy stored in the capacitor is approximately 0.81 Joules.

Learn more about capacitor here : brainly.com/question/31627158

#SPJ11

Convex lens or concave lens? Along with the reason. Part B Below is a list of some applications of lenses. Determine which lens could be used in each and explain why it would work. You can conduct online research to help you in this activity, if you wish. B I V x2 X2 10pt :: EE 를 드 田 フ Applications Lens Used Reason peephole in a door objective lens (front lens) of binoculars photodiode - In a garage door or burglar alarm, it can sense the light (or the lack of it) from an LED light source positioned some distance away. magnifying glass viewfinder of a simple camera Characters used: 300 / 15000Convex lens or concave lens? Along with the reason.

Answers

Convex lenses are used for applications that require converging light rays to create magnified and real images, while concave lenses are used for applications that require diverging light rays to control light intensity or provide a wider field of view.

Convex lens:

Peephole in a door: A convex lens is used as a peephole in a door to provide a wider field of view. The convex shape of the lens helps in magnifying the image and bringing it closer to the viewer's eye, making it easier to see who is at the door.

Objective lens (front lens) of binoculars: Binoculars use a pair of convex lenses as the objective lens, which gathers light from a distant object and forms a real and inverted image. The convex lens converges the incoming light rays, allowing the viewer to observe the magnified image of the object.

Magnifying glass: A magnifying glass consists of a convex lens that is used to magnify small objects or text. The curved shape of the lens converges the light rays, producing a larger virtual image that appears magnified to the viewer.

Concave lens:

Photodiode: A concave lens can be used in a photodiode setup where it senses the light (or the lack of it) from an LED light source positioned some distance away. A concave lens diverges the incoming light rays, spreading them out and reducing their intensity. This property of a concave lens can be used to control the amount of light falling on the photodiode, enabling it to detect changes in light intensity.

Viewfinder of a simple camera: A concave lens can be used in the viewfinder of a camera to help the photographer compose the image. The concave lens diverges the light rays from the scene, allowing the photographer to see a wider field of view. This helps in framing the shot and ensuring that the desired elements are captured within the frame.

In summary, convex lenses are used for applications that require converging light rays to create magnified and real images, while concave lenses are used for applications that require diverging light rays to control light intensity or provide a wider field of view.

(Convex lens or concave lens? Along with the reason. Part B Below is a list of some applications of lenses. Determine which lens could be used in each and explain why it would work. You can conduct online research to help you in this activity, if you wish. B 1 z X X2 10pt - v. E v Applications Lens Used Reason peephole in a door objective lens (front lens) of binoculars photodiode-In a garage door or burglar alarm, it can sense the light (or the lack of it) from an LED light source positioned some distance away. magnifying glass viewfinder of a simple camera Characters used:300/15000)

learn more about light

https://brainly.com/question/2790279

#SPJ11

a) In the Friction experiment. Compare My to W Which is larger? Why so ? b) In the Collisions experiment. Was the collision Elastic or Inelastic? Explain. c) In the Conservation of Energy experiment. The total energy seems to decrease after every bounce. Does that mean energy is not conserved? Where did that energy go? d) In the Newton's 2nd Law for Rotation experiment, if you make an error in measuring the diameter of the Drum, such that your measurement is larger than the actual diameter, how will this affect your calculated value of the Inertia of the system? Will this error make the calculated Inertia larger or smaller than the actual? (circle one). Explain.

Answers

a) W is larger than My because weight is typically greater than frictional force.

b) It depends on the specific circumstances; without more information, the nature of the collision cannot be determined.

c) The decrease in total energy does not violate the conservation of energy; energy is lost through factors like friction and deformation.

d) The calculated inertia will be larger than the actual inertia due to the error in measuring the diameter.

a) In the Friction experiment, W (weight) is larger than My (frictional force). This is because weight is the force exerted by the gravitational pull on an object, which is typically larger than the frictional force experienced by the object due to surface contact.

b) In the Collisions experiment, the nature of the collision (elastic or inelastic) would depend on the specific circumstances of the experiment. Without further information, it is not possible to determine whether the collision was elastic or inelastic.

c) In the Conservation of Energy experiment, the decrease in total energy after every bounce does not imply a violation of the conservation of energy. Some energy is lost due to factors such as friction, air resistance, and deformation of the objects involved in the experiment. This energy is usually converted into other forms such as heat or sound.

d) In the Newton's 2nd Law for Rotation experiment, if the measured diameter of the drum is larger than the actual diameter, it would result in a larger calculated value of the inertia of the system. This is because the inertia of a rotating object is directly proportional to its mass and the square of its radius. A larger measured diameter would lead to a larger calculated radius, thereby increasing the inertia value.

Learn more about the Conservation of Energy:

https://brainly.com/question/166559

#SPJ11

Question 4 (20 Points) One proposes to measure the velocity v of a bullet via shutting it into a ballistic pendulum. The bullet's mass m is 10 g. The mass M of the piece of wood it is shut into, is 10 kg. The velocity V of the system composed of Wood + Bullet, swinging backward right after the bullet hits the piece of wood, is V; the system, through the process of swinging, is highered as much as h=5 cm. a) (10 p) Apply the momentum and energy conservation laws, and determine the intial velocity v of the bullet; take g as 10m/s². b) (10 p) Why the following equation is erromeous: (M+m)gh=(1/2)mv². Explain.

Answers

By applying momentum and energy conservation, the initial velocity of the bullet is (m * V + M * V') / m. The erroneous equation neglects the rebound of the bullet and the velocity imparted to the wood.

a) To determine the initial velocity (v) of the bullet, we can apply the principles of momentum and energy conservation.

According to the law of conservation of momentum, the total momentum before the collision is equal to the total momentum after the collision. The momentum of an object is given by the product of its mass and velocity.

Before the collision:

The momentum of the bullet: m * v (since the mass of the bullet is m)

The momentum of the wood: 0 (since it is initially at rest)

After the collision:

The momentum of the bullet: m * (-V) (since it moves in the opposite direction with velocity -V)

The momentum of the wood: M * (-V') (since it moves in the opposite direction with velocity -V')

Using the conservation of momentum, we can equate the total momentum before and after the collision:

m * v + 0 = m * (-V) + M * (-V')

Simplifying the equation:

v = (m * V + M * V') / m

Now, let's apply the principle of conservation of energy. The initial kinetic energy of the system is converted into potential energy when the system swings upward by a height (h).

