identify the type of data that would be used to describe percent of body fat. quantitative continuous qualitative quantitative discrete what is an example of the data? all people in the gym 20 % yes 5 people in the gym people who eat at fast food restaurants

Answers

Answer 1

The type of data that would be used to describe the percent of body fat is quantitative continuous. This type of data is numerical and can take on any value within a certain range.

An example of this data would be the body fat percentage of all people in the gym, where the percentage can vary continuously between 0% and 100%.

Step 1: Determine the nature of the data, in this case, it is the percent of body fat.

Step 2: Determine if the data is numerical or categorical. In this case, it is numerical.

Step 3: Identify if the data is discrete or continuous. Since body fat percentage can take on any value within a range, it is continuous.

Step 4: Consider the example provided, which involves the body fat percentage of all people in the gym.

Therefore, the type of data used to describe percent of body fat is quantitative continuous, which represents numerical values that can vary continuously within a range. An example would be the body fat percentage of all people in the gym.

Learn more about quantitative continuous here:

https://brainly.com/question/12831013

#SPJ4


Related Questions

Starting from a calculus textbook definition of radius of curvature and the equation of an ellipse, derive the following formula representing the meridian radius of curvature: M = a(1-e²)/((1 − e² sin²ϕ )³/²)' b²/a ≤ M ≤ a²/b

Answers

The formula for the meridian radius of curvature is:

M = a(1 - e²sin²(ϕ))³/²

Where 'a' is the semi-major axis of the ellipse and 'e' is the eccentricity of the ellipse.

To derive the formula for the meridian radius of curvature, we start with the definition of the radius of curvature in calculus and the equation of an ellipse.

The general equation of an ellipse in Cartesian coordinates is given by:

x²/a² + y²/b² = 1

Where 'a' represents the semi-major axis of the ellipse and 'b' represents the semi-minor axis.

Now, let's consider a point P on the ellipse with coordinates (x, y) and a tangent line to the ellipse at that point. The radius of curvature at point P is defined as the reciprocal of the curvature of the curve at that point.

Using the equation of an ellipse, we can write:

x²/a² + y²/b² = 1

Differentiating both sides with respect to x, we get:

(2x/a²) + (2y/b²) * (dy/dx) = 0

Rearranging the equation, we have:

dy/dx = - (x/a²) * (b²/y)

Now, let's consider the trigonometric form of an ellipse, where y = b * sin(ϕ) and x = a * cos(ϕ), where ϕ is the angle made by the radius vector from the origin to point P with the positive x-axis.

Substituting these values into the equation above, we get:

dy/dx = - (a * cos(ϕ) / a²) * (b² / (b * sin(ϕ)))

Simplifying further, we have:

dy/dx = - (cos(ϕ) / a) * (b / sin(ϕ))

Next, we need to find the derivative (dϕ/dx). Using the trigonometric relation, we have:

tan(ϕ) = (dy/dx)

Differentiating both sides with respect to x, we get:

sec²(ϕ) * (dϕ/dx) = (dy/dx)

Substituting the value of (dy/dx) from the previous equation, we have:

sec²(ϕ) * (dϕ/dx) = - (cos(ϕ) / a) * (b / sin(ϕ))

Simplifying further, we get:

(dϕ/dx) = - (cos(ϕ) / (a * sin(ϕ) * sec²(ϕ)))

(dϕ/dx) = - (cos(ϕ) / (a * sin(ϕ) / cos²(ϕ)))

(dϕ/dx) = - (cos³(ϕ) / (a * sin(ϕ)))

Now, we can find the derivative of (1 - e²sin²(ϕ))³/² with respect to x. Let's call it D.

D = d/dx(1 - e²sin²(ϕ))³/²

Applying the chain rule and the derivative we found for (dϕ/dx), we get:

D = (3/2) * (1 - e²sin²(ϕ))¹/² * d(1 - e²sin²(ϕ))/dϕ * dϕ/dx

Simplifying further, we have:

D = (3/2) * (1 - e²sin²(ϕ))¹/² * (-2e²sin(ϕ)cos(ϕ) / (a * sin(ϕ)))

D = - (3e²cos(ϕ) / (a(1 - e²sin²(ϕ))¹/²))

Now, substit

uting this value of D into the derivative (dy/dx), we get:

dy/dx = (1 - e²sin²(ϕ))³/² * D

Substituting the value of D, we have:

dy/dx = - (3e²cos(ϕ) / (a(1 - e²sin²(ϕ))¹/²))

This is the derivative of the equation of the ellipse with respect to x, which represents the meridian radius of curvature, denoted as M.

Learn more about meridian radius here :-

https://brainly.com/question/30904019

#SPJ11


Y represents the final scores of AREC 339 in 2013 and it was
normally distributed with the mean score of 80 and variance of
16.
a. Find P(Y≤ 70)
b. P(Y≥ 90)
c. P(70≤ Y≤ 90)

Answers

The 2013 AREC 339 scores were normally distributed with a mean of 80 and a variance of 16. To find P(Y ≤ 70), standardize the score using the formula Z = (X - µ) / σ. The required probabilities are P(Y ≥ 90) = 0.0062b and P(70 ≤ Y ≤ 90) = 0.9938.

Given thatY represents the final scores of AREC 339 in 2013 and it was normally distributed with the mean score of 80 and variance of 16.a. To find P(Y ≤ 70) we need to standardize the score.

Standardized Score (Z) = (X - µ) / σ

Where,X = 70µ = 80σ = √16 = 4Then,Standardized Score (Z) = (70 - 80) / 4 = -2.5

Therefore, P(Y ≤ 70) = P(Z ≤ -2.5)From Z table, we get the value of P(Z ≤ -2.5) = 0.0062b.

To find P(Y ≥ 90) we need to standardize the score. Standardized Score (Z) = (X - µ) / σWhere,X = 90µ = 80σ = √16 = 4Then,Standardized Score (Z) = (90 - 80) / 4 = 2.5

Therefore, P(Y ≥ 90) = P(Z ≥ 2.5)From Z table, we get the value of P(Z ≥ 2.5) = 0.0062c.

To find P(70 ≤ Y ≤ 90) we need to standardize the score. Standardized Score

(Z) = (X - µ) / σ

Where,X = 70µ = 80σ = √16 = 4

Then, Standardized

Score (Z)

= (70 - 80) / 4

= -2.5

Standardized Score

(Z) = (X - µ) / σ

Where,X = 90µ = 80σ = √16 = 4

Then, Standardized Score (Z) = (90 - 80) / 4 = 2.5Therefore, P(70 ≤ Y ≤ 90) = P(-2.5 ≤ Z ≤ 2.5)From Z table, we get the value of P(-2.5 ≤ Z ≤ 2.5) = 0.9938

Hence, the required probabilities are as follows:a. P(Y ≤ 70) = P(Z ≤ -2.5) = 0.0062b. P(Y ≥ 90) = P(Z ≥ 2.5) = 0.0062c. P(70 ≤ Y ≤ 90) = P(-2.5 ≤ Z ≤ 2.5) = 0.9938.

To know more about probabilities Visit:

https://brainly.com/question/29381779

#SPJ11

A cell phone provider offers a new phone for P^(30),000.00 with a P^(3),500.00 monthly plan. How much will it cost to use the phone per month, including the purchase price?

