Answer:
25
Step-by-step explanation:
The method that should be used is substitution:
Do this by taking 3x+9y=21 and transforming it to be [tex]y=-\frac{1}{2} x+\frac{7}{3}[/tex]
Once you have this, substitute the value of y that we just found into 3x+9y=21 to find the value of x: [tex]3x+9(-\frac{1}{2} +\frac{7}{3} ) =21[/tex]
Solve for x. You should get 1.5
Once you have this, Plug in 1.5 for the value of x into the y= equation that we found in the beginning: [tex]y=-\frac{1}{2} (1.5)+\frac{7}{3}[/tex]
Solve for y. You should get 1.583 (19/12)
Plug in the values of x and y that we found into the last equation to find its value: 4(1.5+3(1.583))
Bijan has agreed to run a half-marathon to raise money for charity. Each day before school, Bijan runs a 2.4-mile route around his neighborhood. Then, each day after school, he runs on a lakeside trail. After 4 days, Bijan has run a total of 14.8 miles. Suppose you want to find out the length of the lakeside trail, x. What expression would represent how far Bijan runs everyday? What is the equation that represents his total distance after 4 days?
Answer:
First one is (x+2.4)
Second one is 4(x+2.4)=14.8
Step-by-step explanation:
Answer:
What expression would represent how far Bijan runs everyday?
✔ (x + 2.4)
What is the equation that represents his total distance after 4 days?
✔ 4(x + 2.4) = 14.8
Step-by-step explanation: I TOOK THE TEST
Simplify 4 + (−3 − 8)
Answer:
-7
Step-by-step explanation:
4 + (−3 − 8)
PEMDAS
Parentheses first
4 + (-11)
Add and subtract next
-7
Answer:
first I'm using BODMAS
4+(-11)
= -7
hope it helps
find the third angle in a triangle when the other two angles are (2a-32)° and (3a+22)°
Answer:
(190-5a)°
Step-by-step explanation:
Sum of internal angles of a triangle equals to 180°
If the third angle is x, then we have:
(2a-32)°+(3a+22)° +x = 180°(5a- 10)° +x= 180°x= (180+10-5a)°x= (190-5a)°The third angle is: (190-5a)°
Find the fourth term in the expansion of the binomial
(4x + y)^4
a) 16xy^3
b) 256x^4
c) 64y^4
d) 4xy^3
Answer:
a) 16xy³
Step-by-step explanation:
For a binomial expansion (a + b)ⁿ, the r+1 term is:
nCr aⁿ⁻ʳ bʳ
Here, a = 4x, b = y, and n = 4.
For the fourth term, r = 3.
₄C₃ (4x)⁴⁻³ (y)³
4 (4x) (y)³
16xy³
What steps are used to solve the equation? g – 8 = 14 Complete the statements. First, both sides of the equation. The solution of the equation is . Check the solution by substituting for g and simplifying.
Answer:
g=22
Step-by-step explanation:
add 8 to both sides
g-8=14
g-8+8=14+8
g=14+8
g=22
The solution of expression g - 8 = 14 is,
⇒ g = 22
What is an expression?Mathematical expression is defined as the collection of the numbers variables and functions by using operations like addition, subtraction, multiplication, and division.
Given that;
The equation is,
⇒ g - 8 = 14
Now, We can simplify as,
⇒ g - 8 = 14
Add 8 both side,
⇒ g - 8 + 8 = 14 + 8
⇒ g = 22
Thus, The solution of expression g - 8 = 14 is,
⇒ g = 22
Learn more about the mathematical expression visit:
brainly.com/question/1859113
#SPJ3
What is the measure of PSQ?
Answer:
Do you have an image because I'm a bit confused with you just asking the measure of PSQ.
Step-by-step explanation:
Someone please answer this emergency pleaseee
Answer:
7). y = 140
8). x = 9
Step-by-step explanation:
Question (7).
All-right pencil factory will produce the graphite pencils, table formed will represent a linear graph.
Three points on the graph are (12, 42) and (18, 63), (40, y)
Slope of the line passing through these points = [tex]\frac{y_2-y_1}{x_2-x_1}[/tex]
m = [tex]\frac{63-42}{18-12}[/tex] = [tex]\frac{y-42}{40-12}[/tex]
[tex]\frac{21}{6}[/tex] = [tex]\frac{y-42}{40-12}[/tex]
3.5 = [tex]\frac{y-42}{40-12}[/tex]
98 = y - 42
y = 140
Question (8),
If a bicyclist rides at a constant rate, table formed will represent a linear graph.
