The total work done by the boy and girl together is approximately 1391.758 J
To calculate the total work done by the boy and girl together, we need to find the work done by each individual and then add them together.
Boy's work:
The force exerted by the boy is 50 N, and the displacement is 15 m. The angle between the force and displacement is 52° above the horizontal. The work done by the boy is given by:
Work_boy = Force_boy * displacement * cos(angle_boy)
Work_boy = 50 N * 15 m * cos(52°)
Girl's work:
The force exerted by the girl is also 50 N, and the displacement is 15 m. The angle between the force and displacement is 32° above the horizontal. The work done by the girl is given by:
Work_girl = Force_girl * displacement * cos(angle_girl)
Work_girl = 50 N * 15 m * cos(32°)
Total work done by the boy and girl together:
Total work = Work_boy + Work_girl
Now let's calculate the values:
Work_boy = 50 N * 15 m * cos(52°) ≈ 583.607 J
Work_girl = 50 N * 15 m * cos(32°) ≈ 808.151 J
Total work = 583.607 J + 808.151 J ≈ 1391.758 J
Therefore, the total work done by the boy and girl together is approximately 1391.758 J. None of the provided options match this value, so there may be an error in the calculations or options given.
To learn more about work done
https://brainly.com/question/25573309
#SPJ11
The first order, irreversible reaction A → B takes place in a catalyst at 450 K and total pressure of 2 atm. Partial pressure of A at 2 mm away from the catalyst surface is 0.7 atm. The reaction occurs in the surface of catalyst and the product B diffuses back. Diffusivity coefficient at given condition is 7 x 10 m/s. Calculate the flux and Caz If k, = 0.00216 m/s.
The flux of the reaction is 0.0144 mol/(m²·s) and the concentration of A at the catalyst surface (Caz) is 0.7 atm.
The flux of a reaction is determined by the rate at which reactants are consumed or products are formed per unit area per unit time. In this case, the flux is given by the equation:
Flux = k * Caz
Where k is the rate constant of the reaction and Caz is the concentration of A at the catalyst surface. Given that k = 0.00216 m/s, we can calculate the flux using the provided value of Caz.
Flux = (0.00216 m/s) * (0.7 atm)
= 0.001512 mol/(m²·s)
= 0.0144 mol/(m²·s) (rounded to four significant figures)
Therefore, the flux of the reaction is 0.0144 mol/(m²·s).
Learn more about flux
brainly.com/question/15655691
#SPJ11
If an electron has a measured wavelength of 0.850 x 10¹0 m. what is its kinetic energy? (h=6.63 x 1034 J-s. 1 eV = 1.6 x 10-19 J, and me = 9.11 x 1031 kg)
The kinetic energy of the electron is approximately 24.94 eV.
To calculate the kinetic energy of an electron, we can use the de Broglie wavelength equation, which relates the wavelength of a particle to its momentum:
λ = h / p
where λ is the wavelength, h is the Planck's constant, and p is the momentum.
Since we are given the wavelength (λ = 0.850 x 10¹⁰ m), we can rearrange the equation to solve for the momentum:
p = h / λ
Substituting the values, we have:
p = (6.63 x 10⁻³⁴ J·s) / (0.850 x 10¹⁰ m)
Calculating this expression, we find:
p ≈ 7.8 x 10⁻²⁵ kg·m/s
Next, we can calculate the kinetic energy (K) using the formula for kinetic energy:
K = p² / (2m)
where m is the mass of the electron.
Substituting the values, we have:
K = (7.8 x 10⁻²⁵ kg·m/s)² / (2 * 9.11 x 10⁻³¹ kg)
Calculating this expression, we find:
K ≈ 3.99 x 10⁻¹⁸ J
Finally, we can convert the kinetic energy to electron volts (eV) using the conversion factor:
1 eV = 1.6 x 10⁻¹⁹ J
So, the kinetic energy of the electron is:
K ≈ (3.99 x 10⁻¹⁸ J) / (1.6 x 10⁻¹⁹ J/eV) ≈ 24.94 eV
Therefore, the kinetic energy of the electron is approximately 24.94 eV.
Learn more about kinetic energy here:
brainly.com/question/29552176
#SPJ11
Give at least one example for each law of motion that you
observed or experienced and explain each in accordance with the
laws of motion.
Isaac Newton's Three Laws of Motion describe the way that physical objects react to forces exerted on them. The laws describe the relationship between a body and the forces acting on it, as well as the motion of the body as a result of those forces.
Here are some examples for each of the three laws of motion:
First Law of Motion: An object at rest stays at rest, and an object in motion stays in motion at a constant velocity, unless acted upon by a net external force.
EXAMPLE: If you roll a ball on a smooth surface, it will eventually come to a stop. When you kick the ball, it will continue to roll, but it will eventually come to a halt. The ball's resistance to changes in its state of motion is due to the First Law of Motion.
Second Law of Motion: The acceleration of an object is directly proportional to the force acting on it, and inversely proportional to its mass. F = ma
EXAMPLE: When pushing a shopping cart or a bike, you must apply a greater force if it is heavily loaded than if it is empty. This is because the mass of the object has increased, and according to the Second Law of Motion, the greater the mass, the greater the force required to move it.
Third Law of Motion: For every action, there is an equal and opposite reaction.
EXAMPLE: A bird that is flying exerts a force on the air molecules below it. The air molecules, in turn, exert an equal and opposite force on the bird, which allows it to stay aloft. According to the Third Law of Motion, every action has an equal and opposite reaction.
Learn more about Law of Motion at https://brainly.com/question/28171613
#SPJ11
: 5. Five 50 kg girls are sitting in a boat at rest. They each simultaneously dive horizontally in the same direction at -2.5 m/s from the same side of the boat. The empty boat has a speed of 0.15 m/s afterwards. a. setup a conservation of momentum equation. b. Use the equation above to determine the mass of the boat. c. What
Five 50 kg girls are sitting in a boat at rest. They each simultaneously dive horizontally in the same direction at -2.5 m/s from the same side of the boat. The empty boat has a speed of 0.15 m/s afterwards.
a. A conservation of momentum equation is:
Final momentum = (mass of the boat + mass of the girls) * velocity of the boat
b. The mass of the boat is -250 kg.
c. Type of collision is inelastic.
a. To set up the conservation of momentum equation, we need to consider the initial momentum and the final momentum of the system.
The initial momentum is zero since the boat and the girls are at rest.
The final momentum can be calculated by considering the momentum of the girls and the boat together. Since the girls dive in the same direction with a velocity of -2.5 m/s and the empty boat moves at 0.15 m/s in the same direction, the final momentum can be expressed as:
Final momentum = (mass of the boat + mass of the girls) * velocity of the boat
b. Using the conservation of momentum equation, we can solve for the mass of the boat:
Initial momentum = Final momentum
0 = (mass of the boat + 5 * 50 kg) * 0.15 m/s
We know the mass of each girl is 50 kg, and there are five girls, so the total mass of the girls is 5 * 50 kg = 250 kg.
0 = (mass of the boat + 250 kg) * 0.15 m/s
Solving for the mass of the boat:
0.15 * mass of the boat + 0.15 * 250 kg = 0
0.15 * mass of the boat = -0.15 * 250 kg
mass of the boat = -0.15 * 250 kg / 0.15
mass of the boat = -250 kg
c. In a valid scenario, this collision could be considered an inelastic collision, where the boat and the girls stick together after the dive and move with a common final velocity. However, the negative mass suggests that further analysis or clarification is needed to determine the type of collision accurately.
To know more about direction here
https://brainly.com/question/32262214
#SPJ4
The complete question is:
Five 50 kg girls are sitting in a boat at rest. They each simultaneously dive horizontally in the same direction at -2.5 m/s from the same side of the boat. The empty boat has a speed of 0.15 m/s afterwards.
a. setup a conservation of momentum equation.
b. Use the equation above to determine the mass of the boat.
c. What type of collision is this?
a) The law of conservation of momentum states that the total momentum of a closed system remains constant if no external force acts on it.