Answers

The total cost to use the phone per month, including the purchase price, is P^(33),500.00 per month. This is because the monthly plan cost of P^(3),500.00 is added to the purchase price of P^(30),000.00.

To break it down further, the total cost for one year would be P^(69),000.00, which includes the initial purchase price of P^(30),000.00 and 12 months of the P^(3),500.00 monthly plan. Over two years, the total cost would be P^(102),000.00, and over three years, it would be P^(135),000.00.

It's important to consider the total cost of a phone before making a purchase, as the initial price may be just a small part of the overall cost. Monthly plans and other fees can add up quickly, making a seemingly affordable phone much more expensive in the long run.

Know more about total cost here:

https://brainly.com/question/14107176

#SPJ11

Find the linearization of the function f(x, y)=4 x \ln (x y-2)-1 at the point (3,1) L(x, y)= Use the linearization to approximate f(3.02,0.7) . f(3.02,0.7) \approx

Answers

Using the linearization, we approximate `f(3.02, 0.7)`:`f(3.02, 0.7) ≈ L(3.02, 0.7)``= -4 + 12(3.02) + 36(0.7)``= -4 + 36.24 + 25.2``=  `f(3.02, 0.7) ≈ 57.44`.

Given the function `f(x, y) = 4xln(xy - 2) - 1`. We are to find the linearization of the function at point `(3, 1)` and then use the linearization to approximate `f(3.02, 0.7)`.Linearization at point `(a, b)` is given by `L(x, y) = f(a, b) + f_x(a, b)(x - a) + f_y(a, b)(y - b)`where `f_x` is the partial derivative of `f` with respect to `x` and `f_y` is the partial derivative of `f` with respect to `y`. Now, let's find the linearization of `f(x, y)` at `(3, 1)`.`f(x, y) = 4xln(xy - 2) - 1`

Differentiate `f(x, y)` with respect to `x`, keeping `y` constant.`f_x(x, y) = 4(ln(xy - 2) + x(1/(xy - 2))y)`Differentiate `f(x, y)` with respect to `y`, keeping `x` constant.`f_y(x, y) = 4(ln(xy - 2) + x(1/(xy - 2))x)`Substitute `a = 3` and `b = 1` into the expressions above.`f_x(3, 1) = 4(ln(1) + 3(1/(1)))(1) = 4(0 + 3)(1) = 12``f_y(3, 1) = 4(ln(1) + 3(1/(1)))(3) = 4(0 + 3)(3) = 36`

The linearization of `f(x, y)` at `(3, 1)` is therefore given by`L(x, y) = f(3, 1) + f_x(3, 1)(x - 3) + f_y(3, 1)(y - 1)``= [4(3ln(1) - 1)] + 12(x - 3) + 36(y - 1)``= -4 + 12x + 36y`Now, using the linearization, we approximate `f(3.02, 0.7)`:`f(3.02, 0.7) ≈ L(3.02, 0.7)``= -4 + 12(3.02) + 36(0.7)``= -4 + 36.24 + 25.2``= 57.44`.

To know more about function visit :

https://brainly.com/question/30594198

#SPJ11

A random sample of 85 men revealed that they spent a mean of 6.5 years in school. The standard deviation from this sample was 1.7 years.
(i) Construct a 95% Confidence Interval for the population mean and interpret your answer.
(ii) Suppose the question in part (i) had asked to construct a 99% confidence interval rather than a 95% confidence interval. Without doing any further calculations, how would you expect the confidence (iii) You want to estimate the mean number of years in school to within 0.5 year with 98% confidence. How many men would you need to include in your study?

Answers

(i) The 95% confidence interval for the population mean is approximately 6.14 to 6.86 years, and we are 95% confident that the true population mean falls within this range.

(ii) With a 99% confidence level, the confidence interval would be wider, but no further calculations are required to determine the specific interval width.

(iii) To estimate the mean number of years in school within 0.5 year with 98% confidence, a sample size of at least 58 men would be needed.

(i) To construct a 95% confidence interval for the population mean:

Calculate the standard error (SE) using the sample standard deviation and sample size.

Determine the critical value (Z) corresponding to a 95% confidence level.

Calculate the margin of error (ME) by multiplying the standard error by the critical value.

Construct the confidence interval by adding and subtracting the margin of error from the sample mean.

(ii) If the confidence level is increased to 99%, the critical value (Z) would be larger, resulting in a wider confidence interval. No further calculations are required to determine the interval width.

(iii) To estimate the mean number of years in school within 0.5 year with 98% confidence:

Determine the desired margin of error.

Determine the critical value (Z) for a 98% confidence level.

Use the formula for sample size calculation, where the sample size equals (Z² * sample standard deviation²) divided by (margin of error²).

Therefore, constructing a 95% confidence interval provides a range within which we are 95% confident the true population mean lies. Increasing the confidence level to 99% widens the interval. To estimate the mean with a specific margin of error and confidence level, the required sample size can be determined using the formula.

To know more about population, visit:

https://brainly.com/question/14151215

#SPJ11

Insert the following customer into the CUSTOMER table, using the Oracle sequence created in Problem 20 to generate the customer number automatically:- 'Powers', 'Ruth', 500. Modify the CUSTOMER table to include the customer's date of birth (CUST_DOB), which should store date data. Modify customer 1000 to indicate the date of birth on March 15, 1989. Modify customer 1001 to indicate the date of birth on December 22,1988. Create a trigger named trg_updatecustbalance to update the CUST_BALANCE in the CUSTOMER table when a new invoice record is entered. (Assume that the sale is a credit sale.) Whatever value appears in the INV_AMOUNT column of the new invoice should be added to the customer's balance. Test the trigger using the following new INVOICE record, which would add 225,40 to the balance of customer 1001 : 8005,1001, '27-APR-18', 225.40. Write a procedure named pre_cust_add to add a new customer to the CUSTOMER table. Use the following values in the new record: 1002 , 'Rauthor', 'Peter', 0.00 (You should execute the procedure and verify that the new customer was added to ensure your code is correct). Write a procedure named pre_invoice_add to add a new invoice record to the INVOICE table. Use the following values in the new record: 8006,1000, '30-APR-18', 301.72 (You should execute the procedure and verify that the new invoice was added to ensure your code is correct). Write a trigger to update the customer balance when an invoice is deleted. Name the trigger trg_updatecustbalance2. Write a procedure to delete an invoice, giving the invoice number as a parameter. Name the procedure pre_inv_delete. Test the procedure by deleting invoices 8005 and 8006 .

Answers

Insert the following customer into the CUSTOMER table, using the Oracle sequence created in Problem 20 to generate the customer number automatically:- 'Powers', 'Ruth', 500.

Modify the CUSTOMER table to include the customer's date of birth (CUST_DOB), which should store date data. Alter table customer add cust_dob date; Modify customer 1000 to indicate the date of birth on March 15, 1989.Update customer set cust_dob = '15-MAR-1989' where cust_id = 1000;

Modify customer 1001 to indicate the date of birth on December 22,1988.Update customer set cust_dob = '22-DEC-1988' where cust_id = 1001; Create a trigger named trg_updatecustbalance to update the CUST_BALANCE in the CUSTOMER table when a new invoice record is entered.

