Answer:
DF and CG
Step-by-step explanation:
Two or more segments are said to be parallel is the angle between them is [tex]180^{0}[/tex]. While two segments are said to be perpendicular when the angle between them is [tex]90^{0}[/tex].
The given figure is a parallelogram. A parallelogram is a quadrilateral with a pair of parallel opposite sides.
In the given question if ∠ADH ≅ ∠ECK , then the parallel segment would be DF and CG.
The length of a rectangular garden is 3 yards greater
than the width of the garden. If the garden measures
15 yards diagonally, what is its length?
Answer:
12
Step-by-step explanation:
Let's call the width x and the length x + 3. Using the Pythagorean Theorem we can write:
(x + 3)² + x² = 15²
x² + 6x + 9 + x² = 225
2x² + 6x - 216 = 0
2(x² + 3x - 108) = 0
2(x + 12)(x - 9) = 0
x + 12 = 0 or x - 9 = 0
x = -12 or x = 9
x cannot be -12 because length/width can't be negative so x = 9 which means that the length is 9 + 3 = 12.
which figure has the same order of rotational symmetry as a rectangle
Answer:
rhombus
Step-by-step explanation:
on edge
please please please please help i need to pass please
Answer:
D
Step-by-step explanation:
Solution:-
The standard sinusoidal waveform defined over the domain [ 0 , 2π ] is given as:
f ( x ) = sin ( w*x ± k ) ± b
Where,
w: The frequency of the cycle
k: The phase difference
b: The vertical shift of center line from origin
We are given that the function completes 2 cycles over the domain of [ 0 , 2π ]. The number of cycles of a sinusoidal wave is given by the frequency parameter ( w ).
We will plug in w = 2. No information is given regarding the phase difference ( k ) and the position of waveform from the origin. So we can set these parameters to zero. k = b = 0.
The resulting sinusoidal waveform can be expressed as:
f ( x ) = sin ( 2x ) ... Answer
An automobile manufacturer has given its car a 46.7 miles/gallon (MPG) rating. An independent testing firm has been contracted to test the actual MPG for this car since it is believed that the car has an incorrect manufacturer's MPG rating. After testing 150 cars, they found a mean MPG of 46.5. Assume the population standard deviation is known to be 1.1. A level of significance of 0.05 will be used. Find the value of the test statistic. Round your answer to two decimal places.
Answer:
[tex]z=\frac{46.5-46.7}{\frac{1.1}{\sqrt{150}}}=-2.23[/tex]
The p value would be given by:
[tex]p_v =2*P(z<-2.23)=0.0257[/tex]
For this case since th p value is lower than the significance level of0.05 we have enough evidence to reject the null hypothesis and we can conclude that the true mean for this case is significantly different from 46.7 MPG
Step-by-step explanation:
Information given
[tex]\bar X=46.5[/tex] represent the mean
[tex]\sigma=1.1[/tex] represent the population standard deviation
[tex]n=150[/tex] sample size
[tex]\mu_o =46.7[/tex] represent the value to verify
[tex]\alpha=0.05[/tex] represent the significance level for the hypothesis test.
z would represent the statistic
[tex]p_v[/tex] represent the p value
Hypothesis to test
We want to test if the true mean for this case is 46.7, the system of hypothesis would be:
Null hypothesis:[tex]\mu = 46.7[/tex]
Alternative hypothesis:[tex]\mu \neq 46.7[/tex]
Since we know the population deviation the statistic is given by:
[tex]z=\frac{\bar X-\mu_o}{\frac{\sigma}{\sqrt{n}}}[/tex] (1)
Replacing we got:
[tex]z=\frac{46.5-46.7}{\frac{1.1}{\sqrt{150}}}=-2.23[/tex]
The p value would be given by:
[tex]p_v =2*P(z<-2.23)=0.0257[/tex]
For this case since th p value is lower than the significance level of0.05 we have enough evidence to reject the null hypothesis and we can conclude that the true mean for this case is significantly different from 46.7 MPG
A fair die is rolled repeatedly. Calculate to at least two decimal places:__________
a) the chance that the first 6 appears before the tenth roll
b) the chance that the third 6 appears on the tenth roll
c) the chance of seeing three 6's among the first ten rolls given that there were six 6's among the first twenty roles.
d) the expected number of rolls until six 6's appear
e) the expected number of rolls until all six faces appear
Answer:
a. 0.34885
b. 0.04651
c. 0.02404
d. 36
e. 14.7, say 15 trials
Step-by-step explanation:
Q17070205
Note:
1. In order to be applicable to established probability distributions, each roll is considered a Bernouilli trial, i.e. has only two outcomes, success or failure, and are all independent of each other.