The initial momentum is zero. Since the boat is at rest, its momentum is zero. The velocity of each swimmer can be added up by multiplying their mass by their velocity (since they are all moving in the same direction, the direction does not matter) (-2.5 m/s). When they jumped, the momentum of the system remained constant. Since momentum is a vector, the direction must be taken into account: 5*50*(-2.5) = -625 Ns. The final momentum is equal to the sum of the boat's mass (m) and the momentum of the swimmers. The final momentum is equal to (m+250)vf, where vf is the final velocity. The law of conservation of momentum is used to equate initial momentum to final momentum, giving 0 = (m+250)vf + (-625).
b) vf = 0.15 m/s is used to simplify the above equation, resulting in 0 = 0.15(m+250) - 625 or m= 500 kg.
c) The speed of the boat is determined by using the final momentum equation, m1v1 = m2v2, where m1 and v1 are the initial mass and velocity of the boat and m2 and v2 are the final mass and velocity of the boat. The momentum of the boat and swimmers is equal to zero, as stated in the conservation of momentum equation. 500*0 + 250*(-2.5) = 0.15(m+250), m = 343.45 kg, and the velocity of the boat is vf = -250/(500 + 343.45) = -0.297 m/s. The answer is rounded to the nearest hundredth.
In conclusion, the mass of the boat is 500 kg, and its speed is -0.297 m/s.
Learn more about momentum
https://brainly.com/question/30677308
#SPJ11
16 pts) in an alternate timeline where DC and Marvel exist in the same universe, Thor is trying to take down Superman. Thor throws his hammer (Mjölnir , which according to a 1991 trading card has a mass of about 20 kg) and hits Superman Superman (m+100 kg) is initially flying vertically downward with a speed of 20 m/s. Superman catches (and holds onto) the hammer and they move up and to the right with a speed of 10 m/s at an angle of 40 degrees above the horizontal. What was the initial speed and direction of the hammer? 022
The initial speed of the hammer thrown by Thor is approximately 105.82 m/s. To determine the initial speed and direction of the hammer thrown by Thor, we can use the principle of conservation of momentum and the concept of vector addition.
Let's denote the initial speed of the hammer as v₁ and its direction as θ₁. We'll assume the positive x-axis is to the right and the positive y-axis is upward.
According to the conservation of momentum:
(m₁ * v₁) + (m₂ * v₂) = (m₁ * u₁) + (m₂ * u₂)
where m₁ and m₂ are the masses of the hammer and Superman, v₁ and v₂ are their initial velocities, and u₁ and u₂ are their final velocities.
m₁ (mass of hammer) = 20 kg
v₂ (initial velocity of Superman) = -20 m/s (negative sign indicates downward direction)
m₂ (mass of Superman) = 100 kg
u₁ (final velocity of hammer) = 10 m/s (speed)
u₂ (final velocity of Superman) = 10 m/s (speed)
θ₂ (angle of motion of Superman) = 40 degrees above the horizontal
Now, let's calculate the initial velocity of the hammer.
Using the conservation of momentum equation and substituting the given values:
(20 kg * v₁) + (100 kg * (-20 m/s)) = (20 kg * 10 m/s * cos(θ₂)) + (100 kg * 10 m/s * cos(40°))
Note: The negative sign is applied to the velocity of Superman (v₂) since it is directed downward.
Simplifying the equation:
20 kg * v₁ - 2000 kg m/s = 200 kg * 10 m/s * cos(θ₂) + 1000 kg * 10 m/s * cos(40°)
Now, solving for v₁:
20 kg * v₁ = 2000 kg m/s + 200 kg * 10 m/s * cos(θ₂) + 1000 kg * 10 m/s * cos(40°)
v₁ = (2000 kg m/s + 200 kg * 10 m/s * cos(θ₂) + 1000 kg * 10 m/s * cos(40°)) / 20 kg
Calculating the value of v₁:
v₁ ≈ 105.82 m/s
Therefore, the initial speed of the hammer thrown by Thor is approximately 105.82 m/s.
Learn more about speed here:
https://brainly.com/question/28224010
#SPJ11
Calculate the force between 2 charges which each have a charge of +2.504C and
are separated by 1.25cm.
The force between the two charges of +2.504 C, separated by 1.25 cm, is approximately [tex]3.0064 \times 10^{14}[/tex] Newtons.
To calculate the force between two charges, we can use Coulomb's law, which states that the force (F) between two charges (q1 and q2) is directly proportional to the product of the charges and inversely proportional to the square of the distance between them. The formula for Coulomb's law is:
[tex]F = \frac {(k \times q_1 \times q_2)}{r^2}[/tex] where F is the force, k is the electrostatic constant (approximately [tex]9 \times 10^9 N \cdot m^2/C^2[/tex]), q₁ and q₂ are the charges, and r is the distance between the charges.
In this case, both charges have a value of +2.504 C, and they are separated by a distance of 1.25 cm (which is equivalent to 0.0125 m). Substituting these values into the formula, we have:
[tex]F = \frac{(9 \times 10^9 N \cdot m^2/C^2 \times 2.504 C \times 2.504 C)}{(0.0125 m)^2}[/tex]
Simplifying the calculation, we find: [tex]F \approx 3.0064 \times 10^{14}[/tex] Newtons.
So, to calculate the force between two charges, we can use Coulomb's law. By substituting the values of the charges and the distance into the formula, we can determine the force. In this case, the force between the two charges of +2.504 C, separated by 1.25 cm, is approximately [tex]3.0064 \times 10^{14}[/tex] Newtons.
Learn more about Coulomb force here:
https://brainly.com/question/31828017
#SPJ11
A long cylindrical wire of radius 4 cm has a current of 8 amps flowing through it. a) Calculate the magnetic field at r = 2, r = 4, and r = 6 cm away from the center of the wire if the current density is uniform. b) Calculate the same things if the current density is non-uniform and equal to J = kr2 c) Calculate the same things at t = 0 seconds, if the current is changing as a function of time and equal to I= .8sin(200t). Assume the wire is made of copper and current density as a function of r is uniform. =
At the respective distances, the magnetic field is approximate:
At r = 2 cm: 2 × 10⁻⁵ T
At r = 4 cm: 1 × 10⁻⁵ T
At r = 6 cm: 6.67 × 10⁻⁶ T
a) When the current density is uniform, the magnetic field at a distance r from the centre of a long cylindrical wire can be calculated using Ampere's law. For a wire with current I and radius R, the magnetic field at a distance r from the centre is given by:
B = (μ₀ × I) / (2πr),
where μ₀ is the permeability of free space (μ₀ ≈ 4π × 10⁻⁷ T m/A).
Substituting the values, we have:
1) At r = 2 cm:
B = (4π × 10⁻⁷ T m/A * 8 A) / (2π × 0.02 m)
B = (8 × 10⁻⁷ T m) / (0.04 m)
B ≈ 2 × 10⁻⁵ T
2) At r = 4 cm:
B = (4π × 10⁻⁷ T m/A * 8 A) / (2π × 0.04 m)
B = (8 × 10⁻⁷ T m) / (0.08 m)
B ≈ 1 × 10⁻⁵ T
3) At r = 6 cm:
B = (4π × 10⁻⁷ T m/A * 8 A) / (2π × 0.06 m)
B = (8 × 10⁻⁷ T m) / (0.12 m)
B ≈ 6.67 × 10⁻⁶ T
Therefore, at the respective distances, the magnetic field is approximately:
At r = 2 cm: 2 × 10⁻⁵ T
At r = 4 cm: 1 × 10⁻⁵ T
At r = 6 cm: 6.67 × 10⁻⁶ T
b) When the current density is non-uniform and equal to J = kr², we need to integrate the current density over the cross-sectional area of the wire to find the total current flowing through the wire. The magnetic field at a distance r from the centre of the wire can then be calculated using the same formula as in part a).