Slope of a line passing through three points (2, 25), (5, 62.5) and (x, 112.5) given in the table,
m = [tex]\frac{y_2-y_1}{x_2-x_1}[/tex]
[tex]\frac{62.5-25}{5-2}=\frac{112.5-62.5}{x-5}[/tex]
[tex]\frac{37.5}{3}=\frac{50}{x-5}[/tex]
37.5x - 187.5 = 150
37.5x = 337.5
x = 9
Josh and Lucy share some money in the ratio 3:7. What fraction of the money does Josh receive?
Answer:
3/10ths of the money
Step-by-step explanation:
Add together the two numbers to get the total.
Josh gets 30 percent and Lucy gets 70 percent.
3/10
Answer:
3/10
Step-by-step explanation:
3+7=10
Josh=3
Lucy=7
Mexican currency is the peso. One Mexican peso is currently equal to 0.055 U.S. dollars. If a traveler exchanges $400 for Mexican pesos, how many pesos will he receive? Round to the nearest peso.
Answer:
7,273 Pesos
Step-by-step explanation:
1 Peso = $0.055
The formula below converts pesos to dollars:
1 Peso x 0.055 = $1
The formula below converts dollars to pesos:
$1/0.055= 1 Pesos
We use the second formula because we are coverting
from dollars to pesos.
$400/0.055=7,273 Pesos
Answer:
22
Step-by-step explanation:
If one Mexican peso is .055 U.S dollars that means it has a greater value than the dollar so we can make the following ratio 1:.055. But if the .055 is a 400 1:400 we just multiply to get 22.
Coupons driving visits. A store randomly samples 603 shoppers over the course of a year and nds that 142 of them made their visit because of a coupon they'd received in the mail. Construct a 95% con dence interval for the fraction of all shoppers during the year whose visit was because of a coupon they'd received in the mail.
Answer:
The 95% confidence interval for the proportion of all shoppers during the year whose visit was because of a coupon they'd received in the mail is (0.2016, 0.2694)
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which
z is the zscore that has a pvalue of [tex]1 - \frac{\alpha}{2}[/tex].
For this problem, we have that:
[tex]n = 603, \pi = \frac{142}{603} = 0.2355[/tex]
95% confidence level
So [tex]\alpha = 0.05[/tex], z is the value of Z that has a pvalue of [tex]1 - \frac{0.05}{2} = 0.975[/tex], so [tex]Z = 1.96[/tex].
The lower limit of this interval is:
[tex]\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.2355 - 1.96\sqrt{\frac{0.2355*0.7645}{603}} = 0.2016[/tex]
The upper limit of this interval is:
[tex]\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.2355 + 1.96\sqrt{\frac{0.2355*0.7645}{603}} = 0.2694[/tex]
The 95% confidence interval for the proportion of all shoppers during the year whose visit was because of a coupon they'd received in the mail is (0.2016, 0.2694)
what value of x is in the solution set of 2(3x–1)>4x–6?
Answer:
x > -2
Step-by-step explanation:
2(3x–1)>4x–6
Divide each side by 2
2/2(3x–1)>4x/2–6/2
3x-1 > 2x-3
Subtract 2x from each side
3x-2x-1 > 2x-3-2x
x-1 > -3
Add 1 to each side
x-1+1 > -3+1
x > -2
Find the domain of the function f(x) = 7x2 + 8x - 15.
Answer:
Domain is all real numbers or (negative infinity, positive infinity)
Step-by-step explanation:
Domain is all values of x (inputs) that will work with the function. Since a parabola has no limits for x, and all numbers work for x, then the domain can be any number. That leaves us with All Real Numbers as our answer.
The number of job applications submitted before landing an interview are normally distributed with a population standard deviation of 4 applications and an unknown population mean. A random sample of 19 job seekers is taken and results in a sample mean of 55 applications. The confidence intervalis (52.87.57.14). What is the margin of error? Round to two decimal places.