The initial kinetic energy of the system is given by:

(1/2) * (m + M) * V^2

The potential energy gained by the system is given by:

(m + M) * g * h

According to the conservation of energy, these two energies are equal:

(1/2) * (m + M) * V^2 = (m + M) * g * h

Now we can substitute the given values:

m = 10 g = 0.01 kg

M = 10 kg

h = 5 cm = 0.05 m

g = 10 m/s^2

Substituting the values into the equation, we can solve for V:

(1/2) * (0.01 + 10) * V^2 = (0.01 + 10) * 10 * 0.05

Simplifying the equation:

0.505 * V^2 = 5.05

V^2 = 10

Taking the square root of both sides:

V = √10

Therefore, the initial velocity of the bullet (v) is given by:

v = (m * V + M * V') / m

b) The equation (M+m)gh = (1/2)mv^2 is erroneous because it assumes that the bullet remains embedded in the wood after the collision and does not take into account the velocity (V') of the wood. In reality, the bullet rebounds from the wood and imparts a velocity (V') to the wood in the opposite direction. Therefore, the correct equation must consider both the velocities of the bullet and the wood to account for the conservation of momentum and energy in the system.

To know more about momentum, click here:

brainly.com/question/30677308

#SPJ11

Working as a Fluid Dynamics engineer at Dyson Malaysia will be much handling with the development of Computational Fluid Dynamic (CFD) modeling and simulation for fluid flow analvsis on their well-known products such as bladeless fan, air-multiplier, vacuum cleaner. hair dryer etc. In the simmlation process, four equations involving fluid flow variables are obtained to describe the flow field, namely continuity equation, momentum equation, energy equation and state equation. What would be the principle applied to derive the continuity equation? Write the continuity equation to solve the unsteady incompressible flow within the
bladeless fan.

Answers

As a Fluid Dynamics engineer at Dyson Malaysia, the main focus will be on the development of Computational Fluid Dynamic (CFD) modeling and simulation for fluid flow analysis on their products. The simulation process involves four equations that are used to describe the flow field: continuity equation, momentum equation, energy equation, and state equation.

The continuity equation is a principle applied to derive the conservation of mass for a fluid flow system. It relates the rate of change of mass within a control volume to the net flow of mass out of the volume. In the case of an incompressible flow, the continuity equation reduces to the equation of the conservation of volume.

The continuity equation for the unsteady incompressible flow within the bladeless fan can be expressed as follows:

∂ρ/∂t + ∇ · (ρV) = 0

where ρ is the density of the fluid, t is the time, V is the velocity vector, and ∇ · is the divergence operator.

This equation states that the rate of change of density with time and the divergence of the velocity field must be zero to maintain the conservation of volume.

By solving this equation using appropriate numerical methods, one can obtain the flow pattern and related parameters within the bladeless fan.

Learn more about Conservation of volume from the given link:

https://brainly.com/question/13259075

#SPJ11

: (1) The decay of a pure radioactive source follows the radioactive decay law N = Newhere N is the number of radioactive nuclei at time. Ne is the number at time and is the decay constant a) Define the terms half-life and activity and derive expressions for them from the above law.

Answers

Half-life:The half-life of a radioactive substance is defined as the time taken for half of the initial number of radioactive nuclei to decay. In terms of the decay constant, λ, the half-life, t1/2, is given by [tex]t1/2=0.693/λ.[/tex]

The value of t1/2 is specific to each radioactive nuclide and depends on the particular nuclear decay mode.Activity:

Activity, A, is the rate of decay of a radioactive source and is given by [tex]A=λN.[/tex]

The SI unit of activity is the becquerel, Bq, where 1 [tex]Bq = 1 s-1.[/tex]

An older unit of activity is the curie, Ci, where 1 [tex]Ci = 3.7 × 1010 Bq.[/tex]

The activity of a radioactive source decreases as the number of radioactive nuclei decreases.The decay law is given by [tex]N = N0e-λt[/tex]

Where N is the number of radioactive nuclei at time t, N0 is the initial number of radioactive nuclei, λ is the decay constant and t is the time since the start of the measurement.

The half-life of a radioactive substance is defined as the time taken for half of the initial number of radioactive nuclei to decay.

In terms of the decay constant, λ, the half-life, t1/2, is given by[tex]t1/2=0.693/λ.[/tex]

The activity of a radioactive source is the rate of decay of a radioactive source and is given by [tex]A=λN.[/tex]

To know more about radioactive visit:

https://brainly.com/question/1770619

#SPJ11

A ball of mass 5.0 kg is released from rest from the roof of a building. During the descend, the ball experiences air resistance with an average magnitude of 22.0 N. If the roof is 30.0 m above the ground, at what speed will the ball strike the ground?
A. 18.0 m/s
B. 20.0 m/s
C. 22.0 m/s
D. 24.0 m/s

Answers

The ball will strike the ground with a speed of 18.0 m/s. The correct option is A.

To find the speed at which the ball strikes the ground, we can use the concept of energy conservation. The potential energy lost by the ball as it falls is converted into kinetic energy. Taking into account the work done by air resistance, we can set up the following equation:

ΔPE - W_air = ΔKE,

where ΔPE is the change in potential energy, W_air is the work done by air resistance, and ΔKE is the change in kinetic energy.

The change in potential energy is given by:

ΔPE = m * g * h,

where m is the mass of the ball, g is the acceleration due to gravity, and h is the height of the building.

The work done by air resistance is equal to the average magnitude of the air resistance force multiplied by the distance traveled:

W_air = F_air * d,

where F_air is the magnitude of the air resistance force and d is the distance traveled (equal to the height of the building).

The change in kinetic energy is given by:

ΔKE = (1/2) * m * v²,

where v is the final velocity of the ball.

Combining these equations, we have:

m * g * h - F_air * d = (1/2) * m * v².

Substituting the given values into the equation, we get:

(5.0 kg) * (9.8 m/s²) * (30.0 m) - (22.0 N) * (30.0 m) = (1/2) * (5.0 kg) * v².

Simplifying the equation, we find:

1470 J - 660 J = 2.5 kg * v².

810 J = 2.5 kg * v².

Solving for v, we have:

v² = 324 m²/s².

Taking the square root of both sides, we get:

v ≈ 18.0 m/s.

Therefore, the ball will strike the ground with a speed of approximately 18.0 m/s. The correct option is A.

To know more about kinetic energy refer here:

https://brainly.com/question/30107920#

#SPJ11

2- Magnetic brakes are used to bring subway cars to a stop. Treat the 4000 kg subway cart as a 3m long bar sliding along a pair of conducting rails as shown. There is a magnetic field perpendicular to the plane of the rails with a strength of 2 T. a) Given an initial speed 20m/s, find the average deceleration and force required to bring the train to a stop over a distance of 40m. b) As the train moves along the rails, a current is induced in the circuit. What is the magnitude & direction of the initial induced current? (Assume the rails are frictionless, and the subway car has a resistance of 1 kilo-ohm, and the magnitude c) What must be the direction of the magnetic field so as to produce a decelerating force on the subway car? There is no figure.