2. use R to find the probability values from the respective distributions.
a) the chance that the first 6 appears before the tenth roll
This means that a six appears exactly once between the first and the nineth roll.
Using binomial distribution, p=1/6, n=9, x=1
dbinom(1,9,1/6) = 0.34885
b) the chance that the third 6 appears on the tenth roll
This means exactly two six's appear between the first and 9th rolls, and the tenth roll is a six.
Again, we have a binomial distribution of p=1/6, n=9, x=2
p1 = dbinom(2,9,1/6) = 0.27908
The probability of the tenth roll being a 6 is, evidently, p2 = 1/6.
Thus the probability of both happening, by the multiplication rule, assuming independence
P(third on the tenth roll) = p1*p2 = 0.04651
c) the chance of seeing three 6's among the first ten rolls given that there were six 6's among the first twenty roles.
Again, using binomial distribution, probability of 3-6's in the first 10 rolls,
p1 = dbinom(3,10,1/6) = 0.15504
Probability of 3-6's in the NEXT 10 rolls
p1 = dbinom(3,10,1/6) = 0.15504
Probability of both happening (multiplication rule, assuming both events are independent)
= p1 * p1 = 0.02404
d) the expected number of rolls until six 6's appear
Using the negative binomial distribution, the expected number of failures before n=6 successes, with probability p = 1/6
= n(1-p)/p
Total number of rolls by adding n
= n(1-p)/p + n = n(1-p+p)/p = n/p = 6/(1/6) = 36
e) the expected number of rolls until all six faces appear
P1 = 6/6 because the firs trial (roll) can be any face with probability 1
P2 = 6/5 because the second trial for a different face has probability 5/6, so requires 6/5 trials
P3 = 6/4 ...
P4 = 6/3
P5 = 6/2
P6 = 6/1
So the total mean (expected) number of trials is 6/6+6/5+6/4+6/3+6/2+6/1 = 14.7, say 15 trials
James plays at the neighborhood basketball court which is enclosed by a circular fence. The circle created by fence has a radius of 50 feet. What is the APPROXIMATE area of the space enclosed by the fence? Use 3.14 for π. 1,962.5 sq ft 7,850 sq ft 157.5 sq ft 314 sq ft
Answer:
7850 feet.sq
Step-by-step explanation:
the area of a cercle is:
A = r²*π where r is the radius
A= 50²*3.14 = 7850 ft²
I'm having a hard time with this. A new housing development extends 4 miles in one direction, makes a right turn, and then con- tinues for 3 miles. A new road runs between the beginning and ending points of the development. What is the perimeter of the triangle formed by the homes and the road? What is the area of the housing development?
Answer:
perimeter = 12 miles
area = 6 square miles
Step-by-step explanation:
Since it makes a right triangle, use the Pythagorean Formula.
3^2+4^2=c^2
9+16=c^2
25=c^2
5=c, so the hypotenuse of the right triangle is 5.
Perimeter = 3+4+5 = 12 miles
area = 1/2bh (1/2 base times height)
=1/2x3x4
=6
Area = 6 square miles
Find the area of a circle with a diameter of 8yards. Use 3.14. The area of the circle is approximate
Answer:
50.24 yd²
Step-by-step explanation:
pi r² = (3.14)(4)² = 50.24
my dad is designing a new garden. he has 21 feet of fencing to go around the garden. he wants the length of the garden to be 1 1/2 feet longer than the width. how wide should he make the garden?
Answer:
21=2w+2w+3 18=4w w=4.5
heres a list of numbers 3 6 9 7 4 6 7 0 7 Find median,mean,range and mode
median=order them and find the middle=6
mean=add them all up and divide by the amount of numbers=(3+6+9+7+4+6+7+0 +7)/9=5.4
range= the difference between the smallest and largest number=9-3=6
mode= the one that appears the most= 7
The median, mean, range and mode will be 6, 5.4, 9 and 7.
