Identify the following as combination, decomposition, replacement, or ion exchange reactions: Al(s) + 3 Cl2(g) → 2 AlCl3(s) Ca(OH)2(aq) + H2SO4(aq) → CaSO4(aq) + 2 H2O(l

Answers

Answer 1

Answer:

2 Al(s) + 3Cl₂(g) → 2AlCl₃(s)

This is a combination reaction.

Ca(OH)₂(aq) + H₂SO₄(aq) → CaSO₄(aq) + 2H₂O(l)

This is a replacement reaction.

Explanation:

A combination reaction is a reaction in which two reagents are combined into one product. The reaction has the following general form:

A + B → AB

where A and B represent any two chemical substances.

2 Al(s) + 3Cl₂(g) → 2AlCl₃(s)

This is a combination reaction because a single compound forms from two or more reacting species.

Double Substitution, Double Displacement or Metastasis Reactions are those in which two elements found in different compounds exchange their positions forming two new compounds. These chemical reactions do not present changes in the number of oxidation or relative load of the elements. So they are not considered redox reactions.

The solvent of the double displacement reactions usually is water and the reagents and products are usually ionic compounds (cations or anions are exchanged), although they can also be acids or bases.

In general, this type of reaction can be expressed as:

AB + CD ⇒ AD + CD

In the reaction:

Ca(OH)₂(aq) + H₂SO₄(aq) → CaSO₄(aq) + 2H₂O(l)

This is a replacement reaction because it is a double replacement reaction in which the ions are exchanged to form new compounds.


Related Questions

Consider two identical small glass balls dropped into two identical containers, one filled with water and the other with oil. Which ball will reach the bottom of the container first? Why?

Answers

Answer:

The ball dropped in water will reach the bottom of the container first because of the much lower viscosity of water relative to oil.

Explanation:

Oil is more less dense than water. Thus, the molecules that make up the oil are larger than those that that make up water, so they cannot pack as tightly together as the water molecules will do. Hence, they will take up more space per unit area and are we can say they are less dense.

So, we can conclude that the ball filled with water will reach the bottom of the container first this is because oil is less dense than water and so the glass ball filled with oil will be a lot less denser than the one which is filled with water.

g You have a suction cup that creates a circular region of low pressure with a 30 mm diameter. It holds the pressure to 78 % of atmospheric pressure. What "holding force" does the suction cup generate in N

Answers

Answer:

F=49.48 N

Explanation:

Given that

Diameter , d= 30 mm

Holding pressure = 70 % P

P=Atmospherics pressure

We know that

P= 1 atm = 10⁵ N/m²

The force per unit area is known as pressure.

[tex]P=\dfrac{F}{A}[/tex]

[tex]F=P\times A[/tex]

[tex]F=0.7\times 10^5\times \dfrac{\pi}{4}\times 0.03^2\ N[/tex]

Therefore the force will be 49.48 N.

F=49.48 N

A 50-cm-long spring is suspended from the ceiling. A 410 g mass is connected to the end and held at rest with the spring unstretched. The mass is released and falls, stretching the spring by 16 cm before coming to rest at its lowest point. It then continues to oscillate vertically. Part A What is the spring constant

Answers

Answer:

25.125 N/m

Explanation:

extension on the spring e = 16 cm 0.16 m

mass of hung mass m = 410 g = 0.41 kg

equation for the relationship between force and extension is given by

F = ke

where k is the spring constant

F = force = mg

where m is the hung mass,

and  g is acceleration due to gravity = 9.81 m/s^2

imputing value, we have

0.41 x 9.81 = k x 0.16 = 0.16k

4.02 = 0.16k

spring constant k = 4.02/0.16 = 25.125 N/m

A 50-kg block is pushed a distance of 5.0 m across a floor by a horizontal force Fp whose magnitude is 150 N. Fp is parallel to the displacement of the block. The coefficient of kinetic friction is 0.25.
a) What is the total work done on the block?
b) If the box started from rest, what is the final speed of the block?

Answers

Answer:

a) WT = 137.5 J

b) v2 = 2.34 m/s

Explanation:

a) The total work done on the block is given by the following formula:

[tex]W_T=F_pd-F_fd=(F_p-F_f)d[/tex]          (1)

Fp: force parallel to the displacement of the block = 150N

Ff: friction force

d: distance = 5.0 m

Then, you first calculate the friction force by using the following relation:

[tex]F_f=\mu_k N=\mu_k Mg[/tex]        (2)

μk: coefficient of kinetic friction = 0.25

M: mass of the block = 50kg

g: gravitational constant = 9.8 m/s^2

Next, you replace the equation (2) into the equation (1) and solve for WT:

[tex]W_T=(F_p-\mu_kMg)d=(150N-(0.25)(50kg)(9.8m/s^2))(5.0m)\\\\W_T=137.5J[/tex]

The work done over the block is 137.5 J

b) If the block started from rest, you can use the following equation to calculate the final speed of the block:

[tex]W_T=\Delta K=\frac{1}{2}M(v_2^2-v_1^2)[/tex]     (3)

WT: total work = 137.5 J

v2: final speed = ?

v1: initial speed of the block = 0m/s

You solve the equation (3) for v2:

[tex]v_2=\sqrt{\frac{2W_T}{M}}=\sqrt{\frac{2(137.5J)}{50kg}}=2.34\frac{m}{s}[/tex]

The final speed of the block is 2.34 m/s

How have physicists played a role in history?
A. Physics has changed the course of the world.
B. History books are written by physicists.
C. Physicists have controlled most governments.
D. Most decisions about wars are made by physicists.