CREATE OR REPLACE TRIGGER trg_updatecustbalance AFTER INSERT ON invoice FOR EACH ROWBEGINUPDATE customer SET cust_balance = cust_balance + :new.inv_amount WHERE cust_id = :new.cust_id;END;Whatever value appears in the INV_AMOUNT column of the new invoice should be added to the customer's balance.

Test the trigger using the following new INVOICE record, which would add 225,40 to the balance of customer 1001 : 8005,1001, '27-APR-18', 225.40.Insert into invoice values (8005, 1001, '27-APR-18', 225.40);Write a procedure named pre_cust_add to add a new customer to the CUSTOMER table.

Use the following values in the new record: 1002, 'Rauthor', 'Peter', 0.00.

CREATE OR REPLACE PROCEDURE pre_cust_add(customer_id IN NUMBER, firstname IN VARCHAR2, lastname IN VARCHAR2, balance IN NUMBER)AS BEGIN INSERT INTO customer (cust_id, cust_firstname, cust_lastname, cust_balance) VALUES (customer_id, firstname, lastname, balance);END;

Write a procedure named pre_invoice_add to add a new invoice record to the INVOICE table. Use the following values in the new record: 8006,1000, '30-APR-18', 301.72.

CREATE OR REPLACE PROCEDURE pre_invoice_add(invoice_id IN NUMBER, customer_id IN NUMBER, invoice_date IN DATE, amount IN NUMBER)ASBEGININSERT INTO invoice (inv_id, cust_id, inv_date, inv_amount) VALUES (invoice_id, customer_id, invoice_date, amount);END;

Write a trigger to update the customer balance when an invoice is deleted. Name the trigger trg_updatecustbalance

2.CREATE OR REPLACE TRIGGER trg_updatecustbalance2 AFTER DELETE ON invoice FOR EACH ROWBEGINUPDATE customer SET cust_balance = cust_balance - :old.inv_amount WHERE cust_id = :old.cust_id;END;

Write a procedure to delete an invoice, giving the invoice number as a parameter. Name the procedure pre_inv_delete.

CREATE OR REPLACE PROCEDURE pre_inv_delete(invoice_id IN NUMBER)ASBEGINDELETE FROM invoice WHERE inv_id = invoice_id;END;Test the procedure by deleting invoices 8005 and 8006.Call pre_inv_delete(8005);Call pre_inv_delete(8006);

To know more about Oracle sequence refer here:

https://brainly.com/question/15186730

#SPJ11

Multiply 64 by 25 firstly by breaking down 25 in its terms (20+5) and secondly by breaking down 25 in its factors (5×5). Show all your steps. (a) 64×(20+5)
(b) 64×(5×5)

Answers

Our final answer is 1,600 for both by multiplying and factors.

The given problem is asking us to find the product/multiply of 64 and 25.

We are to find it first by breaking down 25 into its terms and second by breaking down 25 into its factors and then multiply 64 by the different parts of the terms.

Let's solve the problem:

Firstly, we'll break down 25 in its terms (20 + 5).

Therefore, we can write:

64 × (20 + 5)

= 64 × 20 + 64 × 5  

= 1,280 + 320

= 1,600.

Secondly, we'll break down 25 in its factors (5 × 5).

Therefore, we can write:

64 × (5 × 5) = 64 × 25 = 1,600.

Finally, we got that 64 × (20 + 5) is equal to 1,600 and 64 × (5 × 5) is equal to 1,600.

Therefore, our final answer is 1,600 for both.

Learn more about factors:

https://brainly.com/question/14549998

#SPJ11

Determine the present value P you must invest to have the future value A at simple interest rate r after time L. A=$3000.00,r=15.0%,t=13 weeks (Round to the nearest cent)

Answers

To achieve a future value of $3000.00 after 13 weeks at a simple interest rate of 15.0%, you need to invest approximately $1,016.95 as the present value. This calculation is based on the formula for simple interest and rounding to the nearest cent.

The present value P that you must invest to have a future value A of $3000.00 at a simple interest rate of 15.0% after a time period of 13 weeks is $2,696.85.

To calculate the present value, we can use the formula: P = A / (1 + rt).

Given:

A = $3000.00 (future value)

r = 15.0% (interest rate)

t = 13 weeks

Convert the interest rate to a decimal: r = 15.0% / 100 = 0.15

Calculate the present value:

P = $3000.00 / (1 + 0.15 * 13)

P = $3000.00 / (1 + 1.95)

P ≈ $3000.00 / 2.95

P ≈ $1,016.94915254

Rounding to the nearest cent:

P ≈ $1,016.95

Therefore, the present value you must invest to have a future value of $3000.00 at a simple interest rate of 15.0% after 13 weeks is approximately $1,016.95.

To know more about interest rate, visit

https://brainly.com/question/29451175

#SPJ11

suppose a u.s. firm purchases some english china. the china costs 1,000 british pounds. at the exchange rate of $1.45 = 1 pound, the dollar price of the china is

Answers

The dollar price of china is $1,450 at the given exchange rate.

A US firm purchases some English China. The China costs 1,000 British pounds. The exchange rate is $1.45 = 1 pound. To find the dollar price of the china, we need to convert 1,000 British pounds to US dollars. Using the given exchange rate, we can convert 1,000 British pounds to US dollars as follows: 1,000 British pounds x $1.45/1 pound= $1,450. Therefore, the dollar price of china is $1,450.

To know more about exchange rate: https://brainly.com/question/25970050

#SPJ11

. Let f(x, y) = x2 3xy-y2. Compute ƒ(5, 0), f(5,-2), and f(a, b)

Answers

Let f(x, y) = x2 - 3xy - y2. Therefore, we can compute ƒ(5, 0), f(5, -2), and f(a, b) as follows; ƒ(5, 0)

When we substitute x = 5 and y = 0 in the equation f(x, y) = x2 - 3xy - y2,

we obtain; f(5, 0) = (5)2 - 3(5)(0) - (0)2

f(5, 0) = 25 - 0 - 0

f(5, 0) = 25

Therefore, ƒ(5, 0) = 25.f(5, -2)

When we substitute x = 5 and y = -2 in the equation

f(x, y) = x2 - 3xy - y2,

we obtain; f(5, -2) = (5)2 - 3(5)(-2) - (-2)2f(5, -2)

= 25 + 30 - 4f(5, -2)

= 51

Therefore, ƒ(5, -2) = 51.

f(a, b)When we substitute x = a and y = b in the equation f(x, y) = x2 - 3xy - y2, we obtain; f(a, b) = a2 - 3ab - b2

Therefore, ƒ(a, b) = a2 - 3ab - b2 .

To know more about equation visit:

https://brainly.com/question/29657983

#SPJ11

Determine if the linear programming problem below is a standard maximization problem. Objective: Maximize Z=47x+39y Subject to: −4x+5y≤300 16x+15y≤3000
−4x+5y≥−400
3x+5y≤300
x≥0,y≥0

Answers

No, the given linear programming problem is not a standard maximization problem.

To determine if the problem is a standard maximization problem, we need to examine the objective function and the constraint inequalities.