The median is the number in the middle when arranged in an ascending order. The numbers will be:
0, 3, 4, 6, 6, 7, 7, 7, 9.
The median is 6.
The range is the difference between the highest and lowest number which is: = 9 - 0 = 9
The mode is the number that appears most which is 7.
The mean will be the average which will be:
= (0 + 3 + 4 + 6 + 6 + 7 + 7 + 7 + 9) / 9.
= 49/9
= 5.4
Read related link on:
https://brainly.com/question/9426296
Identify whether the given value is a discrete random variable, a continuous random variable, or if it is not a random variable:
1) A college basketball player's height that is reported in the game-day program
2) The color of a student's car
3) The exact weight of an airline passenger's carry-on bag
Answer:
1. continuous random variable
2. not a random variable
3. a continuous random variable
Step-by-step explanation:
The classifications are as follow
a) The height of the player reported in the game day program is treated as a continuous random variable as these values could be determined through measuring them
b) The color of student car is not a random variable as it does not contain any quantitative data or we can say numerical data
c) The exact weight of the bag is a continuous variable as it is lie between the range
Decide whether the sets are equivalent {d: d is a month of the year} and {g : g is a state in the United States}
Answer:
Non equivalentStep-by-step explanation:
The equivalent between sets is determined by the number of elements. If two sets have the same number of elements, then they are equivalent sets.
In this case, a year has 12 months, and the US has 50 states. So, one month is not equal to 1 state because they have different natures and they represent a different proportion. A month represents 1/12 of a year and a state represents 1/50 of the total number of states.
Can someone teach me how to solve this problem please:)
Answer:
x= -3, y= -5
or x= 5, y=3
Step-by-step explanation:
① Label the 2 equations
x² +y²= 34 -----(1)
3x -3y= 6 -----(2)
From (2):
x -y= 2 -----(3)
Notice that (x-y)²= x² -2xy +y²
Thus, (equation 3)²= (equation 1) -2xy
Squaring (3):
(x -y)²= 2²
(x -y)²= 4
Expand terms in bracket:
x² -2xy +y²= 4
x² +y² -2xy= 4 -----(4)
subst. (1) into (4):
34 -2xy= 4
2xy= 34 -4 (bring constant to 1 side)
2xy= 30 (simplify)
xy= 30 ÷2 (÷2 throughout)
xy= 15 -----(5)
From (3):
x= y +2 -----(6)
I'll rewrite 2 of the equations.
x= y +2 -----(6)
xy= 15 -----(5)
Subst. (6) into (5):
y(y+2)= 15
y² +2y= 15
y² +2y -15= 0
(y +5)(y -3)=0
y+5= 0 or y-3=0
y= -5 or y= 3
Subst. into (6):
x= -5 +2 or x= 3 +2
x= -3 or x= 5
Answer:
y=-5, y=3
x=-3., x=5
Step-by-step explanation:
x^2+y^2=34
3x-3y=6
isolate x in te equation
3x-3y=6
x=3/3 y+6/3
x=y+2
plug the y+2 in the equation:
x^2+y^2=34
(y+2)^2+y^2=34
y^2+4y+4+y^2=34
2y^2+4y=34-4
2y^2+4y=30 divide by 2
y^2+2x-15=0 factorize
(y+5)(y-3)=0 eiter y+5=0 ten y=-5 or y-3=0 then y=3
now plug the solution in the equation
3x-3y=6
3x-3(-5)=6
3x=6-15
x=-9/3=-3
for y=3
3x-3y=6
3x-9=6
3x=15
x=5
Irvin buys a car for $21 comma 804. It depreciates 25% each year that he owns it. What is the depreciated value of the car after 1 yr? after 2 yr? The depreciated value of the car after 1 yr is $? The depreciated value of the car after 2 yr is $?
Answer:
The depreciated value of the car after 1 yr is $16,353
The depreciated value of the car after 2 yr is $12,264.75
Step-by-step explanation:
Given
purchase amount P= $21,804
rate of depreciation R= 25%
applying the formula for the car deprecation we have
[tex]A= P*(1-\frac{R}{100} )^n[/tex]
Where,
A is the value of the car after n years,
P is the purchase amount,
R is the percentage rate of depreciation per annum,
n is the number of years after the purchase.