Answers

A. Physics has changed the course of the world.

Answer:

A. Physics has changed the course of the world.

Explanation:

A block rests on a frictionless horizontal surface and is attached to a spring. When set into simple harmonic motion, the block oscillates back and forth with an angular frequency of 8.1 rad/s. The drawing shows the position of the block when the spring is unstrained. This position is labeled x= 0 m. The drawing also shows a small bottle located 0.080 m to the right of this position. The block is pulled to the right, stretching the spring by 0.050 m, and is then thrown to the left. In order for the block to knock over the bottle,it must be thrown with a speed exceeding v0. Ignoring the width of the block, find v0.

Answers

Answer:

v₀ = 0.5058 m/s

Explanation:

From the question, for the block to hit the bottle, the elastic potential energy of the spring at the bottle (x = 0.08 m) should be equal to the sum of the elastic potential energy of the spring at x = 0.05 m and the kinetic energy of block at x = 0.05 m

Now, the potential energy of the block at x = 0.08 m is ½kx²

where;

k is the spring constant given by; k = ω²m

ω is the angular velocity of the oscillation

m is the mass of the block.

Thus, potential energy of the spring at the bottle(x = 0.08 m) is;

U = ½ω²m(0.08m)²

Also, potential energy of the spring at the bottle(x = 0.05 m) is;

U = ½ω²m(0.05m)²

and the kinetic energy of the block at x = 0.05 m is;

K = ½mv₀²

Thus;

½ω²m(0.08)² = ½ω²m(0.05)² + ½mv₀²

Inspecting this, ½m will cancel out to give;

ω²(0.08)² = ω²(0.05)² + v₀²

Making v₀ the subject, we have;

v₀ = ω√((0.08)² - (0.05)²)

So,

v₀ = 8.1√((0.08)² - (0.05)²)

v₀ = 0.5058 m/s

Identify the following as combination, decomposition, replacement, or ion exchange reactions NaBr(aq) + Cl2(g) → 2 NaCl(aq) + Br2(g)

Answers

Answer:

Replacement

Explanation:

in replacements, like ions replace like. in this equation, we can see that Bromine replaced Chlorine. so, the answer is replacement.

Answer:

Single-replacement or replacement

Explanation:

The single-replacement reaction is a + bc -> ac + b, compare them.

NaBr + Cl2 -> 2 NACl + Br.

AB + C -> AC + B

As you can see they are the same ( even though the b is with the a and not with the c. The formula can be switched around a little with the order of b and c ) ((also like ions replace like ions in replacements, which they are in this))

An ideal, or Carnot, heat pump is used to heat a house to a temperature of 294 K (21 oC). How much work must the pump do to deliver 3000 J of heat into the house (a) on a day when the outdoor temperature is 273 K (0 oC) and (b) on another day when the outdoor temperature is 252 K (-21 oC)

Answers

Answer:

a) [tex]W_{in} = 214.286\,J[/tex], b) [tex]W_{in} = 428.571\,J[/tex]

Explanation:

a) The performance of a Carnot heat pump is determined by the Coefficient of Performance, which is equal to the following ratio:

[tex]COP_{HP} = \frac{T_{H}}{T_{H}-T_{L}}[/tex]

Where:

[tex]T_{L}[/tex] - Temperature of surroundings, measured in Kelvin.

[tex]T_{H}[/tex] - Temperature of the house, measured in Kelvin.

Given that [tex]T_{H} = 294\,K[/tex] and [tex]T_{L} = 273\,K[/tex]. The Coefficient of Performance is:

[tex]COP_{HP} = \frac{294\,K}{294\,K-273\,K}[/tex]

[tex]COP_{HP} = 14[/tex]

Besides, the performance of real heat pumps are determined by the following form of the Coefficient of Performance, that is, the ratio of heat received by the house to input work.

[tex]COP_{HP} = \frac{Q_{H}}{W_{in}}[/tex]

The input work to deliver a determined amount of heat to the house:

[tex]W_{in} = \frac{Q_{H}}{COP_{HP}}[/tex]

If [tex]Q_{H} = 3000\,J[/tex] and [tex]COP_{HP} = 14[/tex], the input work that is needed is:

[tex]W_{in} = \frac{3000\,J}{14}[/tex]

[tex]W_{in} = 214.286\,J[/tex]

b) The performance of a Carnot heat pump is determined by the Coefficient of Performance, which is equal to the following ratio:

[tex]COP_{HP} = \frac{T_{H}}{T_{H}-T_{L}}[/tex]

Where:

[tex]T_{L}[/tex] - Temperature of surroundings, measured in Kelvin.

[tex]T_{H}[/tex] - Temperature of the house, measured in Kelvin.

Given that [tex]T_{H} = 294\,K[/tex] and [tex]T_{L} = 252\,K[/tex]. The Coefficient of Performance is:

[tex]COP_{HP} = \frac{294\,K}{294\,K-252\,K}[/tex]

[tex]COP_{HP} = 7[/tex]

Besides, the performance of real heat pumps are determined by the following form of the Coefficient of Performance, that is, the ratio of heat received by the house to input work.