The total current (I_total) flowing through the wire can be calculated by integrating the current density over the cross-sectional area of the wire:
I_total = ∫(J × dA),
where dA is an element of the cross-sectional area.
Since the current density is given by J = kr², we can rewrite the equation as:
I_total = ∫(kr² × dA).
The magnetic field at a distance r from the centre can then be calculated using the formula:
B = (μ₀ × I_total) / (2πr),
1) At r = 2 cm:
B = (4π × 10⁻⁷ T m/A) × [(8.988 × 10⁹ N m²/C²) × (0.0016π m²)] / (2π × 0.02 m)
B = (4π × 10⁻⁷ T m/A) × (8.988 × 10⁹ N m²/C²) × (0.0016π m²) / (2π × 0.02 m)
B = (4 × 8.988 × 0.0016 × 10⁻⁷ × 10⁹ × π × π × Tm²N m/AC²) / (2 × 0.02)
B = (0.2296 * 10² × T) / (0.04)
B = 5.74 T
2) At r = 4 cm:
B = (4π × 10⁻⁷ T m/A) × (8.988 × 10⁹ N m²/C²) × (0.0016π m²) / (2π × 0.04 m)
B = (4 × 8.988 × 0.0016 × 10⁻⁷ × 10⁹ × π × π × Tm²N m/AC²) / (2 × 0.04)
B = (0.2296 * 10² × T) / (0.08)
B = 2.87 T
3) At r=6cm
B = (4π × 10⁻⁷ T m/A) × (8.988 × 10⁹ N m²/C²) × (0.0016π m²) / (2π × 0.06 m)
B = (4 × 8.988 × 0.0016 × 10⁻⁷ × 10⁹ × π × π × Tm²N m/AC²) / (2 × 0.06)
B = (0.2296 * 10² × T) / (0.012)
B = 1.91 T
c) To calculate the magnetic field at t = 0 seconds when the current is changing as a function of time (I = 0.8sin(200t)), we need to use the Biot-Savart law. The law relates the magnetic field at a point to the current element and the distance between them.
The Biot-Savart law is given by:
B = (μ₀ / 4π) × ∫(I (dl x r) / r³),
where
μ₀ is the permeability of free space,
I is the current, dl is an element of the current-carrying wire,
r is the distance between the element and the point where the magnetic field is calculated, and
the integral is taken over the entire length of the wire.
The specific form of the wire and the limits of integration are needed to perform the integral and calculate the magnetic field at the desired points.
Learn more about Magnetic Field from the given link:
https://brainly.com/question/16387830
#SPJ11
3. In a spring block system, a box is stretched on a horizontal, frictionless surface 20cm from equilibrium while the spring constant= 300N/m. The block is released at 0s. What is the KE (J) of the system when velocity of block is 1/3 of max value. Answer in J and in the hundredth place.Spring mass is small and bock mass unknown.
The kinetic energy at one-third of the maximum velocity is KE = (1/9)(6 J) = 0.67 J, rounded to the hundredth place.
In a spring-block system with a spring constant of 300 N/m, a box is initially stretched 20 cm from equilibrium on a horizontal, frictionless surface.
The box is released at t = 0 s. We are asked to find the kinetic energy (KE) of the system when the velocity of the block is one-third of its maximum value. The answer will be provided in joules (J) rounded to the hundredth place.
The potential energy stored in a spring-block system is given by the equation PE = (1/2)kx², where k is the spring constant and x is the displacement from equilibrium. In this case, the box is initially stretched 20 cm from equilibrium, so the potential energy at that point is PE = (1/2)(300 N/m)(0.20 m)² = 6 J.
When the block is released, the potential energy is converted into kinetic energy as the block moves towards equilibrium. At maximum displacement, all the potential energy is converted into kinetic energy. Therefore, the maximum potential energy of 6 J is equal to the maximum kinetic energy of the system.
The velocity of the block can be related to the kinetic energy using the equation KE = (1/2)mv², where m is the mass of the block and v is the velocity. Since the mass of the block is unknown, we cannot directly calculate the kinetic energy at one-third of the maximum velocity.
However, we can use the fact that the kinetic energy is proportional to the square of the velocity. When the velocity is one-third of the maximum value, the kinetic energy will be (1/9) of the maximum kinetic energy. Therefore, the kinetic energy at one-third of the maximum velocity is KE = (1/9)(6 J) = 0.67 J, rounded to the hundredth place.
Learn more about spring constant here: brainly.com/question/29975736
#SPJ11
The gravitational force changes with altitude. Find the change in gravitational force for someone who weighs 760 N at sea level as compared to the force measured when on an airplane 1600 m above sea level. You can ignore Earth's rotation for this problem. Use a negative answer to indicate a decrease in force.
For reference, Earth's mean radius (RE) is 6.37 x 106 m and Earth's mass (ME) is 5.972 x 1024 kg. [Hint: take the derivative of the expression for the force of gravity with respect to r, such that Aweight dF dr Ar. Evaluate the derivative at
Substituting the given values for Earth's mean radius (RE) and Earth's mass (ME), as well as the weight of the individual[tex](m1 = 760 N / 9.8 m/s^2 = 77.55 kg)[/tex], we can calculate the change in gravitational force.
To find the change in gravitational force experienced by an individual weighing 760 N at sea level compared to the force measured when on an airplane 1600 m above sea level, we can use the equation for gravitational force:
[tex]F = G * (m1 * m2) / r^2[/tex]
Where:
F is the gravitational force,
G is the gravitational constant,
and r is the distance between the centers of the two objects.
Let's denote the force at sea level as [tex]F_1[/tex] and the force at 1600 m above sea level as [tex]F_2[/tex]. The change in gravitational force (ΔF) can be calculated as:
ΔF =[tex]F_2 - F_1[/tex]
First, let's calculate [tex]F_1[/tex] at sea level. The distance between the individual and the center of the Earth ([tex]r_1[/tex]) is the sum of the Earth's radius (RE) and the altitude at sea level ([tex]h_1[/tex] = 0 m).
[tex]r_1 = RE + h_1 = 6.37 * 10^6 m + 0 m = 6.37 * 10^6 m[/tex]
Now we can calculate [tex]F_1[/tex] using the gravitational force equation:
[tex]F_1 = G * (m_1 * m_2) / r_1^2[/tex]
Next, let's calculate [tex]F_2[/tex] at 1600 m above sea level. The distance between the individual and the center of the Earth ([tex]r_2[/tex]) is the sum of the Earth's radius (RE) and the altitude at 1600 m ([tex]h_2[/tex] = 1600 m).
[tex]r_2[/tex] = [tex]RE + h_2 = 6.37 * 10^6 m + 1600 m = 6.37 * 10^6 m + 1.6 * 10^3 m = 6.3716 * 10^6 m[/tex]
Now we can calculate [tex]F_2[/tex] using the gravitational force equation:
[tex]F_2[/tex] = G * ([tex]m_1 * m_2[/tex]) /[tex]r_2^2[/tex]
Finally, we can find the change in gravitational force by subtracting [tex]F_1[/tex] from [tex]F_2[/tex]:
ΔF = [tex]F_2 - F_1[/tex]
To know more about Earth's mean radius, here
brainly.com/question/31408822
#SPJ4
The gravitational force acting on the person has decreased by 0.104 N when they are on an airplane 1600 m above sea level as compared to the force measured at sea level.
Gravitational force is given by F = G (Mm / r²), where G is the universal gravitational constant, M is the mass of the planet, m is the mass of the object, and r is the distance between the center of mass of the planet and the center of mass of the object.Given,At sea level, a person weighs 760N.
On an airplane 1600 m above sea level, the weight of the person is different. We need to calculate this difference and find the change in gravitational force.As we know, the gravitational force changes with altitude. The gravitational force acting on an object decreases as it moves farther away from the earth's center.To find the change in gravitational force, we need to first calculate the gravitational force acting on the person at sea level.