Objective function: Maximize Z = 47x + 39y

Constraint inequalities:

-4x + 5y ≤ 300

16x + 15y ≤ 3000

-4x + 5y ≥ -400

3x + 5y ≤ 300

x ≥ 0, y ≥ 0

A standard maximization problem has the objective function in the form of "Maximize Z = cx," where c is a constant, and all constraints are of the form "ax + by ≤ k" or "ax + by ≥ k," where a, b, and k are constants.

In the given problem, the objective function is in the correct form for maximization. However, the third constraint (-4x + 5y ≥ -400) is not in the standard form. It has a greater-than-or-equal-to inequality, which is not allowed in a standard maximization problem.

Based on the analysis, the given linear programming problem is not a standard maximization problem because it contains a constraint that does not follow the standard form.

To know more about linear programming , visit;
https://brainly.com/question/14309521

#SPJ11

Let P1​(z)=a0​+a1​z+⋯+an​zn and P2​(z)=b0​+b1​z+⋯+bm​zm be complex polynomials. Assume that these polynomials agree with each other when z is restricted to the real interval (−1/2,1/2). Show that P1​(z)=P2​(z) for all complex z

Answers

By induction on the degree of R(z), we have R(z)=0,and therefore Q(z)=0. This implies that P1​(z)=P2​(z) for all z

Let us first establish some notations. Since P1​(z) and P2​(z) are polynomials of degree n and m, respectively, and they agree on the interval (−1/2,1/2), we can denote the differences between P1​(z) and P2​(z) by the polynomial Q(z) given by, Q(z)=P1​(z)−P2​(z). It follows that Q(z) has degree at most max(m,n) ≤ m+n.

Thus, we can write Q(z) in the form Q(z)=c0​+c1​z+⋯+c(m+n)z(m+n) for some complex coefficients c0,c1,...,c(m+n).Since P1​(z) and P2​(z) agree on the interval (−1/2,1/2), it follows that Q(z) vanishes at z=±1/2. Therefore, we can write Q(z) in the form Q(z)=(z+1/2)k(z−1/2)ℓR(z), where k and ℓ are non-negative integers and R(z) is some polynomial in z of degree m+n−k−ℓ. Since Q(z) vanishes at z=±1/2, we have, R(±1/2)=0.But R(z) is a polynomial of degree m+n−k−ℓ < m+n. Hence, by induction on the degree of R(z), we have, R(z)=0,and therefore Q(z)=0. This implies that P1​(z)=P2​(z) for all z. Hence, we have proved the desired result.

Learn more about induction

https://brainly.com/question/32376115

#SPJ11

What is the slope of the line that passes through the points (1,3.5) and (3.5,3)? m=

Answers

Slope is -0.2

Given points are (1, 3.5) and (3.5, 3).

The slope of the line that passes through the points (1,3.5) and (3.5,3) can be calculated using the formula:`

m = [tex]\frac{(y2-y1)}{(x2-x1)}[/tex]

`where `m` is the slope of the line, `(x1, y1)` and `(x2, y2)` are the coordinates of the points.

Using the above formula we can find the slope of the line:

First, let's find the values of `x1, y1, x2, y2`:

x1 = 1

y1 = 3.5

x2 = 3.5

y2 = 3

m = (y2 - y1) / (x2 - x1)

m = (3 - 3.5) / (3.5 - 1)

m = -0.5 / 2.5

m = -0.2

Hence, the slope of the line that passes through the points (1,3.5) and (3.5,3) is -0.2.

Learn more about slope of line : https://brainly.com/question/16949303

#SPJ11

A chemical manufacturer wishes to fill an order for 1,244 gallons of a 25% acid solution. Solutions of 20% and 45% are in stock. Let A and B be the number of gallons of the 20% and 45%, solutions respectively, Then A= Note: Write your answer correct to 0 decimal place.

Answers

A stands for 995.2 gallons of the 20% solution.

To determine the number of gallons of the 20% and 45% solutions needed to fulfill the order for 1,244 gallons of a 25% acid solution, we can set up a system of equations based on the acid concentration and total volume.

Let A be the number of gallons of the 20% solution (20% acid concentration).

Let B be the number of gallons of the 45% solution (45% acid concentration).

We can set up the following equations:

Equation 1: Acid concentration equation

0.20A + 0.45B = 0.25 * 1244

Equation 2: Total volume equation

A + B = 1244

Simplifying Equation 1:

0.20A + 0.45B = 311

To solve this system of equations, we can use various methods such as substitution or elimination. Here, we'll use substitution.

From Equation 2, we can express A in terms of B:

A = 1244 - B

Substituting A in Equation 1:

0.20(1244 - B) + 0.45B = 311

Simplifying and solving for B:

248.8 - 0.20B + 0.45B = 311

0.25B = 62.2

B = 62.2 / 0.25

B = 248.8

Therefore, B (the number of gallons of the 45% solution) is 248.8.

Substituting B in Equation 2:

A + 248.8 = 1244

A = 1244 - 248.8

A = 995.2

Therefore, A (the number of gallons of the 20% solution) is 995.2.

In conclusion:

A = 995 (rounded to 0 decimal place)

B = 249 (rounded to 0 decimal place)

Learn more about system of equaion on:

https://brainly.com/question/12526075

#SPJ11

michael is walking at a pace of 2 meters per second he has been walking for 20m already how long will it take to get to the store which is 220m away if you were to create a function what would the slope be ?

Answers

The time it will take for Michael to reach the store is 100 seconds. The slope of the function representing the relationship between distance and time is 2.

To determine the time it will take for Michael to reach the store, we can use the formula: time = distance / speed.

Michael's pace is 2 meters per second, and he has already walked 20 meters, the remaining distance to the store is 220 - 20 = 200 meters.

Using the formula, the time it will take for Michael to reach the store is:

time = distance / speed

time = 200 / 2

time = 100 seconds.

Now, let's discuss the slope of the function representing this situation. In this case, we can define a linear function where the independent variable (x) represents the distance and the dependent variable (y) represents the time. The equation of the function would be y = mx + b, where m represents the slope.

The slope of this function is the rate at which the time changes with respect to the distance. Since the speed (rate) at which Michael is walking remains constant at 2 meters per second, the slope (m) of the function would be 2.

Therefore, the slope of the function representing the relationship between distance and time in this scenario would be 2.

learn more about "function ":- https://brainly.com/question/2328150

#SPJ11

What is the equation of the line, in slope -intercept form, that is perpendicular to the line 5x - y = 20 and passes through the point (2, 3)?

Answers

The equation of the line, in slope-intercept form, that is perpendicular to the line `5x - y = 20` and passes through the point `(2, 3)` is `y = -0.2x + 2.2` or `y = (-1/5)x + (11/5)`.

Given that the line is perpendicular to the line `5x - y = 20` and passes through the point `(2, 3)`.

We are to find the equation of the line in slope-intercept form,

`y = mx + c`.

We have the line

`5x - y = 20`

which we can rewrite in slope-intercept form:

`y = 5x - 20`

where the slope is 5 and y-intercept is -20.

Since the line that we are looking for is perpendicular to the given line, we know that their slopes will be negative reciprocals of each other.

Let `m` be the slope of the line we are looking for.

Then the slope of the line

`y = 5x - 20` is `m1 = 5`.

Hence, the slope of the line we are looking for is:

`m2 = -1/m1 = -1/5`

Now, we can use the point-slope form of the equation of a line to get the equation of the line passing through the point `(2,3)` with slope `-1/5`.