Answers

a) The average deceleration required to bring the train to a stop over a distance of 40m is approximately -5 m/s^2. The force required is approximately -20,000 N (opposite to the initial direction of motion).

b) The magnitude of the initial induced current is approximately 10 A, flowing in the direction opposite to the initial motion of the subway car.

c) The magnetic field should be directed opposite to the initial direction of motion of the subway car to produce a decelerating force.

a) To find the average deceleration and force required, we can use the equations of motion. The initial speed of the subway car is 20 m/s, and it comes to a stop over a distance of 40 m.

Using the equation:

Final velocity^2 = Initial velocity^2 + 2 × acceleration × distance

Substituting the values:

0^2 = (20 m/s)^2 + 2 × acceleration × 40 m

Simplifying the equation:

400 m^2/s^2 = 800 × acceleration × 40 m

Solving for acceleration:

acceleration ≈ -5 m/s^2 (negative sign indicates deceleration)

To find the force required, we can use Newton's second law:

Force = mass × acceleration

Substituting the values:

Force = 4000 kg × (-5 m/s^2)

Force ≈ -20,000 N (negative sign indicates the force opposite to the initial direction of motion)

b) According to Faraday's law of electromagnetic induction, a changing magnetic field induces an electromotive force (EMF) and, consequently, a current in a closed circuit. In this case, as the subway car moves along the rails, the magnetic field perpendicular to the rails induces a current.

The magnitude of the induced current can be calculated using Ohm's law:

Current = Voltage / Resistance

The induced voltage can be found using Faraday's law:

Voltage = -N × ΔΦ/Δt

Since the rails are frictionless, the only force acting on the subway car is the magnetic force, which opposes the motion. The induced voltage is therefore equal to the magnetic force multiplied by the length of the bar.

Voltage = Force × Length

Substituting the given values:

Voltage = 20,000 N × 3 m

Voltage = 60,000 V

Using Ohm's law:

Current = Voltage / Resistance

Current = 60,000 V / 1000 Ω

Current ≈ 60 A

The magnitude of the initial induced current is approximately 60 A, flowing in the direction opposite to the initial motion of the subway car.

c) To produce a decelerating force on the subway car, the direction of the magnetic field should be opposite to the initial direction of motion. This is because the induced current generates a magnetic field that interacts with the external magnetic field, resulting in a force that opposes the motion of the subway car. The direction of the magnetic field should be such that it opposes the motion of the subway car.

To bring the subway car to a stop over a distance of 40 m, an average deceleration of approximately -5 m/s^2 is required, with a force of approximately -20,000 N (opposite to the initial direction of motion). The magnitude of the initial induced current is approximately 60 A, flowing in the opposite direction to the initial motion of the subway car. To produce a decelerating force, the direction of the magnetic field should be opposite to the initial direction of motion.

To know more about deceleration visit,

https://brainly.com/question/75351

# SPJ11

Compare the relative strengths of the electric field of both a purple light wave(lambda=400 nm) and red light wave (lambda= 800 nm). Assume the area over which each type of light is falling in the same.

Answers

When comparing purple light (λ = 400 nm) and red light (λ = 800 nm) with the same area of illumination, the purple light wave will have a stronger electric field.

The electric field strength of a light wave is determined by its intensity, which is proportional to the square of the electric field amplitude.

Intensity ∝ (Electric field amplitude)^2

Since intensity is constant for both purple and red light waves in this comparison, the only difference lies in the wavelengths. Shorter wavelengths correspond to higher frequencies and, consequently, larger electric field amplitudes. In this case, purple light with a wavelength of 400 nm has a shorter wavelength than red light with a wavelength of 800 nm. Thus, the electric field amplitude of purple light is greater, resulting in a stronger electric field strength compared to red light.

Learn more about electric field here:

brainly.com/question/11482745

#SPJ11

quick answer
please
QUESTION 22 Plane-polarized light with an intensity of 1,200 watts/m2 is incident on a polarizer at an angle of 30° to the axis of the polarizer. What is the resultant intensity of the transmitted li

Answers

Resultant intensity of the transmitted light through the polarizer, we need to consider the angle between the incident plane-polarized light and the axis of the polarizer. The transmitted intensity can be calculated using Malus' law.

Malus' law states that the transmitted intensity (I_t) through a polarizer is given by:

I_t = I_i * cos²θ, where I_i is the incident intensity and θ is the angle between the incident plane-polarized light and the polarizer's axis.

Substituting the given values:

I_i = 1,200 watts/m² (incident intensity)

θ = 30° (angle between the incident light and the polarizer's axis)

Calculating the transmitted intensity:

I_t = 1,200 watts/m² * cos²(30°)

I_t ≈ 1,200 watts/m² * (cos(30°))^2

I_t ≈ 1,200 watts/m² * (0.866)^2

I_t ≈ 1,200 watts/m² * 0.75

I_t ≈ 900 watts/m²

Therefore, the resultant intensity of the transmitted light through the polarizer is approximately 900 watts/m².

To learn more about polarizer click here.

brainly.com/question/29217577

#SPJ11

A plunger cylinder device initially contains 0.10 kg of saturated steam at 5 bar. Through a valve, initially closed, the cylinder is connected to a line through which steam at 10 bar and 500°C circulates. In a process that is maintained at constant pressure by the weight of the plunger, steam enters the cylinder until its contents reach 300°C, while simultaneously 90 kJ of heat is lost through the cylinder walls. Determine the amount of mass in kg of steam entering the cylinder.
Consider that 1 bar = 100 kPa

Answers

The value of the mass in kg of steam entering the cylinder is 0.0407 kg.

The mass in kg of steam entering the cylinder is 0.0407 kg.

Let m be the mass of the steam entering the cylinder. The specific volume of steam at 5 bar and 300°C is given as follows:v = 0.0642 m^3/kg

Using the formula of internal energy, we can find that:u = 2966 kJ/kg

The initial internal energy of the steam in the cylinder is given as follows:

u1 = hf + x1 hfg

u1 = 1430.8 + 0.9886 × 2599.1

u1 = 4017.6 kJ/kg

The final internal energy of the steam in the cylinder is given as follows:

u2 = hf + x2 hfg

u2 = 102.2 + 0.7917 × 2497.5

u2 = 1988.6 kJ/kg

Heat loss from the cylinder, Q = 90 kJ

We can use the first law of thermodynamics, which states that:Q = m(u2 - u1) - work done by steam

The work done by steam is negligible in the process as it is maintained at constant pressure. Thus, the equation becomes:

Q = m(u2 - u1)

0.0407 (1988.6 - 4017.6) = -90m = 0.0407 kg

Learn more about cylinder at

https://brainly.com/question/16290574

#SPJ11

Description of what physical processes needs to use
fractional calculation?