Gravitational force at sea level:F₁ = G × (Mm / R)²...[Equation 1]
Here, M is the mass of the earth, m is the mass of the person, R is the radius of the earth, and G is the gravitational constant. Putting the given values in Equation 1:F₁ = 6.674 × 10⁻¹¹ × (5.972 × 10²⁴ × 760) / (6.371 × 10⁶)²F₁ = 7.437 NNow, let's find the gravitational force acting on the person at 1600m above sea level.
Gravitational force at 1600m above sea level:F₂ = G × (Mm / (R+h))²...[Equation 2]Here, M is the mass of the earth, m is the mass of the person, R is the radius of the earth, h is the height of the airplane, and G is the gravitational constant. Putting the given values in Equation 2:F₂ = 6.674 × 10⁻¹¹ × (5.972 × 10²⁴ × 760) / (6.371 × 10⁶ + 1600)²F₂ = 7.333 NNow, we can find the change in gravitational force.ΔF = F₂ - F₁ΔF = 7.333 - 7.437ΔF = -0.104 NThe change in gravitational force is -0.104 N. A negative answer indicates a decrease in force.
Therefore, the gravitational force acting on the person has decreased by 0.104 N when they are on an airplane 1600 m above sea level as compared to the force measured at sea level.
Know more Gravitational Force
https://brainly.com/question/16613634
#SPJ11
Planet Z is 1.00×10 km in diameter. The free-tall acceleration on Planet Zi 8.00m/² You may want to review (Pages 342-343) Part A What is the mass of Planet Z? Express your answer to two significant figures and include the appropriate units. 20 m= Value Units Submit Request Answer Part B What is the free-fall acceleration 5000 km above Planet Z's north pole? Express your answer to two significant figures and include the appropriate units. PA 4 -0 ? Value Submit Provide Feedback Request Answer Units Revies
The mass of Planet Z is approximately 2.40×10^26 kg, given its diameter and free-fall acceleration. The free-fall acceleration 5000 km above Planet Z's north pole is approximately 9.68 m/s² using the formula for acceleration due to gravity at a certain height above the planet's surface.
Part A:
The mass of Planet Z can be calculated using the formula for the acceleration due to gravity, which is:
g = G(M/Z) / r^2
Given that the diameter of Planet Z is 1.00×10 km, its radius Z is 5.00×10 km or 5.00×10^7 m. The free-fall acceleration on Planet Z is 8.00 m/s². Substituting these values into the formula, we get:
8.00 m/s² = (6.67×10^-11 N(m/kg)^2) (M/Z) / (5.00×10^7 m)^2
Solving for M/Z, we get:
M/Z = (8.00 m/s²) (5.00×10^7 m)^2 / (6.67×10^-11 N(m/kg)^2)
M/Z = 2.40×10^26 kg
Since the mass of the planet is equal to M, we can conclude that the mass of Planet Z is approximately 2.40×10^26 kg, rounded to two significant figures.
Therefore, the mass of Planet Z is 2.40×10^26 kg.
Part B:
To calculate the free-fall acceleration 5000 km above Planet Z's north pole, we can use the formula:
g' = g (R/Z)^2
Since the height above the surface is 5000 km, the distance R is:
R = Z + h
R = 5.00×10^7 m + 5.00×10^6 m
R = 5.50×10^7 m
Substituting the given values into the formula, we get:
g' = 8.00 m/s² (5.50×10^7 m / 5.00×10^7 m)^2
g' = 9.68 m/s²
Therefore, the free-fall acceleration 5000 km above Planet Z's north pole is approximately 9.68 m/s², rounded to two significant figures.
To know more about acceleration due to gravity, visit:
brainly.com/question/13860566
#SPJ11
a)What is the magnitude of the tangential acceleration of a bug on the rim of an 11.5-in.-diameter disk if the disk accelerates uniformly from rest to an angular speed of 79.0 rev/min in 3.80 s?
b) When the disk is at its final speed, what is the magnitude of the tangential velocity of the bug?
c) One second after the bug starts from rest, what is the magnitude of its tangential acceleration?
d) One second arter the bug starts from rest, what Is the magnitude or its centripetal acceleration?
e) One second after the bug starts from rest, what is its total acceleration? (Take the positive direction to be in the direction of motion.)
a) The magnitude of the tangential acceleration of the bug on the rim of the disk is approximately 1.209 m/s².
b) The magnitude of the tangential velocity of the bug when the disk is at its final speed is approximately 2.957 m/s.
c) One second after starting from rest, the magnitude of the tangential acceleration of the bug is approximately 1.209 m/s².
d) One second after starting from rest, the magnitude of the centripetal acceleration of the bug is approximately 1.209 m/s².
e) One second after starting from rest, the magnitude of the total acceleration of the bug is approximately 1.710 m/s².
To solve the problem, we need to convert the given quantities to SI units.
Given:
Diameter of the disk = 11.5 inches = 0.2921 meters (1 inch = 0.0254 meters)
Angular speed (ω) = 79.0 rev/min
Time (t) = 3.80 s
(a) Magnitude of tangential acceleration (at):
We can use the formula for angular acceleration:
α = (ωf - ωi) / t
where ωf is the final angular speed and ωi is the initial angular speed (which is 0 in this case).
Since we know that the disk accelerates uniformly from rest, the initial angular speed ωi is 0.
α = ωf / t = (79.0 rev/min) / (3.80 s)
To convert rev/min to rad/s, we use the conversion factor:
1 rev = 2π rad
1 min = 60 s
α = (79.0 rev/min) * (2π rad/rev) * (1 min/60 s) = 8.286 rad/s²
The tangential acceleration (at) can be calculated using the formula:
at = α * r
where r is the radius of the disk.
Radius (r) = diameter / 2 = 0.2921 m / 2 = 0.14605 m
at = (8.286 rad/s²) * (0.14605 m) = 1.209 m/s²
Therefore, the magnitude of the tangential acceleration of the bug on the rim of the disk is approximately 1.209 m/s².
(b) Magnitude of tangential velocity (v):
To calculate the tangential velocity (v) at the final speed, we use the formula:
v = ω * r
v = (79.0 rev/min) * (2π rad/rev) * (1 min/60 s) * (0.14605 m) = 2.957 m/s
Therefore, the magnitude of the tangential velocity of the bug on the rim of the disk when the disk is at its final speed is approximately 2.957 m/s.
(c) Magnitude of tangential acceleration one second after starting from rest:
Given that one second after starting from rest, the time (t) is 1 s.
Using the formula for angular acceleration:
α = (ωf - ωi) / t
where ωi is the initial angular speed (0) and ωf is the final angular speed, we can rearrange the formula to solve for ωf:
ωf = α * t
Substituting the values:
ωf = (8.286 rad/s²) * (1 s) = 8.286 rad/s
To calculate the tangential acceleration (at) one second after starting from rest, we use the formula:
at = α * r
at = (8.286 rad/s²) * (0.14605 m) = 1.209 m/s²
Therefore, the magnitude of the tangential acceleration of the bug one second after starting from rest is approximately 1.209 m/s².
(d) Magnitude of centripetal acceleration:
The centripetal acceleration (ac) can be calculated using the formula:
ac = ω² * r
where ω is the angular speed and r is the radius.
ac = (8.286 rad/s)² * (0.14605 m) = 1.209 m/s²
Therefore, the magnitude of the centripetal acceleration of the bug one second after starting from rest is approximately 1.209 m/s².
(e) Magnitude of total acceleration:
The total acceleration (a) can be calculated by taking the square root of the sum of the squares of the tangential acceleration and centripetal acceleration:
a = √(at² + ac²)
a = √((1.209 m/s²)² + (1.209 m/s²)²) = 1.710 m/s²
Therefore, the magnitude of the total acceleration of the bug one second after starting from rest is approximately 1.710 m/s².
Learn more about tangential acceleration from the link given below.
https://brainly.com/question/15743294
#SPJ4
Frustrated with the Snell's pace of the progress of love,
he places an object 15 cm from a converging lens with a focal
length of 25 cm. What is the location of the image formed by the
lens?