The point-slope form of the equation of a line is given by:

`y - y1 = m(x - x1)`

We have `m = -1/5`,

`(x1, y1) = (2, 3)`.

Therefore, the equation of the line in slope-intercept form is

`y - 3 = (-1/5)(x - 2)`.

Simplifying, we get

`y = (-1/5)x + (11/5)`.

Hence, the equation of the line is

`y = -0.2x + 2.2`.

Therefore, the equation of the line, in slope-intercept form, that is perpendicular to the line `5x - y = 20` and passes through the point `(2, 3)` is `y = -0.2x + 2.2` or `y = (-1/5)x + (11/5)`.

To know more about slope-intercept form visit:

https://brainly.com/question/29146348

#SPJ11

If A _ij is symmetric, prove that A _ij;k is symmetric in the indices i and j. 3.7 The object γ ^i _jk is an affine connection which is not symmetric in j and k(γ ^i _jk and Γ^i _jk have the same transformation properties). Show that γ ^i _ [jk] is a (1,2) tensor.

Answers

We have proven that γ ^i _[jk] is a (1,2) tensor.

To prove that A _ij;k is symmetric in the indices i and j, given that A _ij is symmetric, we can use the symmetry of A _ij and the properties of partial derivatives.

Let's consider A _ij, which is a symmetric matrix, meaning A _ij = A _ji.

Now, let's compute the derivative A _ij;k with respect to the index k. Using the definition of partial derivatives, we have:

A _ij;k = ∂(A _ij)/∂x^k

Using the symmetry of A _ij (A _ij = A _ji), we can rewrite this as:

A _ij;k = ∂(A _ji)/∂x^k

Now, let's swap the indices i and j in the partial derivative:

A _ij;k = ∂(A _ij)/∂x^k

This shows that A _ij;k is symmetric in the indices i and j. Therefore, if A _ij is a symmetric matrix, its derivative A _ij;k is also symmetric in the indices i and j.

Regarding the object γ ^i _jk, which is an affine connection that is not symmetric in j and k, we can show that γ ^i _[jk] is a (1,2) tensor.

To prove this, we need to show that γ ^i _[jk] satisfies the transformation properties of a (1,2) tensor under coordinate transformations.

Let's consider a coordinate transformation x^i' = f^i(x^j), where f^i represents the transformation function.

Under this coordinate transformation, the affine connection γ ^i _jk transforms as follows:

γ ^i' _j'k' = (∂x^i'/∂x^i)(∂x^j/∂x^j')(∂x^k/∂x^k')γ ^i _jk

Using the chain rule, we can rewrite this as:

γ ^i' _j'k' = (∂x^i'/∂x^i)(∂x^j/∂x^j')(∂x^k/∂x^k')γ ^i _jk

Now, let's consider the antisymmetrization of indices j and k, denoted by [jk]:

γ ^i' _[j'k'] = (∂x^i'/∂x^i)(∂x^j/∂x^j')(∂x^k/∂x^k')γ ^i _[jk]

Since γ ^i _jk is not symmetric in j and k, it means that γ ^i' _[j'k'] is also not symmetric in j' and k'.

This shows that γ ^i _[jk] is a (1,2) tensor because it satisfies the transformation properties of a (1,2) tensor under coordinate transformations.

Therefore, we have proven that γ ^i _[jk] is a (1,2) tensor.

Learn more about  derivative  from

https://brainly.com/question/12047216

#SPJ11

Refer to Exhibit 13-7. If at a 5% level of significance, we want t0 determine whether or not the means of the populations are equal , the critical value of F is O a. 4.75

O b.3.81 O c 3.24 O d.2.03

Answers

The critical value of F is 3.24.

To find the critical value of F, we need to consider the significance level and the degrees of freedom. For the F-test comparing two population means, the degrees of freedom are calculated based on the sample sizes of the two populations.

In this case, we are given a sample size of 50. Since we are comparing two populations, the degrees of freedom are (n1 - 1) and (n2 - 1), where n1 and n2 are the sample sizes of the two populations. So, the degrees of freedom for this test would be (50 - 1) and (50 - 1), which are both equal to 49.

Now, we can use a statistical table or software to find the critical value of F at a 5% level of significance and with degrees of freedom of 49 in both the numerator and denominator.

The correct answer is Option c.

To know more about critical value here

https://brainly.com/question/32607910

#SPJ4

a researcher distributes paper questionnaires to individuals in the thirty most impoverished neighborhoods in america asking them about their strategies to purchase and make meals. this is an example of a(n):

Answers

The researcher's distribution of paper questionnaires to individuals in impoverished neighborhoods is an example of a cross-sectional survey used to gather data about meal purchasing and preparation strategies.

The researcher distributing paper questionnaires to individuals in the thirty most impoverished neighborhoods in America asking about their

strategies to purchase and make meals is an example of a survey-based research method.

This method is called a cross-sectional survey. It involves collecting data from a specific population at a specific point in time.

The purpose of this survey is to gather information about the strategies individuals in impoverished neighborhoods use to purchase and prepare meals.

By distributing paper questionnaires, the researcher can collect responses from a diverse group of individuals and analyze their answers to gain insights into the challenges they face and the strategies they employ.


It is important to note that surveys can provide valuable information but have limitations.

For instance, the accuracy of responses depends on the honesty and willingness of participants to disclose personal information.

Additionally, the researcher should carefully design the questionnaire to ensure it captures the necessary data accurately and effectively.

Learn more about cross-sectional survey from the link:

https://brainly.com/question/30552943

#SPJ11

Find the amount of time to the nearest tenth of a year that it would take for $20 to grow to $40 at each of the following annual ratos compounded continuously. a. 2% b. 4% c. 8% d. 16% a. The time that it would take for $20 to grow to $40 at 2% compounded continuously is years. (Round to the nearest tenth of a year.)

Answers

The time it would take for $20 to grow to $40 at various annual interest rates compounded continuously is calculated using the formula for continuous compound interest.

To find the time it takes for $20 to grow to $40 at a given interest rate compounded continuously, we use the formula for continuous compound interest: A = P * e^(rt),

where

A is the final amount,

P is the initial principal,

e is the base of the natural logarithm,

r is the interest rate, and t is the time.

For the first scenario, with a 2% annual interest rate, we substitute the given values into the formula: $40 = $20 * e^(0.02t). To solve for t, we divide both sides by $20, resulting in 2 = e^(0.02t). Taking the natural logarithm of both sides gives ln(2) = 0.02t. Dividing both sides by 0.02, we find t ≈ ln(2) / 0.02. Evaluating this expression gives the time to the nearest tenth of a year.

To determine the correct answer, we need to calculate the value of t for each of the given interest rates (4%, 8%, and 16%). By applying the same process as described above, we can find the corresponding times to the nearest tenth of a year for each interest rate.

To know more about compound interest refer here:

https://brainly.com/question/14295570

#SPJ11

A student took two national aptitude tests. The mean and standard deviation were 475 and 100 , respectively, for the first test, and 30 and 8, respectively, for the second test. The student scored 625 on the first test and 43 on the second test. Use the z-scores to determine on which exam the student performed better.

Answers

The student performed better on the second test as the z-score for the second test is higher than the z-score for the first test.

