Answer:
a = 1.15 10³ g
Explanation:
For this exercise we will use the relations of the centripetal acceleration
a = v² / r
where is the linear speed of the rotor and r is the radius of the rotor
let's use the relationships between the angular and linear variables
v = w r
let's replace
a = w² r
let's reduce the angular velocity to the SI system
w = 550 rev / min (2pi rad / 1 rev) (1 min / 60 s)
w = 57.6 rad / s
let's calculate
a = 57.6² 3.4
a = 1.13 10⁴ m / s²
To calculate this value in relation to g, let's find the related
a / g = 1.13 10⁴ / 9.8
a = 1.15 10³ g
A wave with a frequency of 1200 Hz propagates along a wire that is under a tension of 800 N. Its wavelength is 39.1 cm. What will be the wavelength if the tension is decreased to 600 N and the frequency is kept constant
Answer:
The wavelength will be 33.9 cm
Explanation:
Given;
frequency of the wave, F = 1200 Hz
Tension on the wire, T = 800 N
wavelength, λ = 39.1 cm
[tex]F = \frac{ \sqrt{\frac{T}{\mu} }}{\lambda}[/tex]
Where;
F is the frequency of the wave
T is tension on the string
μ is mass per unit length of the string
λ is wavelength
[tex]\sqrt{\frac{T}{\mu} } = F \lambda\\\\\frac{T}{\mu} = F^2\lambda^2\\\\\mu = \frac{T}{F^2\lambda^2} \\\\\frac{T_1}{F^2\lambda _1^2} = \frac{T_2}{F^2\lambda _2^2} \\\\\frac{T_1}{\lambda _1^2} = \frac{T_2}{\lambda _2^2}\\\\T_1 \lambda _2^2 = T_2\lambda _1^2\\\\[/tex]
when the tension is decreased to 600 N, that is T₂ = 600 N
[tex]T_1 \lambda _2^2 = T_2\lambda _1^2\\\\\lambda _2^2 = \frac{T_2\lambda _1^2}{T_1} \\\\\lambda _2 = \sqrt{\frac{T_2\lambda _1^2}{T_1}} \\\\\lambda _2 = \sqrt{\frac{600* 0.391^2}{800}}\\\\\lambda _2 = \sqrt{0.11466} \\\\\lambda _2 =0.339 \ m\\\\\lambda _2 =33.9 \ cm[/tex]
Therefore, the wavelength will be 33.9 cm
When separated by distance d, identically charged point-like objects A and B exert a force of magnitude F on each other. If you reduce the charge of A to one-fourth its original value, and the charge of B to one-fourth, and reduce the distance between the objects by half, what will be the new force that they exert on each other in terms of force F
Answer:
F ’= F 0.25
Explanation:
This problem refers to the electric force, which is described by Coulomb's law
F = k q₁ q₂ / r²
where k is the Coulomb constant, q the charges and r the separation between them.
The initial conditions are
F = k q_A q_B / d²
they indicate that the loads are reduced to ¼ q and the distance is reduced to ½ d
F ’= k (q / 4 q / 4) / (0.5 d)²
F ’= k q / 16 / 0.25 d²
F ’= k q² / d² 0.0625 / 0.25
F ’= F 0.25
Two identically charged point-like objects A and B exert a force of magnitude F on each other when separated by distance d. If the charges are reduced to one-fourth of their original values and the distance is halved, the new force will be one-fourth of the original force.
Two identically charged point-like objects A and B exert a force of magnitude F on each other when separated by distance d. This can be explained through Coulomb's law.
What is Coulomb's law?Coulomb's law is a law stating that like charges repel and opposite charges attract, with a force proportional to the product of the charges and inversely proportional to the square of the distance between them.
[tex]F = k \frac{q_Aq_B}{d^{2} } = k \frac{q^{2} }{d^{2} } [/tex]
where,
[tex]q_A [/tex] and [tex]q_B[/tex] are the charges of A and B (and equal to q).k is the Coulomb's constant.If you reduce the charge of A to one-fourth its original value, and the charge of B to one-fourth, and reduce the distance between the objects by half, the new force will be:
[tex]F_2 = k \frac{(0.25q_A)(0.25q_B)}{(0.5d)^{2} } = 0.25k\frac{q^{2} }{d^{2} } = 0.25 F[/tex]
Two identically charged point-like objects A and B exert a force of magnitude F on each other when separated by distance d. If the charges are reduced to one-fourth of their original values and the distance is halved, the new force will be one-fourth of the original force.