The image is formed on the same side as the object and is a real image. The image is located at approximately 9.375 cm from the lens.
To determine the location of the image formed by a converging lens, we can use the lens formula:
1/f = 1/v - 1/u
Where f is the focal length of the lens, v is the distance of the image from the lens, and u is the distance of the object from the lens.
In this case, the object is placed at a distance of 15 cm (u = -15 cm) from the converging lens with a focal length of 25 cm (f = 25 cm).
Plugging these values into the lens formula, we can solve for v:
1/25 = 1/v - 1/-15
Multiplying through by 25v(-15), we get:
-15v + 25(-15) = 25v
-15v - 375 = 25v
40v = -375
v = -375/40
v ≈ -9.375 cm
Since the image is formed on the same side as the object, the distance is negative. Therefore, the image is located at approximately 9.375 cm from the lens.
Learn more about real image here; brainly.com/question/13197137
#SPJ11
2. For each pair of systems, circle the one with the larger entropy. If they both have the same entropy, explicitly state it. a. 1 kg of ice or 1 kg of steam b. 1 kg of water at 20°C or 2 kg of water at 20°C c. 1 kg of water at 20°C or 1 kg of water at 50°C d. 1 kg of steam (H₂0) at 200°C or 1 kg of hydrogen and oxygen atoms at 200°C Two students are discussing their answers to the previous question: Student 1: I think that 1 kg of steam and 1 kg of the hydrogen and oxygen atoms that would comprise that steam should have the same entropy because they have the same temperature and amount of stuff. Student 2: But there are three times as many particles moving about with the individual atoms not bound together in a molecule. I think if there are more particles moving, there should be more disorder, meaning its entropy should be higher. Do you agree or disagree with either or both of these students? Briefly explain your reasoning.
a. 1 kg of steam has the larger entropy. b. 2 kg of water at 20°C has the larger entropy. c. 1 kg of water at 50°C has the larger entropy. d. 1 kg of steam (H2O) at 200°C has the larger entropy.
Thus, the answers to the question are:
a. 1 kg of steam has a larger entropy.
b. 2 kg of water at 20°C has a larger entropy.
c. 1 kg of water at 50°C has a larger entropy.
d. 1 kg of steam (H₂0) at 200°C has a larger entropy.
Student 1 thinks that 1 kg of steam and 1 kg of hydrogen and oxygen atoms that make up the steam should have the same entropy because they have the same temperature and amount of stuff. Student 2, on the other hand, thinks that if there are more particles moving around, there should be more disorder, indicating that its entropy should be higher.I agree with student 2's reasoning. Entropy is directly related to the disorder of a system. Higher disorder indicates a higher entropy value, whereas a lower disorder implies a lower entropy value. When there are more particles present in a system, there is a greater probability of disorder, which results in a higher entropy value.
To know more about entropy:
https://brainly.com/question/20166134
#SPJ11
Each of the statements below is a true statement that seems contradictory. For this discussion, choose one of the statements and carefully explain in your own words why it is true. Make sure you use the concepts in Ch 9 in your explanation. Give one everyday example that demonstrates your explanation.
1. Evaporation is a cooling process.
2. Condensation is a warming process
Evaporation is a cooling process. At first, it may sound counter-intuitive since evaporation involves the transformation . This indicates that it can cool its surroundings.
One everyday example of this is the process of sweating. When humans sweat, it evaporates from the surface of the skin and takes heat energy away from the body. As a result, people feel cooler as the heat is eliminated from their bodies, and the surrounding air is warmed up. gasoline, and perfume, all of which can evaporate and produce a cooling effect.
Condensation is a warming process. The process of condensation happens when gas molecules lose energy and . It contributes to the warming of the atmosphere by returning the latent heat energy that was consumed during evaporation back to the environment.
To know more about Evaporation visit:
https://brainly.com/question/28319650
#SPJ11
13. A particle vibrates 5 times a second and each time it
vibrates, the energy advances by 50 cm. What is the wave speed? A.
5 m/s B. 2.5 m/s C. 1.25 m/s D. 0.5 m/s
14. Which of the following apply to
A particle that vibrates 5 times a second and advances energy 50 cm per vibration will create a wave with a wavelength of 10 cm and the wave speed is 0.5 m/s
Therefore, the speed of the wave can be calculated using the following formula:
Wave speed = frequency x wavelength
Substituting in the values gives:
Wave speed = 5 x 10 cm/s = 50 cm/s = 0.5 m/s. Therefore, the answer is option D (0.5 m/s).
When a particle vibrates, it produces a wave, which is defined as a disturbance that travels through space and time. The wave has a certain speed, frequency, and wavelength. The wave speed refers to the distance covered by the wave per unit time. It is determined by multiplying the frequency by the wavelength.
In this problem, a particle vibrates five times a second, and each time it vibrates, the energy advances by 50 cm. The question is to determine the wave speed of the particle's vibration. To determine the wave speed, we need to use the following formula:
Wave speed = frequency x wavelengthThe frequency of the particle's vibration is 5 Hz, and the distance advanced by the energy per vibration is 50 cm. Therefore, the wavelength can be calculated as follows:
Wavelength = distance/number of vibrations = 50 cm/5 = 10 cm.
Substituting these values into the formula for wave speed, we get:
Wave speed = 5 x 10 cm/s = 50 cm/s = 0.5 m/sTherefore, the wave speed of the particle's vibration is 0.5 m/s.
A particle that vibrates five times a second and advances energy 50 cm per vibration will create a wave with a wavelength of 10 cm. The wave speed can be calculated using the formula wave speed = frequency x wavelength, which gives a value of 0.5 m/s.
To know more about frequency visit
brainly.com/question/29739263
#SPJ11
An ideal gas expands isothermally, performing 5.00×10 3
J of work in the process. Calculate the change in internal energy of the gas. Express your answer with the appropriate units. Calculate the heat absorbed during this expansion. Express your answer with the appropriate units.
For an isothermal expansion of an ideal gas, the change in internal energy is zero. In this case, the gas performs 5.00×10^3 J of work, and the heat absorbed during the expansion is also 5.00×10^3 J.
An isothermal process involves a change in a system while maintaining a constant temperature. In this case, an ideal gas is expanding isothermally and performing work. We need to calculate the change in internal energy of the gas and the heat absorbed during the expansion.
To calculate the change in internal energy (ΔU) of the gas, we can use the first law of thermodynamics, which states that the change in internal energy is equal to the heat (Q) absorbed or released by the system minus the work (W) done on or by the system. Mathematically, it can be represented as:
ΔU = Q - W
Since the process is isothermal, the temperature remains constant, and the change in internal energy is zero. Therefore, we can rewrite the equation as:
0 = Q - W
Given that the work done by the gas is 5.00×10^3 J, we can substitute this value into the equation:
0 = Q - 5.00×10^3 J
Solving for Q, we find that the heat absorbed during this expansion is 5.00×10^3 J.
To know more about the first law of thermodynamics, refer here:
https://brainly.com/question/32101564#
#SPJ11
In an R−C circuit the resistance is 115Ω and Capacitance is 28μF, what will be the time constant? Give your answer in milliseconds. Question 5 1 pts What will be the time constant of the R−C circuit, in which the resistance =R=5 kilo-ohm, Capacitor C1 =6 millifarad, Capacitor C2=10 millifarad. The two capacitors are in series with each other, and in series with the resistance. Write your answer in milliseconds. Question 6 1 pts What will be the time constant of the R−C circuit, in which the resistance =R=6 kilo-ohm, Capacitor C1 = 7 millifarad, Capacitor C2 = 7 millifarad. The two capacitors are in parallel with each other, and in series with the resistance. Write your answer in milliseconds.
The time constant of the R−C circuit is 132.98 ms.
1: In an R−C circuit, the resistance is 115Ω and capacitance is 28μF.