[tex]COP_{HP} = \frac{Q_{H}}{W_{in}}[/tex]

The input work to deliver a determined amount of heat to the house:

[tex]W_{in} = \frac{Q_{H}}{COP_{HP}}[/tex]

If [tex]Q_{H} = 3000\,J[/tex] and [tex]COP_{HP} = 7[/tex], the input work that is needed is:

[tex]W_{in} = \frac{3000\,J}{7}[/tex]

[tex]W_{in} = 428.571\,J[/tex]

when their center-to-center separation is 50 cm. The spheres are then connected by a thin conducting wire. When the wire is removed, the spheres repel each other with an electrostatic force of 0.2525 N. What were the initial charges on the spheres

Answers

Answer:

q1 = 7.6uC , -2.3 uC

q2 = 7.6uC , -2.3 uC

( q1 , q2 ) = ( 7.6 uC , -2.3 uC ) OR ( -2.3 uC , 7.6 uC )

Explanation:

Solution:-

- We have two stationary identical conducting spheres with initial charges ( q1 and q2 ). Such that the force of attraction between them was F = 0.6286 N.

- To model the electrostatic force ( F ) between two stationary charged objects we can apply the Coulomb's Law, which states:

                              [tex]F = k\frac{|q_1|.|q_2|}{r^2}[/tex]

Where,

                     k: The coulomb's constant = 8.99*10^9

- Coulomb's law assume the objects as point charges with separation or ( r ) from center to center.  

- We can apply the assumption and approximate the spheres as point charges under the basis that charge is uniformly distributed over and inside the sphere.

- Therefore, the force of attraction between the spheres would be:

                             [tex]\frac{F}{k}*r^2 =| q_1|.|q_2| \\\\\frac{0.6286}{8.99*10^9}*(0.5)^2 = | q_1|.|q_2| \\\\ | q_1|.|q_2| = 1.74805 * 10^-^1^1[/tex] ... Eq 1

- Once, we connect the two spheres with a conducting wire the charges redistribute themselves until the charges on both sphere are equal ( q' ). This is the point when the re-distribution is complete ( current stops in the wire).

- We will apply the principle of conservation of charges. As charge is neither destroyed nor created. Therefore,

                             [tex]q' + q' = q_1 + q_2\\\\q' = \frac{q_1 + q_2}{2}[/tex]

- Once the conducting wire is connected. The spheres at the same distance of ( r = 0.5m) repel one another. We will again apply the Coulombs Law as follows for the force of repulsion (F = 0.2525 N ) as follows:

                          [tex]\frac{F}{k}*r^2 = (\frac{q_1 + q_2}{2})^2\\\\\sqrt{\frac{0.2525}{8.99*10^9}*0.5^2} = \frac{q_1 + q_2}{2}\\\\2.64985*10^-^6 = \frac{q_1 + q_2}{2}\\\\q_1 + q_2 = 5.29969*10^-^6[/tex]  .. Eq2

- We have two equations with two unknowns. We can solve them simultaneously to solve for initial charges ( q1 and q2 ) as follows:

                         [tex]-\frac{1.74805*10^-^1^1}{q_2} + q_2 = 5.29969*10^-^6 \\\\q^2_2 - (5.29969*10^-^6)q_2 - 1.74805*10^-^1^1 = 0\\\\q_2 = 0.0000075998, -0.000002300123[/tex]

                         

                          [tex]q_1 = -\frac{1.74805*10^-^1^1}{-0.0000075998} = -2.3001uC\\\\q_1 = \frac{1.74805*10^-^1^1}{0.000002300123} = 7.59982uC\\[/tex]

 

A car traveling with velocity v is decelerated by a constant acceleration of magnitude a. It takes a time t to come to rest. If its initial velocity were doubled, the time required to stop would

Answers

Answer:

If the initial speed is doubled the time is also doubled

Explanation:

You have that a car with velocity v is decelerated by a constant acceleration a in a time t.

You use the following equation to establish the previous situation:

[tex]v'=v-at[/tex]     (1)

v': final speed of the car  = 0m/s

v: initial speed of the car

From the equation (1) you solve for t and obtain:

[tex]t=\frac{v-v'}{a}=\frac{v}{a}[/tex]     (2)

To find the new time that car takesto stop with the new initial velocity you use again the equation (1), as follow:

[tex]v'=v_1-at'[/tex]     (3)

v' = 0m/s

v1: new initial speed = 2v

t': new time

You solve the equation (3) for t':

[tex]0=2v-at'\\\\t'=\frac{2v}{a}=2t[/tex]

If the initial speed is doubled the time is also doubled

A 4.00 kg ball is moving at 4.00 m/s to the EAST and a 6.00 kg ball is moving at 3.00 m/s to the NORTH. The total momentum of the system is:___________.A. 14.2 kg m/s at an angle of 48.4 degrees SOUTH of EAST.B. 48.2 kg m/s at an angle of 24.2 degrees SOUTH of EAST.C. 48.2 kg m/s at an angle of 48.4 degrees NORTH of EAST.D. 24.1 kg m/s at an angle of 24.2 degrees SOUTH of EAST.
E. 24.1 kg m/s at an angles of 48.4 degrees NORTH of EAST.

Answers

Answer:

The total momentum is 24.1 kg m/s at an angle of 48.4 degrees NORTH of EAST

Explanation:

Momentum = mass*velocity of a body

For a 4.00 kg ball is moving at 4.00 m/s to the EAST, its momentum = 4*4 = 16kgm/s

For a 6.00 kg ball is moving at 3.00 m/s to the NORTH;

its momentum = 6*3 = 18kgm/s

Total momentum = The resultant of both momentum

Total momentum = √16²+18²

Total momentum = √580

total momentum = 24.1kgm/s

For the direction:

[tex]\theta = tan^{-1} \frac{y}{x}\\\theta = tan^{-1} \frac{18}{16}\\ \theta = tan^{-1} 1.125\\\theta = 48.4^{0}[/tex]

The total momentum is 24.1 kg m/s at an angle of 48.4 degrees NORTH of EAST

One uniform ladder of mass 30 kg and 10 m long rests against a frictionless vertical wall and makes an angle of 60o with the floor. A man weighing 700 N could climb up to 7.0 m before slipping. What is the coefficient of static friction between the floor and the ladder

Answers

Answer:

   μ = 0.37

Explanation:

For this exercise we must use the translational and rotational equilibrium equations.