Answers

Answer:

Fractional calculus is a branch of mathematics that deals with the calculus of functions that are not differentiable at all points. This can be useful for modeling physical processes that involve memory or dissipation, such as viscoelasticity, diffusion, and wave propagation.

Explanation:

Some physical processes that need to use fractional calculation include:

Viscoelasticity: Viscoelasticity is a property of materials that exhibit both viscous and elastic behavior. This can be modeled using fractional calculus, as the fractional derivative of a viscoelastic material can be used to represent the viscous behavior, and the fractional integral can be used to represent the elastic behavior.

Diffusion: Diffusion is the movement of molecules from a region of high concentration to a region of low concentration. This can be modeled using fractional calculus, as the fractional derivative of a diffusing substance can be used to represent the rate of diffusion.

Wave propagation: Wave propagation is the movement of waves through a medium. This can be modeled using fractional calculus, as the fractional derivative of a wave can be used to represent the attenuation of the wave.

Fractional calculus is a powerful tool that can be used to model a wide variety of physical processes. It is a relatively new field of mathematics, but it has already found applications in many areas, including engineering, physics, and chemistry.

Learn more about Fractional calculus.

https://brainly.com/question/33261308

#SPJ11

If a human body has a total surface area of 1.7 m2, what is the total force on the body due to the atmosphere at sea level (1.01 x 105Pa)?

Answers

The force on a human body due to the atmosphere at sea level having a total surface area of 1.7 m² is 1.717 x 10^4N. Surface area refers to the entire region that covers a geometric figure. In mathematics, surface area refers to the amount of area that a three-dimensional shape has on its exterior.

Force is the magnitude of the impact of one object on another. Force is commonly measured in Newtons (N) in physics. Force can be calculated as the product of mass (m) and acceleration (a), which is expressed as F = ma.

If the human body has a total surface area of 1.7 m², The pressure on the body is given by P = 1.01 x 10^5 Pa. Therefore, the force (F) on the human body due to the atmosphere can be calculated as F = P x A, where A is the surface area of the body. F = 1.01 x 10^5 Pa x 1.7 m²⇒F = 1.717 x 10^4 N.

Therefore, the force on a human body due to the atmosphere at sea level having a total surface area of 1.7 m² is 1.717 x 10^4 N.

Let's learn more about Surface area:

https://brainly.com/question/16519513

#SPJ11

Hot air rises, so why does it generally become cooler as you climb a mountain? Note: Air has low thermal conductivity.

Answers

Hot air rises due to its lower density compared to cold air. As you climb a mountain, the atmospheric pressure decreases, and the air becomes less dense. This decrease in density leads to a decrease in temperature.



Here's a step-by-step explanation:

1. As you ascend a mountain, the air pressure decreases because the weight of the air above you decreases. This decrease in pressure causes the air molecules to spread out and become less dense.

2. When the air becomes less dense, it also becomes less able to hold heat. Air with low density has low thermal conductivity, meaning it cannot efficiently transfer heat.

3. As a result, the heat energy in the air is spread out over a larger volume, causing a decrease in temperature. This phenomenon is known as adiabatic cooling.

4. Adiabatic cooling occurs because as the air rises and expands, it does work against the decreasing atmospheric pressure. This work requires energy, which is taken from the air itself, resulting in a drop in temperature.

5. So, even though hot air rises, the decrease in atmospheric pressure as you climb a mountain causes the air to expand, cool down, and become cooler than the surrounding air.

In summary, the decrease in density and pressure as you climb a mountain causes the air to expand and cool down, leading to a decrease in temperature.

To know more about density visit:

https://brainly.com/question/29775886

#SPJ11

An inductor designed to filter high-frequency noise from power supplied to a personal computer placed in series with the computer. What mum inductor On met) shot have to produce a 2.83 0 reactance for 150 kote nolie 218 mit (b) What is its reactance (in k) at 57,0 7 7.34 X10

Answers

The reactance is approximately 13.7 kΩ.

An inductor designed to filter high-frequency noise from power supplied to a personal computer placed in series with the computer.

The formula that is used to calculate the inductance value is given by;

X = 2πfL

We are given that the reactance that the inductor should produce is 2.83 Ω for a frequency of 150 kHz.

Therefore substituting in the formula we get;

X = 2πfL

L = X/2πf

  = 2.83/6.28 x 150 x 1000

Hence L = 2.83/(6.28 x 150 x 1000)

              = 3.78 x 10^-6 H

The reactance is given by the formula;

X = 2πfL

Substituting the given values in the formula;

X = 2 x 3.142 x 57.07734 x 10^6 x 3.78 x 10^-6

   = 13.67 Ω

   ≈ 13.7 kΩ

Learn more about reactance from the given link

https://brainly.in/question/2056610

#SPJ11

Trooper Bob is passing speeder Albert along a straight stretch of road. Trooper Bob is moving at 110 miles per hour. Speeder Albert is moving at 120 miles per hour. The speed of sound is 750 miles/hour in air. Bob's siren is sounding at 1000 Hz. What is the Doppler frequency heard by Albert? VDetector VSource SPEEDER ALBERT TROOPER BOB 2. A source emits sound waves in all directions. The intensity of the waves 4.00 m from the sources is 9.00 *104 W/m². Threshold of Hearing is 1.00 * 10-12 W/m² A.) What is the Intensity in decibels? B.) What is the intensity at 10.0 m from the source in Watts/m? C.) What is the power of the source in Watts?

Answers

For the Doppler frequency heard by Albert, we need to calculate the apparent frequency due to the relative motion between Albert and Bob. Using the formula for the Doppler effect, we can determine the change in frequency.

To find the intensity in decibels, we can use the formula for decibel scale, which relates the intensity of sound to the threshold of hearing. By taking the logarithm of the ratio of the given intensity to the threshold of hearing, we can convert the intensity to decibels.

The power of the source can be determined using the formula for power, which relates power to intensity. By multiplying the given intensity at a distance of 4.00 m by the surface area of a sphere with a radius of 4.00 m, we can calculate the power of the source in watts.

1. The Doppler effect describes the change in frequency perceived by a moving observer due to the relative motion between the observer and the source of the sound. In this case, Bob is moving towards Albert, causing a change in frequency. We can use the formula for the Doppler effect to calculate the apparent frequency heard by Albert.

2. The intensity of sound can be measured in decibels, which is a logarithmic scale that relates the intensity of sound to the threshold of hearing. By taking the logarithm of the ratio of the given intensity to the threshold of hearing, we can determine the intensity in decibels.

3. The intensity of sound decreases as the square of the distance from the source due to spreading over a larger area. Using the inverse square law, we can calculate the intensity at a distance of 10.0 m from the source by dividing the given intensity at a distance of 4.00 m by the square of the ratio of the distances.