1. The depreciated value of the car after 1 yr is
n=1
[tex]A= 21,804*(1-\frac{25}{100} )^1\\\\A= 21,804*(1-0.25 )^1\\\\A= 21,804*0.75\\\\A= 16353[/tex]
The depreciated value of the car after 1 yr is $16,353
2. The depreciated value of the car after 2 yr is
n=2
[tex]A= 21,804*(1-\frac{25}{100} )^2\\\\A= 21,804*(1-0.25 )^2\\\\A= 21,804*0.75^2\\\\A= 21,804*0.5625\\\\A= 12264.75[/tex]
The depreciated value of the car after 2 yr is $12,264.75
Please help! V^2 = 25/81
Answer:
C and D
Step-by-step explanation:
khan acedemy
An equation is formed when two equal expressions. The solutions to the given equation are A, B, and C.
What is an equation?An equation is formed when two equal expressions are equated together with the help of an equal sign '='.
The solution of the given equation v²=25/81 can be found as shown below.
v²=25/81
Taking the square root of both sides of the equation,
√(v²) = √(25/81)
v = √(25/81)
v = √(5² / 9²)
v = ± 5/9
Hence, the solutions of the given equation are A, B, and C.
Learn more about Equation here:
https://brainly.com/question/2263981
#SPJ2
A takeaway sells 10-inch pizzas and 12-inch pizzas.
The profit made in week 1 is 0.69 and week 2 is 0.71.
What is Proportion?In general, the term "proportion" refers to a part, share, or amount that is compared to a total.
According to the concept of proportion, two ratios are in proportion when they are equal.
A mathematical comparison of two numbers is called a proportion. According to proportion, two sets of provided numbers are said to be directly proportional to one another if they increase or decrease in the same ratio. "::" or "=" are symbols used to indicate proportions.
Given:
A takeaway sells 10-inch pizzas and 12-inch pizzas.
From the table
For week 1:
Proportion= 509/ 736 = 0.69
and, week 2:
Proportion= 765/ 1076 = 0.71
Learn more about proportion here:
https://brainly.com/question/26974513
#SPJ2
Profit Function for Producing Thermometers The Mexican subsidiary of ThermoMaster manufactures an indoor-outdoor thermometer. Management estimates that the profit (in dollars) realizable by the company for the manufacture and sale of x units of thermometers each week is represented by the function below, where x ≥ 0. Find the interval where the profit function P is increasing and the interval where P is decreasing. (Enter your answer using interval notation.) P(x) = −0.004x2 + 6x − 5,000 Increasing: Decreasing:
Answer:
Increasing: [tex](0, 750)[/tex]
Decreasing: [tex](750, \infty)[/tex]
Step-by-step explanation:
Critical points:
The critical points of a function f(x) are the values of x for which:
[tex]f'(x) = 0[/tex]
For any value of x, if f'(x) > 0, the function is increasing. Otherwise, if f'(x) < 0, the function is decreasing.
The critical points help us find these intervals.
In this question:
[tex]P(x) = -0.004x^{2} + 6x - 5000[/tex]
So
[tex]P'(x) = -0.008x + 6[/tex]
Critical point:
[tex]P'(x) = 0[/tex]
[tex]-0.008x + 6 = 0[/tex]
[tex]0.008x = 6[/tex]
[tex]x = \frac{6}{0.008}[/tex]
[tex]x = 750[/tex]
We have two intervals:
(0, 750) and [tex](750, \infty)[/tex]
(0, 750)
Will find P'(x) when x = 1
[tex]P'(x) = -0.008x + 6 = -0.008*1 + 6 = 5.992[/tex]
Positive, so increasing.
Interval [tex](750, \infty)[/tex]
Will find P'(x) when x = 800
[tex]P'(x) = -0.008x + 6 = -0.008*800 + 6 = -0.4[/tex]
Negative, then decreasing.
Answer:
Increasing: [tex](0, 750)[/tex]
Decreasing: [tex](750, \infty)[/tex]
What is the value of x in the equation 0.7 x - 1.4 = -3.5
Answer:
x=12.5
Step-by-step explanation:
0.7x times (-1.4)=-3.5
-0.28x=-3.5 (divide both sides)
Ans:12.5
g A CD player with an original price of $380.00 is on sale at 35% off. What is the discount amount and the CD player sale price?