To determine on which exam the student performed better, we need to use the z-score formula:z = (x - μ) / σwhere x is the score, μ is the mean, and σ is the standard deviation.For the first test, given that the mean and standard deviation were 475 and 100 respectively and the student scored 625, we can find the z-score as follows:

z1 = (625 - 475) / 100 = 1.5

For the second test, given that the mean and standard deviation were 30 and 8 respectively and the student scored 43, we can find the z-score as follows:z2 = (43 - 30) / 8 = 1.625Since the z-score for the second test is higher, it means that the student performed better on the second test

The z-score is a value that represents the number of standard deviations from the mean of a normal distribution.  A z-score of zero indicates that the score is at the mean, while a z-score of 1 indicates that the score is one standard deviation above the mean. Similarly, a z-score of -1 indicates that the score is one standard deviation below the mean.In this problem, we are given the mean and standard deviation for two national aptitude tests taken by a student. The scores of the student on these tests are also given.

We need to use the z-scores to determine on which exam the student performed better.To calculate the z-score, we use the formula:z = (x - μ) / σwhere x is the score, μ is the mean, and σ is the standard deviation. Using this formula, we can find the z-score for the first test as:z1 = (625 - 475) / 100 = 1.5Similarly, we can find the z-score for the second test as:z2 = (43 - 30) / 8 = 1.625Since the z-score for the second test is higher, it means that the student performed better on the second test. This is because a higher z-score indicates that the score is farther from the mean, which in turn means that the score is better than the average score.

Thus, we can conclude that the student performed better on the second test as the z-score for the second test is higher than the z-score for the first test.

To know more about normal distribution visit

brainly.com/question/15103234

#SPJ11

let y be an independent standard normal random variable. use the moment gener- ating function of y to find e[y 3] and e[y 4].

Answers

This means that the expected value of y cubed is 1, while the expected value of y to the fourth power is 0.

[tex]E[y^3] = 1\\\E[y^4] = 0[/tex]

The moment generating function (MGF) of a standard normal random variable y is given by [tex]M(t) = e^{\frac{t^2}{2}}[/tex]. To find [tex]E[y^3][/tex], we can differentiate the MGF three times and evaluate it at t = 0. Similarly, to find [tex]E[y^4][/tex], we differentiate the MGF four times and evaluate it at t = 0.

Step-by-step calculation for[tex]E[y^3][/tex]:
1. Find the third derivative of the MGF: [tex]M'''(t) = (t^2 + 1)e^{\frac{t^2}{2}}[/tex]
2. Evaluate the third derivative at t = 0: [tex]M'''(0) = (0^2 + 1)e^{(0^2/2)} = 1[/tex]
3. E[y^3] is the third moment about the mean, so it equals M'''(0):

[tex]E[y^3] = M'''(0)\\E[y^3] = 1[/tex]

Step-by-step calculation for [tex]E[y^4][/tex]:
1. Find the fourth derivative of the MGF: [tex]M''''(t) = (t^3 + 3t)e^(t^2/2)[/tex]
2. Evaluate the fourth derivative at t = 0:

[tex]M''''(0) = (0^3 + 3(0))e^{\frac{0^2}{2}} \\[/tex]

[tex]M''''(0) =0[/tex]
3. E[y^4] is the fourth moment about the mean, so it equals M''''(0):

[tex]E[y^4] = M''''(0) \\E[y^4] = 0.[/tex]

In summary:
[tex]E[y^3][/tex] = 1
[tex]E[y^4][/tex] = 0

This means that the expected value of y cubed is 1, while the expected value of y to the fourth power is 0.

Learn more about moment generating functions:

https://brainly.com/question/30763700

#SPJ11


To examine time and sequence, ______ are needed.





curvilinear associations





correlation coefficients





longitudinal correlations





linear statistics

Answers

Longitudinal correlation is a statistical tool used to analyze time and sequence in behavior, development, and health. It assesses the degree of association between variables over time, determining if changes are related or if one variable predicts another. Linear statistics calculate linear relationships, while correlation coefficients measure association. Curvilinear associations study curved relationships.

To examine time and sequence, longitudinal correlations are needed. Longitudinal correlation is a method that assesses the degree of association between two or more variables over time or over a defined period of time. It is used to determine whether changes in one variable are related to changes in another variable or whether one variable can be used to predict changes in another variable over time.

It is an essential statistical tool for studying the dynamic changes of behavior, development, health, and other phenomena that occur over time. A longitudinal study design is used to assess the stability, change, and predictability of phenomena over time. When analyzing longitudinal data, linear statistics, correlation coefficients, and curvilinear associations are commonly used.Linear statistics is a statistical method used to model linear relationships between variables.

It is a method that calculates the relationship between two variables and predicts the value of one variable based on the value of the other variable.

Correlation coefficients measure the degree of association between two or more variables, and it is used to determine whether the variables are related. It ranges from -1 to +1, where -1 indicates a perfect negative correlation, +1 indicates a perfect positive correlation, and 0 indicates no correlation.

Curvilinear associations are used to determine if the relationship between two variables is curvilinear. It is a relationship that is not linear, but rather curved, and it is often represented by a parabola. It is used to study the relationship between two variables when the relationship is not linear.

To know more about Longitudinal correlation Visit:

https://brainly.com/question/6614985

#SPJ11

Please help fast, will give branliest to first answer!

Of the four choices given, which two, when written as a system, have a solution of (–4, 5)?


A 2-column table with 4 rows. Column 1 is labeled x with entries negative 1, 2, 3, 5. Column 2 is labeled y with entries 2, negative 1, negative 2, negative 4.



2 x + y = negative 3



Negative 2 x + y = negative 3

A 2-column table with 4 rows. Column 1 is labeled x with entries negative 1, 2, 3, 7. Column 2 is labeled y with entries 0, negative 3, negative 4, negative 8.
2 x + y = negative 3 and A 2-column table with 4 rows. Column 1 is labeled x with entries negative 1, 2, 3, 5. Column 2 is labeled y with entries 2, negative 1, negative 2, negative 4.
Negative 2 x + y = negative 3 and A 2-column table with 4 rows. Column 1 is labeled x with entries negative 1, 2, 3, 5. Column 2 is labeled y with entries 2, negative 1, negative 2, negative 4.
2 x + y = negative 3 and A 2-column table with 4 rows. Column 1 is labeled x with entries negative 1, 2, 3, 7. Column 2 is labeled y with entries 0, negative 3, negative 4, negative 8.
Negative 2 x + y = negative 3 and A 2-column table with 4 rows. Column 1 is labeled x with entries negative 1, 2, 3, 7. Column 2 is labeled y with entries 0, negative 3, negative 4, negative 8.

Answers

The system of equations -2x + y = -3 in both choices has a solution of (-4, 5).

How to determine the system of equations

The two choices that have a solution of (-4, 5) when written as a system are:

1. A 2-column table with 4 rows. Column 1 is labeled x with entries -1, 2, 3, 5. Column 2 is labeled y with entries 2, -1, -2, -4.

  -2x + y = -3

2. A 2-column table with 4 rows. Column 1 is labeled x with entries -1, 2, 3, 7. Column 2 is labeled y with entries 0, -3, -4, -8.