We set our reference system at the highest point of the ladder where it touches the vertical wall. We assume that counterclockwise rotation is positive

let's write the rotational equilibrium

           W₁  x/2 + W₂ x₂ - fr y = 0

where W₁ is the weight of the mass ladder m₁ = 30kg, W₂ is the weight of the man 700 N, let's use trigonometry to find the distances

             cos 60 = x / L

where L is the length of the ladder

              x = L cos 60

            sin 60 = y / L

           y = L sin60

the horizontal distance of man is

            cos 60 = x2 / 7.0

            x2 = 7 cos 60

we substitute

         m₁ g L cos 60/2 + W₂ 7 cos 60 - fr L sin60 = 0

         fr = (m1 g L cos 60/2 + W2 7 cos 60) / L sin 60

let's calculate

         fr = (30 9.8 10 cos 60 2 + 700 7 cos 60) / (10 sin 60)

         fr = (735 + 2450) / 8.66

         fr = 367.78 N

the friction force has the expression

         fr = μ N

write the translational equilibrium equation

         N - W₁ -W₂ = 0

         N = m₁ g + W₂

         N = 30 9.8 + 700

         N = 994 N

we clear the friction force from the eucacion

        μ = fr / N

        μ = 367.78 / 994

        μ = 0.37

If you slide down a rope, it's possible to create enough thermal energy to burn your hands or your legs where they grip the rope. Suppose a 30 kg child slides down a rope at a playground, descending 2.5 m at a constant speed.
How much thermal energy is created as she slides down the rope?

Answers

Answer:

    Q = 735 J

Explanation:

In this exercise we must assume that all the mechanical energy of the system transforms into cemite energy.

Initial energy

        Em₀ = U = m g h

final energy

        [tex]Em_{f}[/tex] = Q

        Em₀ = Em_{f}

        m g h = Q

let's calculate

        Q = 30  9.8  2.5

        Q = 735 J

An electron has a kinetic energy of 10.1 eV. The electron is incident upon a rectangular barrier of height 18.2 eV and width 1.00 nm. If the electron absorbed all the energy of a photon of green light (with wavelength 546 nm) at the instant it reached the barrier, by what factor would the electron's probability of tunneling through the barrier increase

Answers

Answer:

factor that the electron's probability of tunneling through the barrier increase 2.02029

Explanation:

given data

kinetic energy = 10.1 eV

height = 18.2 eV

width = 1.00 nm

wavelength = 546 nm

solution

we know that probability of tunneling is express as

probability of tunneling = [tex]e^{-2CL}[/tex]   .................1

here C is = [tex]\frac{\sqrt{2m(U-E}}{h}[/tex]

here h is Planck's constant

c = [tex]\frac{\sqrt{2\times 9.11 \times 10^{-31} (18.2-10.1) \times (1.60 \times 10^{-19}}}{6.626\times 10^{-34}}[/tex]  

c = 2319130863.06

and proton have hf = [tex]\frac{hc}{\lambda } = {1240}{546}[/tex] = 2.27 ev

so electron K.E = 10.1 + 2.27

KE = 12.37 eV

so decay coefficient inside barrier is

c' = [tex]\frac{\sqrt{2m(U-E}}{h}[/tex]

c' = [tex]\frac{\sqrt{2\times 9.11 \times 10^{-31} (18.2-12.37) \times (1.60 \times 10^{-19}}}{6.626\times 10^{-34}}[/tex]  

c' = 1967510340

so

the factor of incerease in transmisson probability is

probability = [tex]e^{2L(c-c')}[/tex]

probability = [tex]e^{2\times 1\times 10^{-9} \times (351620523.06)}[/tex]

factor probability = 2.02029

A student is investigating the relationship between sunlight and plant growth for her science expieriment. Determine which of the following tables is set up correctly

Answers

The question is incomplete as it does not have the options which have been provided in the attachment.

Answer:

Option-D

Explanation:

In the given question, the effect of the sunlight on the growth of the plant has been studied. The values provided in the Option-D can be considered correct as the values are measured in the decimal value up to two decimal value.

The values are measured after the first week, second week, and the initial readings. The difference in the values provided in Option-D does not show much difference as well as are up to two decimal places.

Thus, Option-D is the correct answer.  

A 3.10-mm-long, 430 kgkg steel beam extends horizontally from the point where it has been bolted to the framework of a new building under construction. A 69.0 kgkg construction worker stands at the far end of the beam.What is the magnitude of the gravitational torque about the point where the beam is bolted into place?