The time constant of the R−C circuit is given as:
Time Constant (τ) = RC
where
R = Resistance
C = Capacitance= 115 Ω × 28 μ
F= 3220 μs = 3.22 ms
Therefore, the time constant of the R−C circuit is 3.22 ms.
2: In an R−C circuit, the resistance
R = 5 kΩ, Capacitor
C1 = 6 mF and
Capacitor C2 = 10 mF.
The two capacitors are in series with each other, and in series with the resistance.
The total capacitance in the circuit will be
CT = C1 + C2= 6 mF + 10 mF= 16 mF
The equivalent capacitance for capacitors in series is:
1/CT = 1/C1 + 1/C2= (1/6 + 1/10)×10^-3= 0.0267×10^-3F = 26.7 µF
The total resistance in the circuit is:
R Total = R + R series
The resistors are in series, so:
R series = R= 5 kΩ
The time constant of the R−C circuit is given as:
Time Constant (τ) = RC= (5×10^3) × (26.7×10^-6)= 0.1335 s= 133.5 ms
Therefore, the time constant of the R−C circuit is 133.5 ms.
3: In an R−C circuit, the resistance
R = 6 kΩ,
Capacitor C1 = 7 mF, and
Capacitor C2 = 7 mF.
The two capacitors are in parallel with each other and in series with the resistance.
The equivalent capacitance for capacitors in parallel is:
CT = C1 + C2= 7 mF + 7 mF= 14 mF
The total capacitance in the circuit will be:
C Total = CT + C series
The capacitors are in series, so:
1/C series = 1/C1 + 1/C2= (1/7 + 1/7)×10^-3= 0.2857×10^-3F = 285.7 µFC series = 1/0.2857×10^-3= 3498.6 Ω
The total resistance in the circuit is:
R Total = R + C series= 6 kΩ + 3498.6 Ω= 9498.6 Ω
The time constant of the R−C circuit is given as:
Time Constant (τ) = RC= (9.4986×10^3) × (14×10^-6)= 0.1329824 s= 132.98 ms
Therefore, the time constant of the R−C circuit is 132.98 ms.
To know more about R−C circuit visit:
https://brainly.com/question/32250409
#SPJ11
What is the impact speed when a car moving at 95 km/hour runs into the back of another car moving (in the same direction) at 85 km/hour?
A. 10 km/hour B. 20 km/hour C. 5 km/hour D. 0.95 km/hour
The impact speed when a car moving at 95 km/h runs into the back of another car moving at 85 km/h (in the same direction) is 10 km/h.
The impact speed refers to the velocity at which an object strikes or collides with another object. It is determined by considering the relative velocities of the objects involved in the collision.
In the context of a car collision, the impact speed is the difference between the velocities of the two cars at the moment of impact. If the cars are moving in the same direction, the impact speed is obtained by subtracting the velocity of the rear car from the velocity of the front car.
To calculate the impact speed, we need to find the relative velocity between the two cars. Since they are moving in the same direction, we subtract their velocities.
Relative velocity = Velocity of car 1 - Velocity of car 2
Relative velocity = 95 km/h - 85 km/h
Relative velocity = 10 km/h
Therefore, the impact speed when the cars collide is 10 km/h.
To learn more about impact speed click here:
brainly.com/question/30328110
#SPJ11
An electron accelerates from 0 to 10 x 109 m/s in an electric field. Through what potential difference did the electron travel? The mass of an electron is 9.11 x 10-31 kg, and its charge is -1.60 x 10-18C. a. 29 την b. 290 mV c. 2,900 mv d. 29 V
The potential difference through which the electron traveled is -2.84 x 10⁶ V. So, none of the options are correct.
To determine the potential difference (V) through which the electron traveled, we can use the equation that relates the potential difference to the kinetic energy of the electron.
The kinetic energy (K) of an electron is given by the formula:
K = (1/2)mv²
where m is the mass of the electron and v is its final velocity.
The potential difference (V) can be calculated using the formula:
V = K / q
where q is the charge of the electron.
Given that the final velocity of the electron is 10 x 10^9 m/s, the mass of the electron is 9.11 x 10^-31 kg, and the charge of the electron is -1.60 x 10^-19 C, we can substitute these values into the equations:
K = (1/2)(9.11 x 10⁻³¹ kg)(10 x 10⁹ m/s)²
K = 4.55 x 10⁻¹⁴ J
V = (4.55 x 10^⁻¹⁴ J) / (-1.60 x 10⁻¹⁹ C)
V = -28.4 x 10⁴ V
Since the potential difference is generally expressed in volts, we can convert it to the appropriate units:
V = -28.4 x 10⁴ V = -2.84 x 10⁶ V
Therefore, the potential difference through which the electron traveled is approximately -2.84 x 10⁶ V. So, none of the options are correct.
To learn more about potential difference: https://brainly.com/question/24142403
#SPJ11
Calculate the p-value for the following conditions and determine whether or not to reject the null hypothesis.
a) one-tail (lower) test,zp= -1. 05 and α=0. 05
b) one-tail (upper) test,zp=1. 79 and α=0. 10
c) two-tail test,zp=2. 16 and α=0. 05
d) two-tail test, zp=−1. 18, and α=0. 10
To calculate the p-value for the given conditions, we need to use the standard normal distribution table. The p-value represents the probability of observing a test statistic as extreme as or more extreme than the calculated value.
a) For a one-tail (lower) test with zp = -1.05 and α = 0.05:
The p-value can be found by looking up the z-score -1.05 in the standard normal distribution table. The area to the left of -1.05 is 0.1469. Since this is a one-tail (lower) test, the p-value is equal to this area: p-value = 0.1469.
To determine whether or not to reject the null hypothesis, we compare the p-value to the significance level (α). If the p-value is less than or equal to α, we reject the null hypothesis. In this case, since the p-value (0.1469) is greater than α (0.05), we do not reject the null hypothesis.
b) For a one-tail (upper) test with zp = 1.79 and α = 0.10:
Using the standard normal distribution table, the area to the right of 1.79 is 0.0367. Since this is a one-tail (upper) test, the p-value is equal to this area: p-value = 0.0367.
Comparing the p-value (0.0367) to the significance level (α = 0.10), we find that the p-value is less than α. Therefore, we reject the null hypothesis.
c) For a two-tail test with zp = 2.16 and α = 0.05:
We need to find the area to the right of 2.16 and double it since it's a two-tail test. The area to the right of 2.16 is 0.0158. Doubling this gives the p-value: p-value = 2 * 0.0158 = 0.0316.
Comparing the p-value (0.0316) to the significance level (α = 0.05), we find that the p-value is less than α. Therefore, we reject the null hypothesis.
d) For a two-tail test with zp = -1.18 and α = 0.10:
Similarly, we find the area to the left of -1.18 and double it. The area to the left of -1.18 is 0.1190. Doubling this gives the p-value: p-value = 2 * 0.1190 = 0.2380.
Comparing the p-value (0.2380) to the significance level (α = 0.10), we find that the p-value is greater than α. Therefore, we do not reject the null hypothesis.
In summary:
a) p-value = 0.1469, Do not reject the null hypothesis.
b) p-value = 0.0367, Reject the null hypothesis.
c) p-value = 0.0316, Reject the null hypothesis.
d) p-value = 0.2380, Do not reject the null hypothesis.
to know more about normal distribution table refer here
brainly.com/question/29291264#
#SPJ11
A bungee cord loosely hangs from a bridge. Its length while hanging is 52.9 m. When a 51.3 kg bungee jumper is attached and makes her leap, after bouncing around for a bit, she ends up hanging upside down 57.2 m from the jump point, where the bungee cord is tied. What is the spring constant of the bungee cord?
After considering the given data we conclude that the spring constant of the bungee cord is 116.92 N/m. when Force is 502.74 N and Displacement is 4.3 m.
We have to apply the Hooke’s law to evaluate the spring constant of the bungee cord which is given as,
[tex]F = -k * x[/tex]
Here
F = force exerted by the spring
x = displacement from equilibrium.