  -2x + y = -3

In both cases, when we substitute x = -4 and y = 5 into the equations, we get:

-2(-4) + 5 = -3

8 + 5 = -3

-3 = -3

Therefore, the system of equations -2x + y = -3 in both choices has a solution of (-4, 5).

Learn more about equations at https://brainly.com/question/29174899

#SPJ1

) devise a heap-sorting-based algorithm for finding the k smallest positive elements of an unsorted set of n-element array (8 points). discuss the expected analytical time-complexity (4 points). (show your work; the time complexity for heap-building must be included; it is assumed that 50% of elements are positive )

Answers

The heap-sorting-based algorithm for finding the k smallest positive elements from an unsorted array has an expected analytical time complexity of O(n + k log n).

Constructing the Heap:

Start by constructing a max-heap from the given array.

Since we are only interested in positive elements, we can exclude the negative elements during the heap-building process.

To build the heap, iterate through the array and insert positive elements into the heap.

Extracting the k smallest elements:

Extract the root (maximum element) from the heap, which will be the largest positive element.

Swap the root with the last element in the heap and reduce the heap size by 1.

Perform a heapify operation on the reduced heap to maintain the max-heap property.

Repeat the above steps k times to extract the k smallest positive elements from the heap.

Time Complexity Analysis:

Heap-building: Building a heap from an array of size n takes O(n) time.

Extracting k elements: Each extraction operation takes O(log n) time.

Since we are extracting k elements, the total time complexity for extracting the k smallest elements is O(k log n).

Therefore, the overall time complexity of the heap-sorting-based algorithm for finding the k smallest positive elements is O(n + k log n).

To know more about heap-sorting here

https://brainly.com/question/30899529

#SPJ4

if four numbers are to be selected with replacement what is the probability that two numbers are same

Answers

If four numbers are selected from the first ten natural numbers. The probability that only two of them are even is [tex]\frac{10}{21}[/tex].

The probability of an event is a number that indicates how likely the event is to occur.

[tex]Probability =\frac{favourable \ outcomes}{total \ number \ of \ outcomes}[/tex]

If four numbers are selected out of first 10 natural numbers, the probability that two of the numbers are even implies that other two number are odd. Out of 5 odd natural number (1,3,5,7,9) two are selected and similarly out of the 5 even natural number(2,4,6,8,10) , two are selected.

[tex]Probability =\frac{favourable \ outcomes}{total \ number \ of \ outcomes}[/tex]

P = [tex]\frac{^5C_2 \ ^5C_2}{^{10}C_4} = \frac{10}{21}[/tex]

Learn more about probability here

https://brainly.com/question/31828911

#SPJ4

The complete question is given below,

If four numbers are selected from the first ten natural numbers. What is the probability that only two of them are even?

#5. For what values of x is the function h not continuous? Also classify the point of discontinuity as removable or jump discontinuity.

Answers

To determine the values of x at which the function h is discontinuous and to classify the point of discontinuity as removable or jump discontinuity, we need to have the function h. Therefore, kindly provide the function h so that we can evaluate and find the solution to the problem.

Suppose that the weight of sweet cherries is normally distributed with mean μ=6 ounces and standard deviation σ=1. 4 ounces. What proportion of sweet cherries weigh less than 5 ounces? Round your answer to four decimal places

Answers

The proportion of sweet cherries weighing less than 5 ounces is approximately 0.2389, rounded to four decimal places. Answer: 0.2389.

We know that the weight of sweet cherries is normally distributed with mean μ=6 ounces and standard deviation σ=1.4 ounces.

Let X be the random variable representing the weight of sweet cherries.

Then, we need to find P(X < 5), which represents the proportion of sweet cherries weighing less than 5 ounces.

To solve this problem, we can standardize the distribution of X using the standard normal distribution with mean 0 and standard deviation 1. We can do this by calculating the z-score as follows:

z = (X - μ) / σ

Substituting the given values, we get:

z = (5 - 6) / 1.4 = -0.7143

Using a standard normal distribution table or calculator, we can find the probability that Z is less than -0.7143, which is equivalent to P(X < 5). This probability can also be interpreted as the area under the standard normal distribution curve to the left of -0.7143.

Using a standard normal distribution table or calculator, we find that the probability of Z being less than -0.7143 is approximately 0.2389.

Therefore, the proportion of sweet cherries weighing less than 5 ounces is approximately 0.2389, rounded to four decimal places. Answer: 0.2389.

Learn more about  decimal places. from

https://brainly.com/question/28393353

#SPJ11

For each gender (Women & Men), find the weight at the 80th percentile
GENDER & WEIGHT
Male 175
Male 229
Female 133
Male 189
Female 165
Female 112
Male 166
Female 124
Female 109
Male 177
Male 163
Male 201
Female 161
Male 179
Male 149
Female 115
Male 222
Female 126
Male 169
Female 134
Female 142
Male 189
Female 116
Male 150
Female 122
Male 168
Male 184
Female 142
Female 121
Female 124
Male 161

Answers

The weight at the 80th percentile for women is 163 lbs, and for men is 176 lbs.

To find the weight at the 80th percentile for each gender, we first need to arrange the weights in ascending order for both men and women:

Women's weights: 109, 112, 115, 116, 121, 122, 124, 124, 126, 133, 134, 142, 142, 161, 165, 177, 179, 189, 201, 229

Men's weights: 149, 150, 161, 163, 166, 168, 169, 175, 177, 184, 189, 222

For women, the 80th percentile corresponds to the weight at the 80th percentile rank. To calculate this, we can use the formula:

Percentile rank = [tex](p/100) \times (n + 1)[/tex]

where p is the percentile (80) and n is the total number of data points (in this case, 20 for women).

For women, the 80th percentile rank is [tex](80/100) \times (20 + 1) = 16.2[/tex], which falls between the 16th and 17th data points in the ordered list. Therefore, the weight at the 80th percentile for women is the average of these two values:

Weight at 80th percentile for women = (161 + 165) / 2 = 163 lbs.

For men, we can follow the same process. The 80th percentile rank for men is [tex](80/100) \times (12 + 1) = 9.6[/tex], which falls between the 9th and 10th data points. The weight at the 80th percentile for men is the average of these two values:

Weight at 80th percentile for men = (175 + 177) / 2 = 176 lbs.

For more such questions on percentile

https://brainly.com/question/28839672

#SPJ8

Lisa and Valerie are picnicking in Trough Creek State Park in Pennsylvania. Lisa has brought a salad that she made with

\frac{3}{4}

4

3



cup of strawberries,

\frac{7}{8}

8

7



cup of peaches, and

\frac{1}{6}

6

1



cup of blueberries. They ate

\frac{11}{12}

12

11



cup of salad. About bow many cups of fruit salad are left?

Answers

Using the concept of LCM, there are 21/24 cups of fruit salad left.

To find out how many cups of fruit salad are left, we need to subtract the amount they ate from the total amount Lisa brought.

The total amount of fruit salad Lisa brought is:

[tex]\frac{3}{4} + \frac{7}{8} + \frac{1}{6} cups[/tex]

To simplify the calculation, we need to find a common denominator for the fractions. The least common multiple of 4, 8, and 6 is 24.