Answer:
The margin of error = 2.13
Step-by-step explanation:
Explanation:-
Given random sample size 'n' =19
mean of the sample(x⁻) = 55 applicants
Given standard deviation of the Population(S.D) = 4
Given confidence intervals are
((52.87.57.14)
we know that The Margin of error is determined by
[tex]M.E = Z_{\alpha } \frac{S.D}{\sqrt{n} }[/tex]
The confidence intervals are determined by
(x⁻ - M.E , x⁻+ M.E)
Step(ii):-
Given confidence intervals are
((52.87.57.14)
Now equating
(x⁻ - M.E , x⁻+ M.E) = ((52.87 , 57.14)
Given mean of the sample x⁻ = 55
( 55 - M.E , 55 + M.E) =((52.87.57.14)
Equating
55 - M.E = 52.87
M.E = 55 - 52.87
M.E = 2.13
Final answer:-
The margin of error = 2.13
HELP! will give brainlest or whatever its called... Triangle ABC has vertices A(–2, 3), B(0, 3), and C(–1, –1). Find the coordinates of the image after a reflection over the x-axis. A’ B’ C’
Answers:
A ' = (-2, -3)
B ' = (0, -3)
C ' = (-1, 1)
=======================================================
Explanation:
To apply an x axis reflection, we simply change the sign of the y coordinate from positive to negative, or vice versa. The x coordinate stays as is.
Algebraically, the reflection rule used can be written as [tex](x,y) \to (x,-y)[/tex]
Applying this rule to the three given points will mean....
Point A = (-2, 3) becomes A ' = (-2, -3)Point B = (0, 3) becomes B ' = (0, -3)Point C = (-1, -1) becomes C ' = (-1, 1)The diagram is provided below.
Side note: Any points on the x axis will stay where they are. That isn't the case here, but its for any future problem where it may come up. This only applies to x axis reflections.
Answer:
(-2,-3)...(0,-3)...(-1,1)
Step-by-step explanation:
Rectangle LMNO has vertices L(–4,6), M(–1,6), N(–1,2), and O(–4,2). Suppose you first reflect this rectangle across the y-axis. Then, translate it down four units and to the left one unit. Where are the corresponding vertices L′M′N′O′ located?
Answer:
L'(3, 2)
M'(0, 2)
N'(0, -2)
O'(3, -2)
Step-by-step explanation:
Vertices of a rectangle LMNO are L(-4, 6), M(-1, 6), N(-1, 2) and O(-4, 2).
If a point (x, y) is reflected across y-axis, rule to be followed,
(x, y) → (-x, y)
After reflection across y-axis new ordered pairs will be,
L(-4, 6) → L"(4, 6)
M(-1, 6) → M"(1, 6)
N(-1, 2) → N"(1, 2)
O(-4, 2) → O"(4, 2)
Then these points were translated 4 units down and 1 unit left,
Rule to be followed for the translation will be,
(x'', y'') → [(x' - 1), (y' - 4)]
By this rule vertices of the rectangle after translation will be,
L''(4, 6) → L'(3, 2)
M''(1, 6) → M'(0, 2)
N''(1, 2) → N'(0, -2)
O''(4, 2) → O'(3, -2)
Answer:
L'(3, 2)
M'(0, 2)
N'(0, -2)
O'(3, -2)
Step-by-step explanation:
Of 41 bank customers depositing a check, 22 received some cash back. Construct a 90 percent confidence interval for the proportion of all depositors who ask for cash back. (Round your answers to 4 decimal places.)
Answer:
CI: {0.4085; 0.6647}
Step-by-step explanation:
The confidence interval for a proportion (p) is given by:
[tex]p \pm z*\sqrt{\frac{(1-p)*p}{n} }[/tex]
Where n is the sample size, and z is the z-score for the desired confidence interval. The score for a 90% confidence interval is 1.645. The proportion of depositors who ask for cash back is:
[tex]p=\frac{22}{41}=0.536585[/tex]
Thus the confidence interval is:
[tex]0.536585 \pm 1.645*\sqrt{\frac{(1-0.536585)*0.536585}{41}}\\0.536585 \pm 0.128109\\L=0.4085\\U=0.6647[/tex]
The confidence interval for the proportion of all depositors who ask for cash back is CI: {0.4085; 0.6647}
You spend $3.50 on fruit. Apples cost $0.20 each while oranges cost $0.30 each. The equation models the situation, where x is the number of apples and y is the number of oranges. Which of the following is not a possible solution in the context of the problem?
a. 1 apple; 11 oranges
b. 11 apples; 1 orange
c. 7 apples; 7 oranges
d. 4 apples; 9 oranges
Answer:
b. 11 apples; 1 orange
Step-by-step explanation:
We test each option, and see if the total is $3.50(what you spend). If the result is different, it is not a possible solution.
a. 1 apple; 11 oranges
1 apple for $0.20
11 oranges for $0.30 each
0.20 + 11*0.30 = $3.50
Possible solution
b. 11 apples; 1 orange
11 apples for $0.20 each
1 orange for $0.30
11*0.2 + 0.3 = 2.5
Not $3.5, so this is not a possible solution.