4. The power of the source can be determined by multiplying the intensity at a distance of 4.00 m by the surface area of a sphere with a radius of 4.00 m. This calculation gives us the power of the source in watts.

To learn more about Doppler click here: brainly.com/question/32883194

#SPJ11

A 2.0 kg object is tossed straight up in the air with an initial speed of 15 m/s. Ignore air drag, how long time does it take to return to its original position?
A)1.5 s
B) 2.0 s
C) 3.0 s
D) 4.0 s
E) None of the Above

Answers

A 2.0 kg object is tossed straight up in the air with an initial speed of 15 m/s. The time it takes for the object to return to its original position is approximately 3.0 seconds (option C).

To find the time it takes for the object to return to its original position, we need to consider the motion of the object when it is tossed straight up in the air.

When the object is thrown straight up, it will reach its highest point and then start to fall back down. The total time it takes for the object to complete this upward and downward motion and return to its original position can be determined by analyzing the time it takes for the object to reach its highest point.

We can use the kinematic equation for vertical motion to find the time it takes for the object to reach its highest point. The equation is:

v = u + at

Where:

v is the final velocity (which is 0 m/s at the highest point),

u is the initial velocity (15 m/s),

a is the acceleration due to gravity (-9.8 m/s^2), and

t is the time.

Plugging in the values, we have:

0 = 15 + (-9.8)t

Solving for t:

9.8t = 15

t = 15 / 9.8

t ≈ 1.53 s

Since the object takes the same amount of time to fall back down to its original position, the total time it takes for the object to return to its original position is approximately twice the time it takes to reach the highest point:

Total time = 2 * t ≈ 2 * 1.53 s ≈ 3.06 s

Therefore, the time it takes for the object to return to its original position is approximately 3.0 seconds (option C).

For more such questions on time, click on:

https://brainly.com/question/26969687

#SPJ8

Suppose you have a sample containing 400 nuclei of a radioisotope. If only 25 nuclei remain after one hour, what is the half-life of the isotope? O 45 minutes O 7.5 minutes O 30 minutes O None of the given options. O 15 minutes

Answers

The half-life of the radioisotope is 30 minutes. The half-life of a radioisotope is the time it takes for half of the nuclei in a sample to decay.

In this case, we start with 400 nuclei and after one hour, only 25 nuclei remain. This means that 375 nuclei have decayed in one hour. Since the half-life is the time it takes for half of the nuclei to decay, we can calculate it by dividing the total time (one hour or 60 minutes) by the number of times the half-life fits into the total time.

In this case, if 375 nuclei have decayed in one hour, that represents half of the initial sample size (400/2 = 200 nuclei). Therefore, the half-life is 60 minutes divided by the number of times the half-life fits into the total time, which is 60 minutes divided by the number of half-lives that have occurred (375/200 = 1.875).

Therefore, the half-life of the isotope is approximately 30 minutes.

Learn more about half life click here:

brainly.com/question/31666695

#SPJ11

A convex lens has a focal length f. An object is placed at a
position greater than 2f on the axis. The image formed is located
at

Answers

When a convex lens has a focal length of f and an object is placed at a position greater than 2f that is beyond the centre of curvature on the axis, then the image is formed between the centre of curvature and focus.

When the object is located beyond the centre of curvature of a convex lens, the image formed is real, inverted, and diminished. This means that the image is formed on the opposite side of the lens compared to the object, it is upside down, and its size is smaller than the object.

As light rays from the object pass through the lens, they refract (bend) according to the lens's shape and material properties. For a convex lens, parallel rays converge towards the principal focus after passing through the lens.

Therefore, when a convex lens has a focal length of f and an object is placed at a position greater than 2f that is beyond the centre of curvature on the axis, then the image is formed between the centre of curvature and focus.

Learn more about Convex Lens from the given link:

https://brainly.com/question/12213784

#SPJ11

A long straight wire carries a current of 44.6 A. An electron traveling at 7.65 x 10 m/s, is 3.88 cm from the wire. What is the magnitude of the magnetic force on the electron if the electron velocity is directed (a) toward the wire, (b) parallel to the wire in the direction of the current, and (c) perpendicular to the two directions defined by (a) and (b)?

Answers

A long straight wire carries a current of 44.6 A. An electron traveling at 7.65 x 10 m/s, is 3.88 cm from the wire.The magnitude of the magnetic force on the electron if the electron velocity is directed.(a)F ≈ 2.18 x 10^(-12) N.(b) the magnetic force on the electron is zero.(c)F ≈ 2.18 x 10^(-12) N.

To calculate the magnitude of the magnetic force on an electron due to a current-carrying wire, we can use the formula:

F = q × v × B ×sin(θ),

where F is the magnetic force, |q| is the magnitude of the charge of the electron (1.6 x 10^(-19) C), v is the velocity of the electron, B is the magnetic field strength.

Given:

Current in the wire, I = 44.6 A

Velocity of the electron, v = 7.65 x 10^6 m/s

Distance from the wire, r = 3.88 cm = 0.0388 m

a) When the electron velocity is directed toward the wire:

In this case, the angle θ between the velocity vector and the magnetic field is 90 degrees.

The magnetic field created by a long straight wire at a distance r from the wire is given by:

B =[ (μ₀ × I) / (2π × r)],

where μ₀ is the permeability of free space (4π x 10^(-7) T·m/A).

Substituting the given values:

B = (4π x 10^(-7) T·m/A × 44.6 A) / (2π × 0.0388 m)

Calculating the result:

B ≈ 2.28 x 10^(-5) T.

Now we can calculate the magnitude of the magnetic force using the formula:

F = |q| × v × B × sin(θ),

Substituting the given values:

F = (1.6 x 10^(-19) C) × (7.65 x 10^6 m/s) × (2.28 x 10^(-5) T) × sin(90 degrees)

Since sin(90 degrees) = 1, the magnetic force is:

F ≈ (1.6 x 10^(-19) C) × (7.65 x 10^6 m/s) × (2.28 x 10^(-5) T) ×1

Calculating the result:

F ≈ 2.18 x 10^(-12) N.

b) When the electron velocity is parallel to the wire in the direction of the current:

In this case, the angle θ between the velocity vector and the magnetic field is 0 degrees.

Since sin(0 degrees) = 0, the magnetic force on the electron is zero:

F = |q| × v ×B × sin(0 degrees) = 0.

c) When the electron velocity is perpendicular to the two directions defined by (a) and (b):

In this case, the angle θ between the velocity vector and the magnetic field is 90 degrees.

Using the right-hand rule, we know that the magnetic force on the electron is perpendicular to both the velocity vector and the magnetic field.