Answer:
Cost: $247
Discount: $133
Step-by-step explanation:
Simply multiply 380 and 35% off together to get your answer:
380(1 - 0.35)
380(0.65)
247
To find the discount amount, simply subtract the 2 numbers to get your answer:
380 - 247 = 133
Any polygon can be the base of a prism. A. True B. False
Answer:
true
Step-by-step explanation:
A prism is a solid with parallelogram sides (usually rectangles) and a polygon for the 2 bases. Any polygon can be the base.
Answer:
Hello!
__________________
Your answer would be (A) True.
Step-by-step explanation: Hope this helped you!
Any polygon can be the base of a prism so the answer is true.
You are ordering softballs for two softball leagues. The Elementary League uses a
larger softball priced at $2.75 each. The Middle School league uses a smaller softball
prices at $3.25 each. You order a total of 80 softballs for $245. What equations
would you use to find out how many of each size of softball you can order. Let L =
the larger softball and let S = the smaller softball.
Answer:L=30 S=50
Step-by-step explanation:
3.25 x 50 = 162.5
245 - 162.5 = 82.5
82.5 divided by 30 equals 2.75.
Convert into the following unit into 30 cm into miter
Answer:
it we'll be 0.3
Step-by-step explanation:
trust me man I like to explain but it's long
Answer:
0.3 meter or 3/10 meter
Step-by-step explanation:
As there are 100cm in 1 meter and you want to find 30cm in terms of meters.
It will be as
100cm = 1 meter (rule/lax)
100/100 cm = 1/100 meter (divide both sides of equation with 100)
1 cm = 1/100 meter
1 *30 cm = (1/100)*30 meter (multiply both sides with 30)
30 cm = 30/100 meter
30/100 more shortly can be written as 3/10 meter or in decimals 0.3 meter.
The amount of time it takes a bat to eat a frog was recorded for each bat in a random sample of 12 bats. The resulting sample mean and standard deviation were 21.9 minutes and 7.7 minutes, respectively. Assuming it is reasonable to believe that the population distribution of bat mealtimes of frogs is approximately normal, a. Construct a 95% confidence interval for the mean time for a bat to eat a frog. b. Construct a 95% confidence interval for the variance of the time for a bat to eat a frog.
Answer: a. CI for the mean: 17.327 < μ < 26.473
b. CI for variance: 29.7532 ≤ [tex]\sigma^{2}[/tex] ≤ 170.9093
Step-by-step explanation:
a. To construct a 95% confidence interval for the mean:
The given data are:
mean = 21.9
s = 7.7
n = 12
df = 12 - 1 = 11
1 - α = 0.05
[tex]\frac{\alpha}{2}[/tex] = 0.025
t-score = [tex]t_{0.025,11}[/tex] = 2.2001
Note: since the sample population is less than 30, it is used a t-score.
The formula for interval:
mean ± [tex]t.\frac{s}{\sqrt{n} }[/tex]
Substituing values:
21.9 ± 2.200.[tex]\frac{7.7}{\sqrt{12} }[/tex]
21.9 ± 4.573
The interval is: 17.327 < μ < 26.473
b. A 95% confidence interval for the variance:
The given values are:
[tex]s^{2}[/tex] = [tex]7.7^{2}[/tex]
[tex]s^{2}[/tex] = 59.29
α = 0.05
[tex]\frac{\alpha}{2}[/tex] = 0.025
[tex]1-\frac{\alpha}{2}[/tex] = 0.975
[tex]\chi^{2}_{0.025,11}[/tex] = 21.92
[tex]\chi^{2}_{0.975,11}[/tex] = 3.816
Note: To find the values for [tex]\chi^{2}_{\alpha/2,n-1}[/tex] and [tex]\chi^{2}_{1-\alpha/2,n-1}[/tex], look for them at the chi-square table
The formula to calculate interval:
([tex]\frac{(n-1).s^{2}}{\chi^{2}_{\alpha/2,n-1}} , \frac{(n-1)s^{2}}{\chi^{2}_{1-\alpha/2,n-1}}[/tex])
are the lower and upper limits, respectively.