From the given data it is known to us that
Hanging length ( initial position ) = 52.9 m
Hanging upside down ( Final position ) = 57.2 m
Mass = 51.3 kg
g = 9.8 m/s²
Staging the values in the equation we get:
[tex]Displacement (x) = Final position - initial position\\[/tex]
[tex]x = 57.2 m - 52.9 m[/tex]
= 4.3 m.
The force exerted by the bungee cord on the jumper is evaluated as,
F = mg
Here,
m = mass
g = acceleration due to gravity
Placing the m and g values in the equation we get:
[tex]F = (51.3 kg) * (9.8 m/s^2)[/tex]
= 502.74 N.
Staging the values in Hooke’s law to evaluate the spring constant of the bungee cord we get:
[tex]k = \frac{F}{x}[/tex]
= (502.74 N)/(4.3 m)
= 116.92 N/m.
Therefore, the spring constant of the bungee cord is 116.92 N/m.
To learn more about Hooke’s law:
brainly.com/question/31066055
#SPJ4
Consider LC circuit where at time t = 0, the energy in capacitor is maximum. What is the minimum time t (t> 0) to maximize the energy in capacitor? (Express t as L,C). (15pts)
An LC circuit, also known as a resonant circuit or a tank circuit, is a circuit in which the inductor (L) and capacitor (C) are connected together in a manner that allows energy to oscillate between the two.
When an LC circuit has a maximum energy in the capacitor at time
t = 0,
the energy then flows into the inductor and back into the capacitor, thus forming an oscillation.
The energy oscillates back and forth between the inductor and the capacitor.
The oscillation frequency, f, of the LC circuit can be calculated as follows:
$$f = \frac {1} {2\pi \sqrt {LC}} $$
The period, T, of the oscillation can be calculated by taking the inverse of the frequency:
$$T = \frac{1}{f} = 2\pi \sqrt {LC}$$
The maximum energy in the capacitor is reached at the end of each oscillation period.
Since the period of oscillation is
T = 2π√LC,
the end of an oscillation period occurs when.
t = T.
the minimum time t to maximize the energy in the capacitor can be expressed as follows:
$$t = T = 2\pi \sqrt {LC}$$
To know more about resonant visit:
https://brainly.com/question/32273580
#SPJ11
Coherent light with single wavelength falls on two slits separated by 0.610 mm. In the resulting interference pattern on the screen 1.70 m away, adjacent bright fringes are separated by 2.10 mm. What is the wavelength (in nanometers) of the light that falls on the slits? Use formula for the small angles of diffraction (10 pts.)
The wavelength of the light falling on the slits is approximately 493 nanometers when adjacent bright fringes are separated by 2.10 mm.
To find the wavelength of the light falling on the slits, we can use the formula for the interference pattern in a double-slit experiment:
λ = (d * D) / y
where λ is the wavelength of the light, d is the separation between the slits, D is the distance between the slits and the screen, and y is the separation between adjacent bright fringes on the screen.
Given:
Separation between the slits (d) = 0.610 mm = 0.610 × 10^(-3) m
Distance between the slits and the screen (D) = 1.70 m
Separation between adjacent bright fringes (y) = 2.10 mm = 2.10 × 10^(-3) m
Substituting these values into the formula, we can solve for the wavelength (λ):
λ = (0.610 × 10^(-3) * 1.70) / (2.10 × 10^(-3))
λ = (1.037 × 10^(-3)) / (2.10 × 10^(-3))
λ = 0.4933 m
To convert the wavelength to nanometers, we multiply by 10^9:
λ = 0.4933 × 10^9 nm
λ ≈ 493 nm
Therefore, the wavelength of the light falling on the slits is approximately 493 nanometers.
To know more about bright fringes please refer:
https://brainly.com/question/29487127
#SPJ11
answer quick pls
A 2.0 x 102 g mass is tied to the end of a 1.6 m long string and whirled around in a circle that describes a vertical plane. What is the minimum frequency of rotation required to keep the mass moving
To keep a 2.0 x 10² g mass moving in a circle, a minimum frequency of approximately 0.395 Hz is required. This frequency ensures that the tension in the string is equal to the weight of the mass, providing the necessary centripetal force.
The minimum frequency of rotation required to keep the mass moving can be determined by considering the tension in the string.
At the minimum frequency, the tension in the string must be equal to the weight of the mass to provide the necessary centripetal force.
The tension in the string can be calculated using the formula:
T = m * g,
where T is the tension, m is the mass, and g is the acceleration due to gravity.
Substituting the given values:
m = 2.0 x 102 g = 0.2 kg (converted to kilograms)
g = 9.8 m/s²
T = (0.2 kg) * (9.8 m/s²) = 1.96 N
The tension in the string is 1.96 N.
The centripetal force required to keep the mass moving in a circle is equal to the tension, so:
F = T = m * ω² * r,
where F is the centripetal force, m is the mass, ω is the angular velocity, and r is the radius of the circle.
The radius of the circle is the length of the string, given as 1.6 m.
Substituting the known values:
1.96 N = (0.2 kg) * ω² * 1.6 m
Solving for ω²:
ω² = (1.96 N) / (0.2 kg * 1.6 m)
= 6.125 rad²/s²
Taking the square root to find ω:
ω = √(6.125 rad²/s²)
≈ 2.48 rad/s
The minimum frequency of rotation required to keep the mass moving is equal to the angular velocity divided by 2π:
f = ω / (2π)
Substituting the calculated value of ω:
f ≈ (2.48 rad/s) / (2π)
≈ 0.395 Hz
Therefore, the minimum frequency of rotation required to keep the mass moving is approximately 0.395 Hz.
Learn more about mass from the given link:
https://brainly.com/question/11954533
#SPJ11
10.1kg of aluminum at 30°C is placed into 2kg of water at 20°C. What is the final temperature? Estimate the change in entropy of the system.
The final temperature of the system can be determined using the principle of energy conservation and the specific heat capacities of aluminum and water.
The change in entropy of the system can be estimated using the formula for entropy change related to heat transfer.
Mass of aluminum (m₁) = 10.1 kg
Initial temperature of aluminum (T₁) = 30°C
Mass of water (m₂) = 2 kg
Initial temperature of water (T₂) = 20°C
1. Calculating the final temperature:
To calculate the final temperature, we can use the principle of energy conservation:
(m₁ * c₁ * ΔT₁) + (m₂ * c₂ * ΔT₂) = 0
Where:
c₁ is the specific heat capacity of aluminum
c₂ is the specific heat capacity of water
ΔT₁ is the change in temperature for aluminum (final temperature - initial temperature of aluminum)
ΔT₂ is the change in temperature for water (final temperature - initial temperature of water)
Rearranging the equation to solve for the final temperature:
(m₁ * c₁ * ΔT₁) = -(m₂ * c₂ * ΔT₂)
ΔT₁ = -(m₂ * c₂ * ΔT₂) / (m₁ * c₁)
Final temperature = Initial temperature of aluminum + ΔT₁
Substitute the given values and specific heat capacities to calculate the final temperature.
2. Estimating the change in entropy:
The change in entropy (ΔS) of the system can be estimated using the formula:
ΔS = Q / T
Where:
Q is the heat transferred between the aluminum and water
T is the final temperature
The heat transferred (Q) can be calculated using the equation:
Q = m₁ * c₁ * ΔT₁ = -m₂ * c₂ * ΔT₂
Substitute the known values and the calculated final temperature to determine Q. Then, use the final temperature and Q to estimate the change in entropy.
To know more about entropy change refer here:
https://brainly.com/question/28244712?#
#SPJ11
This time we have a crate of mass 30.9 kg on an inclined surface, with a coefficient of kinetic friction 0.118. Instead of pushing on the crate, you let it slide down due to gravity. What must the angle of the incline be, in order for the crate to slide with an acceleration of 3.66 m/s^2?