The magnitude of the magnetic force is given by:

F = |q| × v ×B × sin(θ),

Substituting the given values:

F = (1.6 x 10^(-19) C) × (7.65 x 10^6 m/s) × (2.28 x 10^(-5) T) × sin(90 degrees)

Since sin(90 degrees) = 1, the magnetic force is:

F ≈ (1.6 x 10^(-19) C) × (7.65 x 10^6 m/s) ×(2.28 x 10^(-5) T) × 1

Calculating the result:

F ≈ 2.18 x 10^(-12) N.

Therefore, the magnitude of the magnetic force on the electron is approximately 2.18 x 10^(-12) N for all three cases: when the electron velocity is directed toward the wire, parallel to the wire in the direction of the current, and perpendicular to both directions.

To learn more about magnetic field visit: https://brainly.com/question/7645789

#SPJ11

A capacitor is connected to an AC source. If the maximum current in the circuit is 0.520 A and the voltage from ti (a) the rms voltage (in V) of the source V (b) the frequency (in Hz) of the source Hz (c) the capacitance (in pF) of the capacitor F

Answers

(a) The rms voltage of the AC source is 67.60 V.

(b) The frequency of the AC source is 728 Hz.

(c) The capacitance of the capacitor is 1.23 pF.

(a) The required capacitance for the airport radar is 2.5 pF.

(b) No value is provided for the edge length of the plates.

(c) The common reactance at resonance is 12 Ω.

(a) The rms voltage of the AC source is 67.60 V.

The rms voltage is calculated by dividing the peak voltage by the square root of 2. In this case, the peak voltage is given as 95.6 V. Thus, the rms voltage is Vrms = 95.6 V / √2 = 67.60 V.

(b) The frequency of the AC source is Hz Hz.

The frequency is specified as 728 Hz.

(c) The capacitance of the capacitor is 1.23 pF.

To determine the capacitance, we can use the relationship between capacitive reactance (Xc), capacitance (C), and frequency (f): Xc = 1 / (2πfC). Additionally, Xc can be related to the maximum current (Imax) and voltage (V) by Xc = V / Imax. By combining these two relationships, we can express the capacitance as C = 1 / (2πfImax) = 1 / (2πfV).

Regarding the airport radar:

(a) The required capacitance is 2.5 pF.

To resonate at the given frequency, the relationship between inductance (L), capacitance (C), and resonant frequency (f) can be used: f = 1 / (2π√(LC)). Rearranging the equation, we find C = 1 / (4π²f²L). Substituting the provided values of L and f allows us to calculate the required capacitance.

(b) The edge length of the plates should be 0.0 mm.

No value is given for the edge length of the plates.

(c) The common reactance at resonance is 12 Ω.

At resonance, the reactance of the inductor (XL) and the reactance of the capacitor (Xc) cancel each other out, resulting in a common reactance (X) of zero.

learn more about "voltage ":- https://brainly.com/question/1176850

#SPJ11

A parallel-plate air-filled capacitor having area 48 cm² and plate spacing 4.0 mm is charged to a potential difference of 800 V. Find the following values. (a) the capacitance pF (b) the magnitude of the charge on each plate nC (c) the stored energy pJ (d) the electric field between the plates V/m (e) the energy density between the plates.

Answers

(a) Capacitance: 10.62 pF

(b) Charge on each plate: 8.496 nC

(c) Stored energy: 2.144 pJ

(d) Electric field: 200,000 V/m

(e) Energy density: 1.77 pJ/m³

To find the values for the given parallel-plate capacitor, we can use the following formulas:

(a) The capacitance (C) of a parallel-plate capacitor is given by:

C = (ε₀ * A) / d

where ε₀ is the permittivity of free space (8.85 x 10⁻¹² F/m), A is the area of the plates (converted to square meters), and d is the distance between the plates (converted to meters).

(b) The magnitude of the charge (Q) on each plate of the capacitor is given by:

Q = C * V

where V is the potential difference applied to the capacitor (800 V).

(c) The stored energy (U) in the capacitor is given by:

U = (1/2) * C * V²

(d) The electric field (E) between the plates of the capacitor is given by:

E = V / d

(e) The energy density (u) between the plates of the capacitor is given by:

u = (1/2) * ε₀ * E²

Now let's calculate the values:

(a) Capacitance:

C = (8.85 x 10⁻¹² F/m) * (0.0048 m²) / (0.004 m)

C = 10.62 pF

(b) Charge on each plate:

Q = (10.62 pF) * (800 V)

Q = 8.496 nC

(c) Stored energy:

U = (1/2) * (10.62 pF) * (800 V)²

U = 2.144 pJ

(d) Electric field:

E = (800 V) / (0.004 m)

E = 200,000 V/m

(e) Energy density:

u = (1/2) * (8.85 x 10⁻¹² F/m) * (200,000 V/m)²

u = 1.77 pJ/m³

Learn more about capacitance:

https://brainly.com/question/30529897

#SPJ11

A 7.80 g bullet has a speed of $20 m/s when it hits a target, causing the target to move 4:70 cm in the direction of the bullet's velocity before stopping. (A) Use work and energy considerations to find the average force (in N) that stops the bullet. (Enter the magnitude.) ____________ (B) Assuming the force is constant, determine how much time elapses (in s) between the moment the bullet strikes the target and the moment it stops moving
___________

Answers

We can use the principle of work and energy conservation. The work done by the average force on the bullet is equal to the change in kinetic energy of the bullet.

Additionally, the work done by the average force on the target is equal to the change in kinetic energy of the target.

(A) Average force on the bullet:

The work done on the bullet is equal to the change in its kinetic energy. We can calculate the initial kinetic energy of the bullet using the formula:

KE_bullet = (1/2) * m_bullet * v_bullet²

where m_bullet is the mass of the bullet and v_bullet is its initial velocity.

Plugging in the values:

m_bullet = 7.80 g = 0.00780 kg

v_bullet = 20 m/s

KE_bullet = (1/2) * 0.00780 kg * (20 m/s)² = 1.56 J

Since the bullet stops, its final kinetic energy is zero. Therefore, the work done by the average force on the bullet is equal to the initial kinetic energy:

Work_bullet = KE_bullet = 1.56 J

The displacement of the bullet is not given, but it's not needed to calculate the average force.

(B) Time elapsed until the bullet stops:

The work done by the average force on the target is equal to the change in kinetic energy of the target. Since the target comes to a stop, its final kinetic energy is zero. We can calculate the initial kinetic energy of the target using the formula:

KE_target = (1/2) * m_target * v_target²

where m_target is the mass of the target and v_target is its initial velocity.

The mass of the target is not given, so we cannot determine the exact value for the force or the time elapsed.