Learn more about Coulomb's law here: https://brainly.com/question/506926
The bulldog and skateboard have a combined mass of 20 kg. In case B (the middle of the three pictures of the bulldog and the well), the bulldog and skateboard have a KE of 380 J at the bottom of the well. How deep is the well in meters?
Answer:
h = 1.94 m
Explanation:
When the bull dog and skate board reach the bottom of the well, all of its potential energy is converted to the kinetic energy:
Kinetic Energy Gained by Bull Dog and Skate Board = Potential Energy Lost by Bull Dog and Skate Board
K.E = P.E
K.E = mgh
h = K.E/mg
where,
h = depth of well = ?
K.E = Kinetic Energy at bottom = 380 J
m = mass of bull dog and skate board = 20 kg
g = 9.8 m/s²
Therefore,
h = 380 J/(20 kg)(9.8 m/s²)
h = 1.94 m
What is the one single most important reason that human impact on the planet has been so great?
Answer:
Increasing population
Explanation:
As we can see that the death rate is decreasing while at the same time the birth rate is increasing due to which it increased the population that directly impact the planet so great
Day by day the population of the villages, cities, states, the country is increasing which would create a direct human impact on the planet
Therefore the increasing population is the one and single most important reason
A 5.0-Ω resistor and a 9.0-Ω resistor are connected in parallel. A 4.0-Ω resistor is then connected in series with this parallel combination. An ideal 6.0-V battery is then connected across the series-parallel combination of the three resistors. What is the current through (a) the 4.0-Ω resistor? (b) the 5.0-Ω resistor? (c) the 9.0-Ω resistor?
Answer:
Explanation:
The current through the resistor is 0.83 A
.
Part b
The current through resistor is 0.53 A
.
Part c
The current through resistor is 0.30 A
An empty parallel plate capacitor is connected between the terminals of a 9.0-V battery and charged up. The capacitor is then disconnected from the battery, and the spacing between the capacitor plates is doubled. As a result of this change, what is the new voltage between the plates of the capacitor
Answer:
The new voltage between the plates of the capacitor is 18 V
Explanation:
The charge on parallel plate capacitor is calculated as;
q = CV
Where;
V is the battery voltage
C is the capacitance of the capacitor, calculated as;
[tex]C = \frac{\epsilon _0A}{d} \\\\q =CV = (\frac{\epsilon _0A}{d})V = \frac{\epsilon _0A V}{d}[/tex]
[tex]q = \frac{\epsilon _0A V}{d}[/tex]
where;
ε₀ is permittivity of free space
A is the area of the capacitor
d is the space between the parallel plate capacitors
If only the space between the capacitors is doubled and every other parameter is kept constant, the new voltage will be calculated as;
[tex]q = \frac{\epsilon _0A V}{d} \\\\\frac{\epsilon _0A V}{d} = \frac{\epsilon _0A V}{d} \\\\\frac{V_1}{d_1} = \frac{V_2}{d_2} \\\\V_2 = \frac{V_1d_2}{d_1} \\\\(d_2 = 2d_1)\\\\V_2 = \frac{V_1*2d_1}{d_1} \\\\(V_1 = 9V)\\\\V_2 = \frac{9*2d_1}{d_1} \\\\V_2 = 9*2\\\\V_2 = 18 \ V[/tex]
Therefore, the new voltage between the plates of the capacitor is 18 V
Please Help!!!! I WILL GIVE BRAINLIEST!!!!!!!!!!!!!
Upon using Thomas Young’s double-slit experiment to obtain measurements, the following data were obtained. Use these data to determine the wavelength of light being used to create the interference pattern. Do this using three different methods.
The angle to the eighth maximum is 1.12°.
The distance from the slits to the screen is 302.0 cm.
The distance from the central maximum to the fifth minimum is 3.33 cm.
The distance between the slits is 0.000250 m.
The 3 equations I used were 1). d sin θ_m =(m)λ 2). delta x =λL/d and 3.) d(x_n)/L=(n-1/2)λ
but all my answers are different.
DID I DO SOMETHING WRONG!!!!!!!