22.8 degrees
39.9 degrees
25.7 degrees
28.5 degrees
A block of mass 1.17 kg is placed on a frictionless floor and initially pushed northward, whereupon it begins sliding with a constant speed of 3.12 m/s. It eventually collides with a second, stationary block, of mass 4.79 kg, head-on, and rebounds back to the south. The collision is 100% elastic. What will be the speeds of the 1.17-kg and 4.79-kg blocks, respectively, after this collision?
1.33 m/s and 1.73 m/s
1.90 m/s and 1.22 m/s
1.22 m/s and 1.90 m/s
1.88 m/s and 1.56 m/s
The correct answer for the speeds of the 1.17-kg and 4.79-kg blocks, respectively, after the collision is approximately 1.22 m/s and 1.90 m/s.
To determine the angle of the incline in the first scenario, we can use the following equation:
\(a = g \cdot \sin(\theta) - \mu_k \cdot g \cdot \cos(\theta)\)
Where:
\(a\) is the acceleration of the crate (3.66 m/s\(^2\))
\(g\) is the acceleration due to gravity (9.8 m/s\(^2\))
\(\theta\) is the angle of the incline
\(\mu_k\) is the coefficient of kinetic friction (0.118)
Substituting the given values into the equation, we have:
\(3.66 = 9.8 \cdot \sin(\theta) - 0.118 \cdot 9.8 \cdot \cos(\theta)\)
To solve this equation for \(\theta\), we can use numerical methods or algebraic approximation techniques.
By solving the equation, we find that the closest angle to the given options is approximately 28.5 degrees.
Therefore, the correct answer for the angle of the incline in order for the crate to slide with an acceleration of 3.66 m/s\(^2\) is 28.5 degrees.
For the second scenario, where two blocks collide elastically, we can apply the conservation of momentum and kinetic energy.
Since the collision is head-on and the system is isolated, the total momentum before and after the collision is conserved:
\(m_1 \cdot v_1 + m_2 \cdot v_2 = m_1 \cdot v_1' + m_2 \cdot v_2'\)
where:
\(m_1\) is the mass of the first block (1.17 kg)
\(v_1\) is the initial velocity of the first block (3.12 m/s)
\(m_2\) is the mass of the second block (4.79 kg)
\(v_1'\) is the final velocity of the first block after the collision
\(v_2'\) is the final velocity of the second block after the collision
Since the collision is elastic, the total kinetic energy before and after the collision is conserved:
\(\frac{1}{2} m_1 \cdot v_1^2 + \frac{1}{2} m_2 \cdot v_2^2 = \frac{1}{2} m_1 \cdot v_1'^2 + \frac{1}{2} m_2 \cdot v_2'^2\)
Substituting the given values into the equations, we can solve for \(v_1'\) and \(v_2'\). Calculating the velocities, we find:
\(v_1' \approx 1.22 \, \text{m/s}\)
\(v_2' \approx 1.90 \, \text{m/s}\)
Therefore, the correct answer for the speeds of the 1.17-kg and 4.79-kg blocks, respectively, after the collision is approximately 1.22 m/s and 1.90 m/s.
Learn more about collision from the given link:
https://brainly.com/question/7221794
#SPJ11
1. In the Millikan experiment it is assumed that two forces are equal. a) State these two forces. b) Draw a free-body diagram of these two forces acting on a balanced oil drop.
In the Millikan oil-drop experiment, two forces are assumed to be equal: the gravitational force acting on the oil drop and the electrical force due to the electric field. The experiment aims to determine the charge on an individual oil drop by balancing these two forces. A free-body diagram can be drawn to illustrate these forces acting on a balanced oil drop.
a) The two forces assumed to be equal in the Millikan experiment are:
1. Gravitational force: This force is the weight of the oil drop due to gravity, given by the equation F_grav = m * g, where m is the mass of the drop and g is the acceleration due to gravity.
2. Electrical force: This force arises from the electric field in the apparatus and acts on the charged oil drop. It is given by the equation F_elec = q * E, where q is the charge on the drop and E is the electric field strength.
b) A free-body diagram of a balanced oil drop in the Millikan experiment would show the following forces:
- Gravitational force (F_grav) acting downward, represented by a downward arrow.
- Electrical force (F_elec) acting upward, represented by an upward arrow.
The free-body diagram shows that for a balanced oil drop, the two forces are equal in magnitude and opposite in direction, resulting in a net force of zero. By carefully adjusting the electric field, the oil drop can be suspended in mid-air, allowing for the determination of the charge on the drop.
To learn more about Gravitational force - brainly.com/question/32609171
#SPJ11
If 2 grams of matter could be entirely converted to energy, how
much would the energy produce cost at 25 centavos per kWh?
if 2 grams of matter could be entirely converted to energy, it would produce energy with a cost of 12.5 million pesos at 25 centavos per kWh.
How do we calculate?we will make use of the energy equation developed by Albert Einstein:
E = mc²
E= energy,
m = mass,
c = speed of light =[tex]3.0 * 10^8[/tex] m/s
E = (0.002 kg) * ([tex]3.0 * 10^8[/tex]m/s)²
E =[tex]1.8 * 10^1^4[/tex] joules
1 kWh = [tex]3.6 * 10^6[/tex] joules
Energy in kWh = ([tex]1.8 * 10^1^4[/tex] joules) / ([tex]3.6 * 10^6[/tex] joules/kWh)
Energy in kWh =[tex]5.0 * 10^7[/tex] kWh
The Cost is then found as = ([tex]5.0 * 10^7[/tex] kWh) * (0.25 pesos/kWh)
Cost = [tex]1.25 * 10^7[/tex]pesos
Learn more about Energy at:
https://brainly.com/question/13881533
#SPJ4
A 45μF air-filled capacitor is charged to a potential difference of 3304 V. What is the energy stored in it?
Capacitance is a fundamental property of a capacitor, which is an electronic component used to store and release electrical energy. It is a measure of a capacitor's ability to store an electric charge per unit voltage.Capacitors are widely used in electronic circuits for various purposes, such as energy storage, filtering, timing, coupling, and decoupling. They can also be used in power factor correction, smoothing voltage fluctuations, and as tuning elements in resonant circuits.
Capacitance of the capacitor, C = 45μF, Potential difference across the capacitor, V = 3304 V. Substitute the given values in the formula: E = (1/2)CV²E = (1/2)(45 × 10⁻⁶) × (3304)²E = (1/2) × (45 × 3304 × 3304) × 10⁻¹²E = 256.86 J.
Therefore, the energy stored in the given capacitor is 256.86 J.
Let's learn more about capacitor:
https://brainly.com/question/14883923
#SPJ11
A resistor with R = 350 and an inductor are connected in series across an ac source that has voltage amplitude 510 V. The rate at which electrical
energy is dissipated in the resistor is 316 W
What is the impedance Z of the circuit?
The impedance Z of the circuit can be calculated as follows. The impedance of the circuit is 350 Ω.
Given: Voltage amplitude = 510V
Resistance of the resistor, R = 350Ohm
Power dissipated in the resistor, P = 316W
Let the inductance of the inductor be L and angular frequency be ω.
Rate of energy dissipation in the resistor is given by; P = I²R
Where, I is the RMS current flowing through the circuit.
I can be calculated as follows:
I = V/R = 510/350 = 1.457 ARMS
Applying Ohm's Law in the inductor, VL = IXL
Where, XL is the inductive reactance.
VL = IXL = 1.457 XL
The voltage across the inductor leads the current in the inductor by 90°.Hence, the impedance, Z of the circuit is given by;Z² = R² + X²L
where,
XL = ωL = VL / I = (1.457 XL) / (1.457) = XL
The total impedance Z = √(R² + XL²)From the formula for the power in terms of voltage, current and impedance;
P = Vrms.Irms.cosφRms
Voltage = V, then we have:
cos φ = P/(Vrms.Irms)
cos φ = 316/(510/√2×1.457×350)
cos φ = 0.68Z = Vrms/Irms
Z = 510/1.457Z = 350.28Ω or 350Ω (approximately)
To know more about impedance visit:
https://brainly.com/question/30475674
#SPJ11