Substituing values:
([tex]\frac{11.59.29}{21.92} , \frac{11.59.29}{3.816}[/tex])
(29.7532, 170.9093)
The interval for variance is: 29.7532 ≤ [tex]\sigma^{2}[/tex] ≤ 170.9093
The graphed line shown below is y = 3 x minus 1. On a coordinate plane, a line goes through (0, negative 1) and (1, 2). Which equation, when graphed with the given equation, will form a system that has an infinite number of solutions? y + 1 = 3 x y = negative 3 x + 1 y = 3 x + 1 y minus 3 x = negative 3
Answer:
y + 1 = 3x
Step-by-step explanation:
In order for there to be an infinite number of solutions, the two lines need to be the same.
y+1 = 3x
y=3x-1 are both the same
Answer:
a)y + 1 = 3x
Step-by-step explanation:
Clara writes the following proof for the theorem: If the diagonals of a quadrilateral bisect each other, the quadrilateral is a parallelogram:
Answer:
CPCTC
Step-by-step explanation:
Statements 3 and 4 show the top and bottom triangles are congruent, and the left and right triangles are congruent. Statement 5 is making use of these facts to claim that the alternate interior angles are congruent. This claim is valid because ...
Corresponding Parts of Congruent Triangles are Congruent (CPCTC)
By what percent will the fraction increase if its numerator is increased by 60% and denominator is decreased by 20% ?
Answer:
100%
Step-by-step explanation:
Start with x.
x = x/1
Increase the numerator by 60% to 1.6x.
Decrease the numerator by 20% to 0.8.
The new fraction is
1.6x/0.8
Do the division.
1.6x/0.8 = 2x
The fraction increased from x to 2x. It became double of what it was. From x to 2x, the increase is x. Since x was the original number x is 100%.
The increase is 100%.
Answer:
33%
Step-by-step explanation:
let fraction be x/y
numerator increased by 60%
=x+60%ofx
=8x
denominator increased by 20%
=y+20%of y
so the increased fraction is 4x/3y
let the fraction is increased by a%
then
x/y +a%of (x/y)=4x/3y
or, a%of(x/y)=x/3y
[tex]a\% = \frac{x}{3y} \times \frac{y}{x} [/tex]
therefore a=33
anda%=33%
Find the upper and lower sums for the region bounded by the graph of the function and the x-axis on the given interval. Leave your answer in terms of n, the number of subintervals. Function Interval f(x) = 7 − 2x [1, 2]
Answer:
-2n
Step-by-step explanation:
f(x)=7-2x {1,2}
f(1)=7-2(1)=5
f(2)=7-2(2)=3
Slope (m)=3/5
{7-2(1)}-{7-2(2)}=3-5=-2
In terms of n=-2n
The upper and lower sums for the region bounded by the graph of the function and the x-axis on the given interval is [5, 3]
Given the function of the graph bounded by the inteval [1, 2] expressed as
f(x) = 7 - 2x
The upper limit of the function is the point where the domain of the function x is 2. Substitute x = 2 into the function, we will have:
f(2) = 7 - 2(2)
f(2) = 7 - 4
f(2) = 3
For the lower limit, the domain of the function is at x = 2:
f(1) = 7 - 2(1)
f(1) = 7 - 2
f(1) = 5
Hence the upper and lower sums for the region bounded by the graph of the function and the x-axis on the given interval is [5, 3].
Learn more here: https://brainly.com/question/18829130
A manufacturing company measures the weight of boxes before shipping them to the customers. Assume that the weights of boxes are normally distributed with mean 90 lbs and standard deviation 24 lbs. a) Find the probability that a randomly selected box will exceed 94 lbs. b) If a sample of 36 boxes is randomly selected, find the probability that the average of the boxes exceeds 94 lbs.
Answer:
24
Step-by-step explanation:
write the equation of a circle with the center (6,4) that passes through the coordinate (2,1) in your final answer include all of your calculations
Step-by-step explanation:
define define equation we need the value of the radius and
ratio 300 ml to 6 l
Answer:
20
Step-by-step explanation:
fist you convert 6l to ml=6×1000
then,300/300:6000/300
gives you 1:20