Given info
d = 0.000250 meters = distance between slits
L = 302 cm = 0.302 meters = distance from slits to screen
[tex]\theta_8 = 1.12^{\circ}[/tex] = angle to 8th max (note how m = 8 since we're comparing this to the form [tex]\theta_m[/tex])
[tex]x_n = x_5 = 3.33 \text{ cm} = 0.0333 \text{ meters}[/tex] (n = 5 as we're dealing with the 5th minimum )
---------------
Method 1
[tex]d\sin(\theta_m) = m\lambda\\\\0.000250\sin(\theta_8) = 8\lambda\\\\8\lambda = 0.000250\sin(1.12^{\circ})\\\\\lambda = \frac{0.000250\sin(1.12^{\circ})}{8}\\\\\lambda \approx 0.000 000 61082633\\\\\lambda \approx 6.1082633 \times 10^{-7} \text{meters}\\\\ \lambda \approx 6.11 \times 10^{-7} \text{ meters}\\\\ \lambda \approx 611 \text{ nm}[/tex]
Make sure your calculator is in degree mode.
-----------------
Method 2
[tex]\Delta x = \frac{\lambda*L*m}{d}\\\\L*\tan(\theta_m) = \frac{\lambda*L*m}{d}\\\\\tan(\theta_m) = \frac{\lambda*m}{d}\\\\\tan(\theta_8) = \frac{\lambda*8}{0.000250}\\\\\tan(1.12^{\circ}) = \frac{\lambda*8}{0.000250}\\\\\lambda = \frac{1}{8}*0.000250*\tan(1.12^{\circ})\\\\\lambda \approx 0.00000061094306 \text{ meters}\\\\\lambda \approx 6.1094306 \times 10^{-7} \text{ meters}\\\\\lambda \approx 611 \text{ nm}\\\\[/tex]
-----------------
Method 3
[tex]\frac{d*x_n}{L} = \left(n-\frac{1}{2}\right)\lambda\\\\\frac{0.000250*3.33}{302.0} = \left(5-\frac{1}{2}\right)\lambda\\\\0.00000275662251 \approx \frac{9}{2}\lambda\\\\\frac{9}{2}\lambda \approx 0.00000275662251\\\\\lambda \approx \frac{2}{9}*0.00000275662251\\\\\lambda \approx 0.00000061258279 \text{ meters}\\\\\lambda \approx 6.1258279 \times 10^{-7} \text{ meters}\\\\\lambda \approx 6.13 \times 10^{-7} \text{ meters}\\\\\lambda \approx 613 \text{ nm}\\\\[/tex]
There is a slight discrepancy (the first two results were 611 nm while this is roughly 613 nm) which could be a result of rounding error, but I'm not entirely sure.
A very long, solid cylinder with radius R has positive charge uniformly distributed throughout it, with charge per unit volume \rhorho.
(a) Derive the expression for the electric field inside the volume at a distance r from the axis of the cylinder in terms of the charge density \rhorho.
(b) What is the electric field at a point outside the volume in terms of the charge per unit length \lambdaλ in the cylinder?
(c) Compare the answers to parts (a) and (b) for r = R.
(d) Graph the electric-field magnitude as a function of r from r = 0 to r = 3R.
Answer:
the answers are provided in the attachments below
Explanation:
Gauss law state that the net electric field coming out of a closed surface is directly proportional to the charge enclosed inside the closed surface
Applying Gauss law to the long solid cylinder
A) E ( electric field ) = p*r / 2 * [tex]e_{0}[/tex]
B) E = 2K λ / r
C) Answers from parts a and b are the same
D) attached below
Applying Gauss's law which states that the net electric field in an enclosed surface is directly ∝ to the charge found in the enclosed surface.
A ) The expression for the electric field inside the volume at a distance r
Gauss law : E. A = [tex]\frac{q}{e_{0} }[/tex] ----- ( 1 )
where : A = surface area = 2πrL , q = p(πr²L)
back to equation ( 1 )
E ( electric field ) = p*r / 2 * [tex]e_{0}[/tex]
B) Electric field at point Outside the volume in terms of charge per unit length λ
Given that: linear charge density = area * volume charge density
λ = πR²P
from Gauss's law : E ( 2πrL) = [tex]\frac{q}{e_{0} }[/tex]
∴ E = [tex]\frac{\pi R^{2}P }{2e_{0}r\pi }[/tex] ----- ( 2 )
where : πR²P = λ
Back to equation ( 2 )
E = λ / 2e₀π*r where : k = 1 / 4πe₀
∴ The electric field ( E ) at point outside the volume in terms of charge per unit Length λ
E = 2K λ / r
C) Comparing answers A and B
Answers to part A and B are similar
Hence we can conclude that Applying Gauss law to the long solid cylinder
E ( electric field ) = p*r / 2 * [tex]e_{0}[/tex], E = 2K λ / r also Answers from parts a and b are the same.