This is the answer
c. 7 apples; 7 oranges
7*0.2 + 7*0.3 = $3.5
Possible
d. 4 apples; 9 oranges
4*0.2 + 9*0.3 = $3.5
Possible
I have no idea what this is
Answer:
B. -1.
Step-by-step explanation:
[tex]i^1[/tex] = i
[tex]i^2 = -1[/tex]
[tex]i^3 = -i[/tex]
[tex]i^4 = 1[/tex]
...And it keeps going in a pattern, from i to -1 to -i to 1. And so, we have four values.
34 / 4 = 8 with a remainder of 2. That means that the value of [tex]i^{34}[/tex] is the same thing as [tex]i^2\\[/tex], so it is B. -1.
Hope this helps!
if X= 2, Y=-2 and Z=3 find the value of 3 X + Y - Z
Answer:
1Given,
X=2
y=-2
z=3
Now,
[tex]3x + y - z \\ = 3 \times 2 + ( - 2) - 3 \\ = 6 + ( - 2) - 3 \\ = 6 - 2 - 3 \\ = 4 - 3 \\ = 1[/tex]
Hope this helps...
Good luck on your assignment..
Answer:
1
Step-by-step explanation:
3X+Y-Z
Where X = 2, Y = -2 amd Z = 3
=> 3(2)+(-2)-(3)
=> 6-2-3
=> 4-3
=> 1
HELP!! Im not sure what i did wrong!!
I'm not sure what exactly you did wrong, but I agree with you that the sample size is too small, so the correct answer will probably be the fourth options. Hope that this gives you some confidence, and 'm sorry not to be able to help you any further...
A competition
took place in 1983
takes place every 6 years.
What is the first year after 2045 that it will also take place?
Answer:
2049.
Step-by-step explanation:
2045 - 1983 = 62 years.
So the competition will take place in 1983 + 60 = 2043.
After 2045 the competition takes place in 2049.
I need help please!!!!! Will give BRAINLIST !!
Answer:
0.65
Step-by-step explanation:
There are 65 student that do sports as 20+20+25=65. In total there are 100 student and you find this by adding up all the values. Now all you do is divide 65/100 and get 0.65 and that is the probability a random student plays sports.
The following situation can be modeled by a linear function. Write an equation for the linear function and use it to answer the given question. Be sure you clearly identify the independent and dependent variables. Then briefly discuss whether a linear model is reasonable for the situation described. The price of a particular model car is $19,000 today and rises with time at a constant rate of $960 per year. How much will a new car of this model cost in 3.7 years?
Select the correct choice below and fill in the answer box to complete your choice. (Simplify your answer.)
A. The independent variable is the price (o) in dollars, and the dependent variable is time (1), in years. The linear function that models this situation is __________
B. The independent variable is time (), in years, and the dependent variable is the price (p), in dollars. The linear function that models this situation is________
The price of a car after 3.7 years will be $ (Simplify your answer.) Is a linear model reasonable for the situation?
A. The linear model is most likely not reasonable, because the price of a new car of the same model never changes, regardless of how much time passes.
B. The linear model is most likely not reasonable, because the price of a new car of the same model will always decrease at a constant rate.
C. The linear model is most likely not reasonable, because it is unlikely that the price of a new car of the same model will increase at a constant rate. always increases at a constant rate.
Answer: The answer is B)
B. The independent variable is time (t), in minutes, and the dependent variable is rental cost (r), in dollars. The linear function that models this situation is r equals to r=0.55x+8
Step-by-step explanation:
Flora paid her supplier $0.75 a stem for roses to sell at her flower shop. She added an 80% markup. What is the amount of markup?