To know more about work done visit:

https://brainly.com/question/25573309

#SPJ11

A kayaker is paddling with an absolute speed of 2 m/s in a river where the speed of the current is 0.6 m/s. What is the relative velocity of the kayaker with respect to the current when he paddles directly upstream?

Answers

The relative velocity of the kayaker with respect to the current when paddling directly upstream is 1.4 m/s.

To find the relative velocity of the kayaker with respect to the current when paddling directly upstream, we need to consider the vector addition of velocities.

Absolute speed of the kayaker, v_kayaker = 2 m/s

Speed of the current, v_current = 0.6 m/s

When paddling directly upstream, the kayaker is moving in the opposite direction of the current. Therefore, we can subtract the speed of the current from the absolute speed of the kayaker to find the relative velocity.

Relative velocity = Absolute speed of the kayaker - Speed of the current

Relative velocity = v_kayaker - v_current

                 = 2 m/s - 0.6 m/s

                 = 1.4 m/s

Learn more about relative velocity at https://brainly.com/question/17228388

#SPJ11

A 725-kg two-stage rocket is traveling at a speed of 6.60 x 10³ m/s away from Earth when a predesigned explosion separates the rocket into two sections of equal mass that then move with a speed of 2.80 x 10³ m/s relative to each other along the original line of motion. (a) What is the speed and direction of each section (relative to Earth) after the explosion? (b) How much energy was supplied by the explosion? [Hint: What is the change in kinetic energy as a result of the explosion?]

Answers

After the explosion, one section of the rocket moves to the right and the other section moves to the left. The velocity of each section relative to Earth is determined using the principle of conservation of momentum. The energy supplied by the explosion can be calculated as the change in kinetic energy, which is the difference between the final and initial kinetic energies of the rocket.

(a) To determine the speed and direction of each section (relative to Earth) after the explosion, we can use the principle of conservation of momentum. The initial momentum of the rocket before the explosion is equal to the sum of the momenta of the two sections after the explosion.

Mass of the rocket, m = 725 kg

Initial velocity of the rocket, v₁ = 6.60 x 10³ m/s

Velocity of each section relative to each other after the explosion, v₂ = 2.80 x 10³ m/s

Let's assume that one section moves to the right and the other moves to the left. The mass of each section is 725 kg / 2 = 362.5 kg.

Applying the conservation of momentum:

(mv₁) = (m₁v₁₁) + (m₂v₂₂)

Where:

m is the mass of the rocket,

v₁ is the initial velocity of the rocket,

m₁ and m₂ are the masses of each section,

v₁₁ and v₂₂ are the velocities of each section after the explosion.

Plugging in the values:

(725 kg)(6.60 x 10³ m/s) = (362.5 kg)(v₁₁) + (362.5 kg)(-v₂₂)

Solving for v₁₁:

v₁₁ = [(725 kg)(6.60 x 10³ m/s) - (362.5 kg)(-v₂₂)] / (362.5 kg)

Similarly, for the section moving to the left:

v₂₂ = [(725 kg)(6.60 x 10³ m/s) - (362.5 kg)(v₁₁)] / (362.5 kg)

(b) To calculate the energy supplied by the explosion, we need to determine the change in kinetic energy of the rocket before and after the explosion.

The initial kinetic energy is given by:

KE_initial = (1/2)mv₁²

The final kinetic energy is the sum of the kinetic energies of each section:

KE_final = (1/2)m₁v₁₁² + (1/2)m₂v₂₂²

The energy supplied by the explosion is the change in kinetic energy:

Energy_supplied = KE_final - KE_initial

Substituting the values and calculating the expression will give the energy supplied by the explosion.

Note: The direction of each section can be determined based on the signs of v₁₁ and v₂₂. The magnitude of the velocities will provide the speed of each section.