Learn more about Gauss's Law : https://brainly.com/question/15175106
Monochromatic coherent light shines through a pair of slits. If the wavelength of the light is decreased, which of the following statements are true of the resulting interference pattern? (There could be more than one correct choice.)
a. The distance between the maxima decreases.
b. The distance between the minima decreases.
c. The distance between the maxima stays the same.
d. The distance between the minima increases.
e. The distance between the minima stays the same.
Answer:
he correct answers are a, b
Explanation:
In the two-slit interference phenomenon, the expression for interference is
d sin θ= m λ constructive interference
d sin θ = (m + ½) λ destructive interference
in general this phenomenon occurs for small angles, for which we can write
tanθ = y / L
tan te = sin tea / cos tea = sin tea
sin θ = y / La
un
derestimate the first two equations.
Let's do the calculation for constructive interference
d y / L = m λ
the distance between maximum clos is and
y = (me / d) λ
this is the position of each maximum, the distance between two consecutive maximums
y₂-y₁ = (L 2/d) λ - (L 1 / d) λ₁ y₂ -y₁ = L / d λ
examining this equation if the wavelength decreases the value of y also decreases
the same calculation for destructive interference
d y / L = (m + ½) κ
y = [(m + ½) L / d] λ
again when it decreases the decrease the distance
the correct answers are a, b
A 100 kg lead block is submerged in 2 meters of salt water, the density of which is 1096 kg / m3. Estimate the value of the hydrostatic pressure.
Answer:
21,920 Pascals
Explanation:
P = ρgh
P = (1096 kg/m³) (10 m/s²) (2 m)
P = 21,920 Pa
An 88.0 kg spacewalking astronaut pushes off a 645 kg satellite, exerting a 110 N force for the 0.450 s it takes him to straighten his arms. How far apart are the astronaut and the satellite after 1.40 min?
Answer:
The astronaut and the satellite are 53.718 m apart.
Explanation:
Given;
mass of spacewalking astronaut, = 88 kg
mass of satellite, = 645 kg
force exerts by the satellite, F = 110N
time for this action, t = 0.45 s
Determine the acceleration of the satellite after the push
F = ma
a = F / m
a = 110 / 645
a = 0.171 m/s²
Determine the final velocity of the satellite;
v = u + at
where;
u is the initial velocity of the satellite = 0
v = 0 + 0.171 x 0.45
v = 0.077 m/s
Determine the displacement of the satellite after 1.4 m
d₁ = vt
d₁ = 0.077 x (1.4 x 60)
d₁ = 6.468 m
According to Newton's third law of motion, action and reaction are equal and opposite;
Determine the backward acceleration of the astronaut after the push;
F = ma
a = F / m
a = 110 / 88
a = 1.25 m/s²
Determine the final velocity of the astronaut
v = u + at
The initial velocity of the astronaut = 0
v = 1.25 x 0.45
v = 0.5625 m/s
Determine the displacement of the astronaut after 1.4 min
d₂ = vt
d₂ = 0.5625 x (1.4 x 60)
d₂ = 47.25 m
Finally, determine the total separation between the astronaut and the satellite;
total separation = d₁ + d₂
total separation = 6.468 m + 47.25 m
total separation = 53.718 m
Therefore, the astronaut and the satellite are 53.718 m apart.
When looking at the chemical symbol, the charge of the ion is displayed as the
-superscript
-subscript
-coefficient
-product
Answer:
superscript
Explanation:
When looking at the chemical symbol, the charge of the ion is displayed as the Superscript. This is because the charge of ions is usually written up on the chemical symbol while the atom/molecule is usually written down the chemical symbol. The superscript refers to what is written up on the formula while the subscript is written down on the formula.
An example is H2O . The 2 present represents two molecule of oxygen and its written as the subscript while Fe2+ in which the 2+ is written up is known as the superscript.
Answer:
superscript
Explanation:
A 1500 kg car drives around a flat 200-m-diameter circular track at 25 m/s. What are the magnitude and direction of the net force on the car
Answer:
9,375
Explanation:
Data provided
The mass of the car m = 1500 Kg.
The diameter of the circular track D = 200 m.