Answers

Answer:

Explanation:

Given that,

The length of the beam L = 3.10m

The mass of the steam beam [tex]m_1[/tex] = 430kg

The mass of worker [tex]m_2[/tex] = 69.0kg

The distance from  the fixed point to centre of gravity of beam = [tex]\frac{L}{2}[/tex]

and our length of beam is 3.10m

so the distance from  the fixed point to centre of gravity of beam is

[tex]\frac{3.10}{2}=1.55m[/tex]

Then the net torque is

[tex]=-W_sL'-W_wL\\\\=-(W_sL'+W_wL)[/tex]

[tex]W_s[/tex] is the weight of steel rod

[tex]=430\times9.8=4214N[/tex]

[tex]W_w[/tex] is the weight of the worker

[tex]=69\times9.8\\\\=676.2N[/tex]

Torque can now be calculated

[tex]-(4214\times1.55+676.2\times3.9)Nm\\\\-(6531.7+2637.18)Nm\\\\-(9168.88)Nm[/tex]

≅ 9169Nm

Therefore,the magnitude of the torque is 9169Nm

A transformer supplies 60 watts of power to a device that is rated at 20 volts (rms). The primary coil is connected to a 120-volt (rms) ac source. What is the current I1 in the primary coil?

Answers

Answer:

I = 0.5A

Explanation:

Hello,

Assuming the transformer is an ideal transformer, we can calculate the value of the current using the formula.

Data;

Power = 60 watt

Primary voltage = 120 volts (rms)

Power (P) = current (I) × voltage (V)

P = IV

This formula is the relationship between power, current and voltage.

Current = power / voltage

I = P / V

I = 60 / 120

I = 0.5A

The current in the primary coil is 0.5A

The uniform dresser has a weight of 91 lb and rests on a tile floor for which μs = 0.25. If the man pushes on it in the horizontal direction θ = 0∘, determine the smallest magnitude of force F needed to move the dresser. Also, if the man has a weight of 151 lb , determine the smallest coefficient of static friction between his shoes and the floor so that he does not slip.

Answers

Answer:

F = 22.75 lb

μ₁ = 0.15

Explanation:

The smallest force required to move the dresser must be equal to the force of friction between the man and the dresser. Therefore,

F = μR

F = μW

where,

F = Smallest force needed to move dresser = ?

μ = coefficient of static friction = 0.25

W = Weight of dresser = 91 lb

Therefore,

F = (0.25)(91 lb)

F = 22.75 lb

Now, for the coefficient of static friction between shoes and floor, we use the same formula but with the mas of the man:

F = μ₁W₁

where,

μ₁ = coefficient of static friction between shoes and floor

W₁ = Weight of man = 151 lb

Therefore,

22.75 lb = μ₁ (151 lb)

μ₁ = 22.75 lb/151 lb

μ₁ = 0.15

what are the strengths and weaknesses of the four methods of waste management?

Answers

Answer & Explanation: Waste management are all activities and actions required to manage waste from its inception to its final disposal. There are several methods of managing waste with its strengths and weaknesses. The strengths include;

* It creates employment

* It keeps the environment clean

* The practice is highly lucrative

* It saves the earth and conserves energy

The weaknesses of the methods of waste management includes;

* The sites are often dangerous

* The process is mostly

* There is a need for global buy-in

* The resultant product had a short life

What is the length of the x-component of the vector shown below? A. 65.8 B. 90.6 C. 112 D. 33.2

Answers

Answer:

The correct answer is - option b. 90.6

Explanation:

The scalar x-component of a vector can be expressed as the product of its magnitude with the cosine of its direction angle

If you shine a light straight down onto that vector, then the length of its shadow on the x-axis is  -

x-component = 112· cosine(36°)

x-component = 112 · (0.8090)

x-component = 90.60

Thus, The correct answer is - option b. 90.6

A child of mass 46.2 kg sits on the edge of a merry-go-round with radius 1.9 m and moment of inertia 130.09 kg m2 . The merrygo-round rotates with an angular velocity of 2.4 rad/s. The child then walks towards the center of the merry-go-round and stops at a distance 0.779 m from the center. Now what is the angular velocity of the merry-go-round

Answers

Answer:

The angular velocity is [tex]w_f = 4.503 \ rad/s[/tex]

Explanation:

From the question we are told that

   The mass of the child is  [tex]m_c = 46.2 \ kg[/tex]

    The radius of the merry go round is  [tex]r = 1.9 \ m[/tex]

     The moment of inertia of the merry go round is [tex]I_m = 130.09 \ kg \cdot m^2[/tex]

      The angular velocity of the merry-go round is  [tex]w = 2.4 \ rad/s[/tex]

       The position of the child from the center of the merry-go-round is  [tex]x = 0.779 \ m[/tex]

According to the law of angular momentum conservation

    The initial angular momentum  =  final  angular momentum

So  

       [tex]L_i = L_f[/tex]

=>     [tex]I_i w_i = I_fw_f[/tex]

Now   [tex]I_i[/tex] is the initial moment of inertia of the system which is mathematically represented as

          [tex]I_i = I_m + I_{b_1}[/tex]

Where  [tex]I_{b_i}[/tex] is the initial moment of inertia of the boy which is mathematically evaluated as

      [tex]I_{b_i} = m_c * r[/tex]

substituting values

      [tex]I_{b_i} = 46.2 * 1.9^2[/tex]

      [tex]I_{b_i} = 166.8 \ kg \cdot m^2[/tex]

Thus

   [tex]I_i =130.09 + 166.8[/tex]        

   [tex]I_i = 296.9 \ kg \cdot m^2[/tex]      

Thus  

     [tex]I_i * w_i =L_i= 296.9 * 2.4[/tex]

       [tex]L_i = 712.5 \ kg \cdot m^2/s[/tex]

Now  

     [tex]I_f = I_m + I_{b_f }[/tex]