Answer:
$0.60
Step-by-step explanation:
the question ask us to find the amount of the markup on Flora’s roses. The amount of markup is given by:
markup rate x original price = amount of markup
the markup rate is in decimal form
since the original price was $0.05 and the markup price is 80% = 0.80, we have
0.80 x .075 = 0.60
thus, the amount of the markup on Flora’s roses was $0.60
Please answer this correctly
Answer:
1/7
Step-by-step explanation:
There are 7 cards, 1 of which is less than 2. Therefore, P (less then 2) = 1/7
Answer:
1/7
Step-by-step explanation:
The number from the list that is less than 2 is 1.
1 number out of a total of 7 numbers.
= 1/7
if 7 is added to a number then it becomes at least 15 what is the number?
Step-by-step explanation:
yeah,when 15-7=8
the number is 8
Evaluate. Write your answer as a fraction or whole number without exponents. 6^–4 =
Answer:
The answer is 1/1296
Step-by-step explanation:
6^-4 can be written as 1/6⁴
And
1/6⁴ = 1/1296
Hope this helps you.
HELP SNOG OR WHOEVER (x+3)(y-19)
Answer:
xy-19x+3y-57
Step-by-step explanation:
Once again, FOIL is the way to go!
First, Outside, Inside, Last
xy-19x+3y-57
Answer:
xy-19x+3y-57
Step-by-step explanation:
(x+3)(y-19)
FOIL
first: xy
outer: -19x
inner 3y
last -57
Add them together
xy-19x+3y-57
How many x-intercepts does the graph of y = 2x2 + 4x - 3 have?
Answer:
3
Step-by-step explanation:
Given
y
=
2
x
2
−
4
x
+
3
The y-intercept is the value of
y
when
x
=
0
XXX
y
=
2
(
0
)
2
−
4
(
0
)
+
3
=
3
For a quadratic in the general form:
XXX
y
=
a
x
2
+
b
x
+
c
the determinant
Δ
=
b
2
−
4
a
c
indicates the number of zeros.
Δ
⎧
⎪
⎨
⎪
⎩
<
0
==⇒
no solutions
=
0
==⇒
one solution
>
0
==⇒
two solutions
In this case
XXX
Δ
=
(
−
4
)
2
−
4
(
2
)
(
3
)
<
0
so there are no solutions (i.e. no values for which the expression is equal to zero).
This can also be seen from a graph of this equation:
graph{2x^2-4x+3 [-6.66, 13.34, -0.64, 9.36]}
Answer link
Vinícius Ferraz
Nov 13, 2015
(
0
,
3
)
Explanation:
x
=
0
⇒
y
=
0
−
0
+
3
y
=
0
⇒
x
=
−
b
±
√
b
2
−
4
a
c
2
a
a
=
2
,
b
=
−
4
,
c
=
3
But
Δ
< 0, then there is no real root
(
x
0
,
0
)
.
Answer:
it has 2
Step-by-step explanation:
I hope this helps!
PLEASE HELP!!!! Find the common difference
Answer:
The common difference is 1/2
Step-by-step explanation:
Data obtained from the question include:
3rd term (a3) = 0
Common difference (d) =.?
From the question given, we were told that the 7th term (a7) and the 4th term (a4) are related by the following equation:
a7 – 2a4 = 1
Recall:
a7 = a + 6d
a4 = a + 3d
a3 = a + 2d
Note: 'a' is the first term, 'd' is the common difference. a3, a4 and a7 are the 3rd, 4th and 7th term respectively.
But, a3 = 0
a3 = a + 2d
0 = a + 2d
Rearrange
a = – 2d
Now:
a7 – 2a4 = 1
Substituting the value of a7 and a4, we have
a + 6d – 2(a + 3d) = 1
Sustitute the value of 'a' i.e –2d into the above equation, we have:
–2d + 6d – 2(–2d + 3d) = 1
4d –2(d) = 1
4d –2d = 1
2d = 1
Divide both side by 2
d = 1/2
Therefore, the common difference is 1/2
***Check:
d = 1/2
a = –2d = –2 x 1/2 = –1
a3 = 0
a3 = a + 2d
0 = –1 + 2(1/2)
0 = –1 + 1
0 = 0
a7 = a + 6d = –1 + 6(1/2) = –1 + 3 = 2
a4 = a + 3d = –1 + 3(1/2) = –1 + 3/2
= (–2 + 3)/2 = 1/2
a7 – 2a4 = 1
2 – 2(1/2 = 1
2 – 1 = 1
1 = 1