To know more about kinetic energy refer to-

https://brainly.com/question/999862

#SPJ11

Other Questions
Write log92 as a quotient of natural logarithms. Provide your answer below:ln___/ ln____ 19. How can Phylogenetic estimates be used to test legal issuesregarding the human-to-human transmission of viruses?15. How would you test for evolutionary correlation betweentraits? US Regular retail gasoline prices and retail sales (by refiner)Month - Year - Price - QuantityAugust - 2020 - 2.182 - 16,752.50September - 2020 - 2.182 - 16,627.00October - 2020 - 2.158 - 16,824.20November - 2020 - 2.108 - 15,464.20December - 2020 - 2.195 - 15,180.20January - 2021 - 2.334 - 14,726.40February - 2021 - 2.501- 15,076.20March -2021 - 2.810 - 16,406.20April - 2021- 2.858 - 16,983.30May - 2021 - 2.985 - 9,695.10June - 2021 - 3.064 - 3,502.20July - 2021 - 3.136 - 3,454.10August - 2021 - 3.158 - 3,439.20September - 2021 - 3.175 - 3,355.40October - 2021- 3.291 - 3,287.00November - 2021- 3.395 - 3,316.50December - 2021- 3.307- 3,230.80January - 2022 - 3.315 - 4,053.30February - 2022 - 3.517 - 4.260.10March - 2022 - 4.222 - 4,269.50April - 2022 - 4.109 - 4,371.00May - 2022 - 4.444Please help! Thanks in advanced!1. Well be using data from the Energy Information Administration website on the monthly retail price and quantity sold of regular gasoline within the U.S.. That data is provided in the file "US regular retail gasoline prices and retail sales" within the Homework #2 material folder thats posted in Course Documents at Blackboard.Assume that the demand and supply curves associated with this market have their "typical slope" (i.e. that the demand curve in this market has a negative slope, and the supply curve a positive slope). Assume also that the prices and quantities you observe in the tables represent the equilibrium price (P*) and equilibrium quantity (Q*) in this market.In each problem below, youre provided with a pair of months. Your first task is to determine how the price and quantity changed between these two months. Under the assumption that the price is an equilibrium price and the quantity is an equilibrium quantity, you have information that tells you how the equilibrium changed between the two months. Given the changes that must have occurred, you must infer which shift(s) took place to give us that change in equilibrium.Match the pair of dates (and implied change in P* and Q*) on the left to the appropriate shift(s) on the right. Note that the shift(s) must always explain the result you found (i.e. it cant be correct under certain circumstances, it must always be correct in a market where the curves have their regular slopes as assumed above).E.g., between Sept 2021 and Oct 2021, there was an increase in both the price and quantity sold of regular gasoline within the US. That means P* has increased and Q* has increased. If you believe that this change is best explained by and increase in both demand and supply, then your answer would be "E".Change in P* and Q*:a. Sept 2021 to Oct 2021b. Oct 2021 to Nov 2021c. Nov 2021 to Dec 2021d. Jan 2022 to Feb 2022e. Mar 2022 to Apr 2022 Reparative vs. reconstructive vs. excisional vs. ablative heartsurgery (examples of each) Cultural Considerations for the postpartum period: 1. Balance of Hot and Cold: Bullet point the main cultural beliefs 2. Phases of Maternal Role Attainment: Define the 3 phases 3. What are the recommendations for alleviating breast engorgement in the breast-feeding woman. 4. What are the recommendations for alleviating breast engorgement and suppressing lactation in the bottle- feeding wom oman Suppose a spring frost destroys one third of the nationsartichoke crop Are these hosts on the same network? ip: 172.16.0.1 ip: 172.16.0.16 subnet: 255:255:255:240 The type of unemployment that is not part of the natural rate of unemployment is ; if you lose your job fixing tube TVs because virtually nobody owns one anymore, you are unemployed.O frictional; structurallyO structural; cyclicallyO cyclical; frictionallyO cyclical; structurally If your stock portfolio grows at a 5% annual rate with compounding, about how long would it take for your portfolio to double in value?5 years7 yearsO 14 yearsO 20 years Question 4 List the structures associated with urine formation and excretion in order. 9 Major calyx 13 Urethra 5. Nephron loop (descending limb) 4. Nephron loop (ascending limb) 12_ Urinary bladder 10 Renal pelvis -1_- Glomerulus -8 Minor calyx - 3 Proximal convoluted tubule -6 Distal convoluted tubule _-1_Collecting duct - 2 Glomerular capsule - 11_ Ureter 10-4 A heating coil designed to operate at 110 V is made of Nichrome wire 0.350 mm in diameter. When operating, the coil reaches a temperature of 1200C, which causes the resitance to be a factor of 1.472 higher than at 20.0 C. At the high temperature, the coil produces 556 W (a) What is the resistance of the coil when cold (20.0C)? 22 (+0.12) (b) What is the length of wire used Use p.= 1.00 10-62. m for the resistivity at 20.0C. Your Response History: 1. Incorrect. Your answer: "93 m". Correct answer: "1.58 m". The data used on this submission: 502 M. Score: 0/2 You may change your secuer 1.Which of the following is primarily responsible for the negative charges on the inside of a neuron?a. the high concentration of negatively charged carbohydrate molecules (B)b. the high concentration of chloride ions (Cl)c. the high concentration of lithium ions (Li)d. the large negatively charged protein molecules (A)e. the negatively charged organelles such as ribosomes and mitochondria2.A person with a Ph.D. (not an M.D.) that is interested in studying the cause and treatment of neuropsychiatric disorders like depression and schizophrenia is in the subfield of neuroscience called ______________.a. Theoretical neuroscienceb. Research psychologyc. Clinical neuroscienced. Experimental psychologye. Clinical behaviorist3.Which of the following requires energy in the form of ATP to function?a. The sodium-potassium pump that moves Na+ into the neuron and K+ out of the neuronb. The sodium-potassium pump that moves Na+ out of the neuron and K+ into of the neuronc. Na+ entering the neuron through voltage-gated ion channelsd. K+ leaving the neuron through voltage-gated ion channelse. None of the above are correct4.Dr. Gonzalez is interested in the effect of amphetamines in animal performance. He has three groups of mice, each getting different doses of amphetamine. He then counts the number of errors each mouse makes when running through a maze. In this example, the dependent variable is _____________.a. the dose of amphetamineb. the three groups of micec. the miced. the maze itselfe. the number of errors made while running through the maze5.__________ is a company that implants recording electrodes directly onto the cortex and then uses translated brain signals to move objects, such as a robotic hand.a. Cerebral roboticsb. BrainGatec. DARPAd. Neuroskye. Emotiv6.CRISPR-Cas9 is:a. a location on chromosome 11 that is linked to Alzheimers diseaseb. a technique for freezing and then slicing brain tissuec. an accurate gene-editing toold. one of several genes associated with a substance abuse disordere. a home genetic testing kit used to create ancestral maps A boy and a girl pull and push a crate along an icy horizontal surface, moving it 15 m at a constant speed. The boy exerts 50 N of force at an angle of 520 above the horizontal, and the girl exerts a force of 50 N at an angle of 320 above the horizontal. Calculate the total work done by the boy and girl together. 1700J 1500J 1098J 1000J An archer is able to shoot an arrow with a mass of 0.050 kg at a speed of 120 km/h. If a baseball of mass 0.15 kg is given the same kinetic energy, determine its speed. 19m/s 26m/s 69m/s 48m/s Solve the differential equation dy/dx = 6y/x, x > 0.Answer: (a)Note: Use C as your constant and simplify it so it is not negated or multiplied by a number in your solution. Find the general solution to(t+9)y' + 2ty t (t +9).Enter your answer as y = Use C to denote the arbitrary constant in your answer.help (equations) Letty" +10ty+8y = 0.Find all values of r such that y = t satisfies the differential equation for t > 0. If there is more than one correct answer, enter your answers as a comma =separated list.r =help (numbers) Rotate point (-3, 2) about the origin 180 degrees clockwise. Where will the new point be? 100 points Read the following line from the prologue of Romeo and Juliet.A pair of star-crossed lovers take their life...Which of the following universal themes does this quote help develop? Fate often plays a role in the outcome of a situation. Gossip is never a good thing. Using deception to get what you want is dangerous. Ancient grudges or long term feuds are difficult to overcome. Some anti-federalists rejected the idea of senators serving six-year terms. What arguments did the federalists use to convince the anti-federalists to accept six-year terms for senators? MAAS 213G - Review Do we route emergency calls immediately to the physician? (True or False) When do we offer to call a patient back during a phone call? Which 5 Cs of communication is used when one is being respectful? Define time-specified scheduling What can be a symptom, patients experience when blood sugar fall falling, acting confused, lost Define itinerary What is another term for e-scheduling? low? The actual value of a measured quantity is 210.0 while the experimentally measured value of the quantity is 272.5. Ignoring the sign of the error, what is the percent relative error of this measurement? An object of mass 0.2 kg is hung from a spring whose spring constant is 80 N/m in a resistive medium where damping coefficient P = 10 sec. The object is subjected to a sinusoidal driving force given by F(t) = F, sino't where F, = 2N and w' = 30 sec. In the steady state what is the amplitude of the forced oscillation. Also calculate the resonant amplitude. A liquid-air interface has a critical angle for total internal reflection of 44.3We assume Nair = 1.00.a. Determine the index of refraction of the liquid. b. If a ray of light traveling in the liquid has an angle of incidence at the interface of 34.7, what angledoes the refracted ray in the air make with the normal?c If a rav of light traveling in air has an anole of incidence at the interface of 34 7 what ande doesthe refracted ray in the liquid make with the normal?