Where  [tex]I_{b_f}[/tex] is the final  moment of inertia of the boy which is mathematically evaluated as

         [tex]I_{b_f} = m_c * x[/tex]

substituting values

         [tex]I_{b_f} = 46.2 * 0.779^2[/tex]

         [tex]I_{b_f} = 28.03 kg \cdot m^2[/tex]

Thus

      [tex]I_f = 130.09 + 28.03[/tex]

      [tex]I_f = 158.12 \ kg \ m^2[/tex]

Thus

     [tex]L_f = 158.12 * w_f[/tex]

Hence

      [tex]712.5 = 158.12 * w_f[/tex]

       [tex]w_f = 4.503 \ rad/s[/tex]

A pilot in a small plane encounters shifting winds. He flies 26.0 km northeast, then 45.0 km due north. From this point, he flies an additional distance in an unknown direction, only to find himself at a small airstrip that his map shows to be 70.0 km directly north of his starting point.

a. What was the length of the third leg of his trip?b. What was the direction of the third leg of his trip?

Answers

Answer:

a) v₃ = 19.54 km, b)  70.2º north-west

Explanation:

This is a vector exercise, the best way to solve it is finding the components of each vector and doing the addition

vector 1 moves 26 km northeast

let's use trigonometry to find its components

         cos 45 = x₁ / V₁

         sin 45 = y₁ / V₁

         x₁ = v₁ cos 45

         y₁ = v₁ sin 45

         x₁ = 26 cos 45

         y₁ = 26 sin 45

         x₁ = 18.38 km

         y₁ = 18.38 km

Vector 2 moves 45 km north

        y₂ = 45 km

Unknown 3 vector

          x3 =?

          y3 =?

Vector Resulting 70 km north of the starting point

           R_y = 70 km

we make the sum on each axis

X axis

      Rₓ = x₁ + x₃

       x₃ = Rₓ -x₁

       x₃ = 0 - 18.38

       x₃ = -18.38 km

Y Axis

      R_y = y₁ + y₂ + y₃

       y₃ = R_y - y₁ -y₂

       y₃ = 70 -18.38 - 45

       y₃ = 6.62 km

the vector of the third leg of the journey is

         v₃ = (-18.38 i ^ +6.62 j^ ) km

let's use the Pythagorean theorem to find the length

         v₃ = √ (18.38² + 6.62²)

         v₃ = 19.54 km

to find the angle let's use trigonometry

           tan θ = y₃ / x₃

           θ = tan⁻¹ (y₃ / x₃)

           θ = tan⁻¹ (6.62 / (- 18.38))

           θ = -19.8º

with respect to the x axis, if we measure this angle from the positive side of the x axis it is

          θ’= 180 -19.8

          θ’= 160.19º

I mean the address is

          θ’’ = 90-19.8

          θ = 70.2º

70.2º north-west

Ocean waves of wavelength 30m are moving directly toward a concrete barrier wall at 4.8m/s . The waves reflect from the wall, and the incoming and reflected waves overlap to make a lovely standing wave with an antinode at the wall. (Such waves are a common occurrence in certain places.) A kayaker is bobbing up and down with the water at the first antinode out from the wall.A) How far from the wall is she?B) What is the period of her up and down motion?

Answers

Answer:

a)15m

b)6.25s

Explanation:

A) She is ½ a wavelength away, or

d = λ/2 = 30/2 = 15 m

B)Speed of the wave:

V=fλ = λ/T

so,

T=λ/V= 30/4.8

T=6.25s

a) The distance from the wall is 15m

b) The period of her up and down motion is 6.25s

Calculation of the distance and period is:

a.

Since Ocean waves of wavelength 30m are moving directly toward a concrete barrier wall at 4.8m/s .

Also,

She is ½ a wavelength away, or

d = λ/2

= 30/2

= 15 m

b)

Here the speed of wave should be used

T=λ/V

= 30/4.8

T=6.25s

Learn more about wavelength here: https://brainly.com/question/13524696

A ball is thrown straight upward and falls back to Earth. Suppose a y-coordinate axis points upward, and the release point is the origin. Instantaneously at the top its flight, which of these quantities are zero

a. Displacment
b. Speed
c. Velocity
d. Accerlation

Answers

Explanation:

A ball is thrown straight upward and falls back to Earth. It means that it is coming to the initial position. Displacement is given by the difference of final position and initial position. The displacement of the ball will be 0. As a result velocity will be 0.

Acceleration is equal to the rate of change of velocity. So, its acceleration is also equal to 0.

Hence, displacement, velocity and acceleration are zero.

At a depth of 1030 m in Lake Baikal (a fresh water lake in Siberia), the pressure has increased by 100 atmospheres (to about 107 N/m2). By what volume has 1.0 m3 of water from the surface of the lake been compressed if it is forced down to this depth? The bulk modulus of water is 2.3 × 109 Pa.

Answers

Answer:

A volume of a cubic meter of water from the surface of the lake has been compressed in 0.004 cubic meters.

Explanation:

The bulk modulus is represented by the following differential equation:

[tex]K = - V\cdot \frac{dP}{dV}[/tex]

Where:

[tex]K[/tex] - Bulk module, measured in pascals.

[tex]V[/tex] - Sample volume, measured in cubic meters.

[tex]P[/tex] - Local pressure, measured in pascals.