Now, let's convert the fractions to have a denominator of 24:

[tex]\frac{3}{4} = \frac{18}{24}\\\\\frac{7}{8} = \frac{21}{24}\\\\\frac{1}{6} = \frac{4}{24}[/tex]

The total amount of fruit salad Lisa brought is:

[tex]\frac{18}{24} + \frac{21}{24} + \frac{4}{24} = \frac{43}{24} cups[/tex]

Now, let's subtract the amount they ate:

[tex]\frac{43}{24} - \frac{11}{12} = \frac{43}{24} - \frac{22}{24} = \frac{21}{24} cups[/tex]

Therefore, there are [tex]\frac{21}{24}[/tex] cups of fruit salad left.

To know more about LCM, refer here:

https://brainly.com/question/24510622

#SPJ4

Complete Question:

Lisa and Valerie are picnicking in Trough Creek State Park in Pennsylvania. Lisa brought a salad that she made with 3/4 cup of strawberries, 7/8 cup of peaches, and 1/6 cup of blueberries. They ate 11/12 cup of salad. About bow many cups of fruit salad are left?

Other Questions
supermarket, or an approval percentage), a visual presentation such as a bar chart, a line graph, or a scatterplot is often a better choice when conveying multiple related points in a dataset, such as average reviews for multiple products, stock values over time, or the relation between income and years of experience in a job. this idea of data-driven pictures is called visualization and is defined as the graphical representation of data to amplify cognition according to the truth in lending act, if a consumer unknowingly purchases a damaged good using a credit card, the consumer is not obligated to pay for the good if all but which of the following requirements are met? The Central Bank mandates a "reserve ratio" of \( 1.25 \% \). A commercial bank receives a new deposit of \( \$ 2,000 \) from a customer who had it stored under their mattress for years. If the commer Explain, in YOUR OWN WORDS, the importance of consistency ofbranding in all of your messaging. ____ is the way to position an element box that removes box from flow and specifies exact coordinates with respect to its browser window Given the following Scanner object is created in a main method - select the line of code that correctly reads in a char from the user and stores it in a variable named letter.Scanner scan = new Scanner(System.in); //assume the class is already importedchar letter = scan.nextChar();char letter = scan.next();char letter = scan.next().charAt(0);char letter = scan.nextLetter(); On 1 July 2023, Pizza Ltd purchased 30% of the shares of Pie Ltd for $400000. At this date, the Balance Sheet of Pie Ltd were as follows. Assets 1 450 000 Capital 980 000 Less Liabilities 270 000 Retained earnings 130 000 Other reserves 70 000 Net assets $1 180 000 Total equity $1 180 000 At 1 July 2023, all the identifiable assets and liabilities of Pie Ltd were recorded at fair value except for plant whose fair value was $40 000 greater than carrying amount. This plant has an expected future life of 5 years, the benefits being received evenly over this period. Dividend revenue is recognised when dividends are declared. The tax rate is 30%. The results of Pie Ltd was as follows. 30 June 2024 Profit/(loss) before income tax $650 000 Income tax 200 000 Profit/(loss) 450 000 Dividend declared and paid 90 000 Prepare, the acquisition analysis to calculate goodwill.In journal entry format, prepare the consolidation worksheet adjustments for the year ending 30 June 2024, the equity-accounted consolidation worksheet adjustments to include the results for the associate, Pie Ltd, in the consolidated financial statements of Pizza Ltd. 12 marks chronological age poses a problem in social gerontology because it Match the description to the correct type of postsynaptic potential.1. Depolarization of postsynaptic membrane2. Membrane becomes more permeable to Na+3. Hyperpolarization of the postsynaptic membrane4. A membrane potential becomes more negative5. The membrane becomes more permeable to Cl- or K+. (A). EPSP(B) EPSP(C) IPSP(D) IPSP(E) IPSP Enlarge the triangle by scale factor -2 with centre of enlargement (6, 7). in what way did ancient Athens influence the farmers of the United States constitution Chapter 10 Homework Assignment Note: You must show all work for each question in this Excel spreadsheet to receive credit for this assignment. Please upload the completed Excel spreadsheet (showing all calculations) to Blackboard using the link provided with the homework assignment. James Smith acquired the rights to property in northeast Alabama which contains reserves of gravel and pumice. lames paid $1,500,000 for the rights to the property, and his engineers have determined that approximately 50,000 pounds of gravel and pumice could be extracted from the property. James expects the gross income from the property to be $975,000 in 2022 , and taxable income is expected to be $95,000. During 2022, lames expects to extract 10,000 pounds of zravel and pumice from the property. The applicable percentage depletion rate for gravel and pumice is 5%. Question 1: What is James' cost depletion for 2022? Question 2: What is lames' percentage depletion for 2022? 4 Question 3: Based on the answers to Questions 1 and 2, what is the total depletion deduction for 2022 which can be recognized on fames' tax return? When 10 grams of hot water cool by 1C, the amount of heat given off isA) 41.9 calories.B) 41.9 Calories.C) 41.9 joules.D) more than 41.9 joules.E) none of the above 1) quality soap in water has a ph of 8.5-9.5. what might make the ph significantly higher or lower? would you use the soap you made? explain. 2) we added various salts to our soap solution. what is the significance of these results in our homes, say, in the bathtub or shower? 3) what is the significance of the results with added acid and base? 4) what are the possible impurities in the soap, and how would that impact the use of your soap for washing your body?. discuss about %yield if low how to improve if too excess then how explain. Who rules the first house? A group of college students researched the cost of gas and electric energy used in a 2-bedroom house. Their data suggested the monthly utility bill of 71 randomly sellected 2-bedroom houses has an average of $113.75 with a standard deviation of $17.37. (ttable) a) Determine the 90% confidence interval of the true average monthly bill by all 2-bedroom houses. The interval is: ( (Round your answers to two decimal places) b) If this confidence interval would increase, what will happen to the confidence level? The confidence level will C) Determine the minimum sample size required to estimate the overall average monthly bill of all 2bedroom houses to within 0.3 years with 99% confidence. The minimum sample size is: houses (Round your answer to a whole integer) Assignment The doctrine of lifting the veil of incorporation emphasizes that a company has a separate entity from its directors and members, hence, the members are not liable for the misdeeds of the company. However, there are situations when the directors and members misuse the corporate veil to serve their own purpose to the prejudice of the interest of the company. If this is so, it is imperative to look behind the corporate veil to discern the fact and find the persons responsible for misdeeds. Elaborate the doctrine of lifting the veil of incorporation with reference to decided cases. Instructions: Word length should not exceed 800 words Plagiarism will be penalized Referencing is encouraged for better grade Must be submitted before the final exam Ca be submitted hand written or typed Say that we take a random sample of 10 values from a population with median 50. The number of values in our sample that are below 50 will have this distribution:(By definition, the probability of an outcome being below the median is 50%)binomial, n = 10, p = 0.5F distribution, D1 = 50, D2 = 10Normal, mean = 50, standard deviation = 10t-distribution, mean = 50, degrees of freedom = 10 Find f(a), f(a + h), and the difference quotientf(a + h) - f(a)/hf(x) = 4x + 9f(a + h) - f(a), where h + 0.f(a):f(a + h)f(a + h) - f(a)/h C++:it says arraySize must have a constant value, how do you fix this?:#include#include#includeusing namespace std;int main(){int i = 9999;std::ostringstream sub;sub