Now, let suppose that bulk remains constant, so that differential equation can be reduced into a first-order linear non-homogeneous differential equation with separable variables:

[tex]-\frac{K \,dV}{V} = dP[/tex]

This resultant expression is solved by definite integration and algebraic handling:

[tex]-K\int\limits^{V_{f}}_{V_{o}} {\frac{dV}{V} } = \int\limits^{P_{f}}_{P_{o}}\, dP[/tex]

[tex]-K\cdot \ln \left |\frac{V_{f}}{V_{o}} \right| = P_{f} - P_{o}[/tex]

[tex]\ln \left| \frac{V_{f}}{V_{o}} \right| = \frac{P_{o}-P_{f}}{K}[/tex]

[tex]\frac{V_{f}}{V_{o}} = e^{\frac{P_{o}-P_{f}}{K} }[/tex]

The final volume is predicted by:

[tex]V_{f} = V_{o}\cdot e^{\frac{P_{o}-P_{f}}{K} }[/tex]

If [tex]V_{o} = 1\,m^{3}[/tex], [tex]P_{o} - P_{f} = -10132500\,Pa[/tex] and [tex]K = 2.3\times 10^{9}\,Pa[/tex], then:

[tex]V_{f} = (1\,m^{3}) \cdot e^{\frac{-10.1325\times 10^{6}\,Pa}{2.3 \times 10^{9}\,Pa} }[/tex]

[tex]V_{f} \approx 0.996\,m^{3}[/tex]

Change in volume due to increasure on pressure is:

[tex]\Delta V = V_{o} - V_{f}[/tex]

[tex]\Delta V = 1\,m^{3} - 0.996\,m^{3}[/tex]

[tex]\Delta V = 0.004\,m^{3}[/tex]

A volume of a cubic meter of water from the surface of the lake has been compressed in 0.004 cubic meters.

Consider the double slit experiment for light. Complete each statement as it would apply to Young's experiment (for each statement select "Increases", "Decreases", or "Cannot be Predicted"). If a variable is not mentioned, consider it to remain unchanged.Required:a. If the distance to the screen decreases, fringe separation:_______?b. If the frequency of the light used increases, fringe separation:_______?c. If the wavelength of the light used decreases, fringe separation:_______?d. For the fringe separation to remain unchanged, wavelength__________ while the distance to the screen decreases.e. If slit separation decreases, fringe separation :_______?f. If slit separation decreases and the distance to the screen decreases, fringe separation :_______?g. If the distance to the screen triples and slit separation doubles, fringe separation :_______?

Answers

Answer:

a)  DECREASE , b) Decreases , c)     DECREASE , d)  the wavelength must increase , e) increasses,

Explanation:

Young's double-slit experience is explained for constructive interference by the expression

          d sin θ = m λ

as in this case, the measured angles are very small,

          tan θ = y / L

         tan θ = sin θ / cos θ = sin θ

          sin θ= y L

        d y / L = m Lam

 we can now examine the statements given

a) if the distance to the screen decreases

        y = m λ / d L

if L decreases and decreases.

The answer is DECREASE

b) if the frequency increases

    the wave speed is

         c = λ f

         λ = c / f

we substitute

          y = (m / d l) c / f

in this case if if the frequency is increased the separation decreases

Decreases

c) If the wavelength decreases

separation decreases

   DECREASE

d) if it is desired that the separation does not change while the separation to the Panamanian decreases the wavelength must increase

      y = (m / d) lam / L

e) if the parcionero between the slits (d) decreases the separation increases

   INCREASES

f) t he gap separation decreases and the distance to the screen decreases so well.

Pattern separation remains constant

Which one of the following is closely related to the law of conservation of
energy, which states that energy can be transformed in different ways but can
never be created or destroyed?
O A. Charles's Law
B. Boyle's Law
C. Second law of thermodynamics
O D. First law of thermodynamics

Answers

Answer:

D

Explanation:

Answer:

It is D

Explanation: No cap

Suppose I have an infinite plane of charge surrounded by air. What is the maximum charge density that can be placed on the surface of the plane before dielectric breakdown of the surrounding air occurs

Answers

Answer:

[tex]53.1\mu C/m^2[/tex]

Explanation:

We are given that

Electric field,E=[tex]3\times 10^6V/m[/tex]

We have to find the value of maximum charge density that can be placed on the surface of the plane before dielectric breakdown of the surrounding air occurs.

We know that

[tex]E=\frac{\sigma}{2\epsilon_0}[/tex]

Where [tex]\epsilon_0=8.85\times 10^{-12}[/tex]

Using the formula

[tex]3\times 10^6=\frac{\sigma}{2\times 8.85\times 10^{-12}}[/tex]

[tex]\sigma=3\times 10^6\times 2\times 8.85\times 10^{-12}[/tex]

[tex]\sigma=5.31\times 10^{-5}C/m^2[/tex]

[tex]\sigma=53.1\times 10^{-6}C/m^2=53.1\mu C/m^2[/tex]

[tex]1\mu C=10^{-6} C[/tex]

when a piece of paper is held with one face perpendicular to a uniform electric field the flux through it is 25N.m^2/c. when the paper is turned 25 degree with respect to the field the flux through it is:

Answers

Answer:

22.66Nm²/C

Explanation:

Flux through an electric field is expressed as ϕ = EAcosθ

When a piece of paper is held with one face perpendicular to a uniform electric field the flux through it is 25N.m^2/c. If the paper is turned 25 degree with respect to the field the flux through it can be calculated using the formula.

From the formula above where:

EA = 25N.m^2/C

θ = 25°

ϕ = 25cos 25°

ϕ = 22.66Nm²/C

A rock falls from a vertical cliff that is 4.0 m tall and experiences no significant air resistance as it falls. At what speed will its gravitational potential energy (relative to the base of the cliff) be equal to its kinetic energy

Answers

Answer:

About 6.26m/s

Explanation:

[tex]mgh=\dfrac{1}{2}mv^2[/tex]

Divide both sides by mass:

[tex]gh=\dfrac{1}{2}v^2[/tex]

Since the point of equality of kinetic and potential energy will be halfway down the cliff, height will be 4/2=2 meters.

[tex](9.8)(2)=\dfrac{1}{2}v^2 \\\\v^2=39.4 \\\\v\approx 6.26m/s[/tex]

Hope this helps!

The gravitational potential energy (relative to the base of the cliff) be equal to its kinetic energy for speed of rock of 8.85 m/s.

Given data:

The height of vertical cliff is, h = 4.0 m.

Since, we are asked for speed by giving the condition for gravitational potential energy (relative to the base of the cliff) be equal to its kinetic energy. Then we can apply the conservation of energy as,

Kinetic energy = Gravitational potential energy

[tex]\dfrac{1}{2}mv^{2}=mgh[/tex]

Here,

m is the mass of rock.

v is the speed of rock.

g is the gravitational acceleration.

Solving as,

[tex]v=\sqrt{2gh}\\\\v=\sqrt{2 \times 9.8 \times 4.0}\\\\v =8.85 \;\rm m/s[/tex]

Thus, we can conclude that the gravitational potential energy (relative to the base of the cliff) be equal to its kinetic energy for speed of rock of 8.85 m/s.

Learn more about the conservation of energy here:

https://brainly.com/question/15707891

Other Questions
I really need help, please help me. Please answer!! ASAP PLEASE and THANK YOUUU Pls help summer homework :D C: Question 3(Multiple Choice Worth 3 points)(03.04 MC)When signing the statement "We will go to the movies today," you would sign "will" Athena Company's salaried employees earn two weeks of vacation per year. It pays $858,000 in total employee salaries for 52 weeks but its employees work only 50. Record Athena Company's weekly journal entry to record the vacation expense: A double slit illuminated with light of wavelength 588 nm forms a diffraction pattern on a screen 11.0 cm away. The slit separation is 2464 nm. What is the distance between the third and fourth bright fringes away from the central fringe If a Starbucks tall latte cost $3.20 in the United States and 3 euros in the Euro area, then purchasing-power parity implies the nominal exchange rate is how many euros per dollar?a. .938 If the exchange rate is less than this, it costs more dollars to buy a tall latte in the U.S. than in the Euro area.b. .938 If the exchange rate is less than this, it costs fewer dollars to buy a tall latte in the U.S. then in the Euro area.c. 1.067 If the exchange rate is less than this, it costs more dollars to buy a tall latte in the U.S. than in the Euro area.d. 1.067 If the exchange rate is less than this, it costs fewer dollars to buy a tall latte in the U.S. than in the Euro area. Simplify the polynomial, then evaluate for x=2. x=3x^2+2x-3-4x^2+6 Mr. Scott uses an 8 GB flash drive to store his files for his classroom. His principal buys him a new 64 GB flash drive. What is the percent of increase in memory? Gall Manufacturing sells a product for $50 per unit. The fixed costs are $840,000, and the variable costs are 60 percent of the selling price. As a result of new automated equipment, it is anticipated that fixed costs will increase by $200,000 and variable costs will be 50 percent of the selling price. The new break-even point in units is It is known that when a certain liquid freezes into ice, its volume increases by 8%. Which of these expressions is equal to the volume of this liquid that freezes to make 1,750 cubic inches of ice? A ball is thrown into the air with an upward velocity of 36 ft/s. Its height h in feet after t seconds is given by the function h = 16t^2 + 36t + 10. a. In how many seconds does the ball reach its maximum height? Round to the nearest hundredth if necessary. b. What is the balls maximum height? (99^2-98^2)/197+(98^2-97^2)/195+(97^2-96^2)/193+ ... +(2^2-1^2)/3plz help YEAR 9 HISTORY PLEASE HELP ME Battle of Britain - Why was a deal between Nazi Germany and Britain out of the question? What is the purpose of an appeal? a) to confirm that the defendant is guilty of the crime b) to ensure that no legal errors were committed c) to call for a new trial if a person is innocent d) to review new evidence from witnesses What is the perimeter of ABCD? Last year, Rotterdam, Inc. had sales revenue of $980,000. Costs other than depreciation and interest expense were 20 percent of sales. Depreciation expense was $50,000, interest expense was $95,000, and dividends paid were $23,000. The company also received dividends of $8,000 from a company in which it had 30% ownership stake. Which of the following statements is most CORRECT?a. The firm's taxable income was $637,400. b. The firm's after-tax income was $405,564. c. The firm's marginal tax rate was 39 percent. d. The firm's tax for the year was $113,900. e. None of the above Tetious Dimensions is introducing a new product and has an expected change in net operating income of $790,000. Tetious Dimensions has a 30 percent marginal tax rate. This project will also produce $190,000 of depreciation per year. In addition, this project will cause the following changes in year 1: Without the Project With the Project Accounts receivable $5,000 $84,000 Inventory 98,000 184,000 Accounts payable 75,000 117,000 What is the project's free cash flow in year 1? The free cash flow of the project in year 1 is $ 701000. (Round to the nearest dollar.) Which expression is equivalent to 24 27? The price of a bracelet is $1.29. If the tax rate is 5%, find the total cost ofthe bracelet