For the computation of magnitude and direction of the net force on the car first we need to find out the radius of the circular path which is shown below:-
The radius of the circular path is
[tex]R = \frac{D}{2}[/tex]
[tex]= \frac{200}{2}[/tex]
= 100 m
after the radius of the circular path we can find the magnitude of the centripetal force with the help of below formula
[tex]Force F = \frac{mv^2}{R}[/tex]
[tex]= \frac{1500\times (25)^2}{100}[/tex]
= 9,375
Therefore for computing the magnitude of the centripetal force we simply applied the above formula.
When you release the mass, what do you observe about the energy?
Explanation:
Mass and energy are closely related. Due to mass–energy equivalence, any object that has mass when stationary (called rest mass) also has an equivalent amount of energy whose form is called rest energy, and any additional energy (of any form) acquired by the object above that rest energy will increase the object's total mass just as it increases its total energy. For example, after heating an object, its increase in energy could be measured as a small increase in mass, with a sensitive enough scale.
A square copper plate, with sides of 50 cm, has no net charge and is placed in a region where there is a uniform 80 kN / C electric field directed perpendicular to the plate. Find a) the charge density of each side of the plate and b) the total load on each side.
Answer:
a) ±7.08×10⁻⁷ C/m²
b) 1.77×10⁻⁷ C
Explanation:
For a conductor,
σ = ±Eε₀,
where σ is the charge density,
E is the electric field,
and ε₀ is the permittivity of space.
a)
σ = ±Eε₀
σ = ±(8×10⁴ N/C) (8.85×10⁻¹² F/m)
σ = ±7.08×10⁻⁷ C/m²
b)
σ = q/A
7.08×10⁻⁷ C/m² = q / (0.5 m)²
q = 1.77×10⁻⁷ C
Five identical cylinders are each acted on by forces of equal magnitude. Which force exerts the biggest torque about the central axes of the cylinders
Answer:
From the image, the force as shown in option A will exert the biggest torque on the cylinder about its central axes.
Explanation:
The image is shown below.
Torque is the product of a force about the center of rotation of a body, and the radius through which the force acts. For a given case such as this, in which the cylinders are identical, and the forces are of equal magnitude, the torque at the maximum radius away from the center will exert the maximum torque. Also, the direction of the force also matters. To generate the maximum torque, the force must be directed tangentially away from the circle formed by the radius through which the force acts away from the center. Option A satisfies both condition and hence will exert the most torque on the cylinder.
A lens is designed to work in the visible, near-infrared, and near-ultraviolet. The best resolution of this lens from a diffraction standpoint is
The lens is designed to work in the visible, near-infrared, and near-ultraviolet. The best resolution of this lens from a diffraction standpoint is: in the near-ultraviolet.
What is diffraction?The act of bending light around corners such that it spreads out and illuminates regions where a shadow is anticipated is known as diffraction of light. In general, since both occur simultaneously, it is challenging to distinguish between diffraction and interference. The diffraction of light is what causes the silver lining we see in the sky. A silver lining appears in the sky when the sunlight penetrates or strikes the cloud.
Longer wavelengths of light are diffracted at a greater angle than shorter ones, with the amount of diffraction being dependent on the wavelength of the light. Hence, among the light waves of the visible, near-infrared, and near-ultraviolet range, near-ultraviolet waves have the shortest wavelengths. So, The best resolution of this lens from a diffraction standpoint is in the near-ultraviolet, where diffraction is minimum.
Learn more about diffraction here:
https://brainly.com/question/11176463
#SPJ5
a ring with a clockwise current is situated with its center directly above another ring. The current in the top ring is decreasing. What is the directiong of the induced current in the bottom ring
Answer:
clockwise
Explanation:
when current flows through a ring in a clockwise direction, it produces the equivalent magnetic effect of a southern pole of a magnet on the coil.
Since the current is decreasing, there is a flux change on the lower ring; generating an induced current on the lower ring. According to Lenz law of electromagnetic induction, "the induced current will act in such a way as to oppose the motion or the action producing it". In this case, the induced current will have to be the same polarity to the polarity of the current change producing it so as to repel the two rings far enough to stop the electromagnetic induction. The induced current will then be in the clockwise direction on the lower ring.
The direction of the induced current in the bottom ring is in the clockwise direction.
The given problem is based on the concept and fundamentals of the induced current and the direction of flow of the induced current.
When current flows through a ring in a clockwise direction, it produces the equivalent magnetic effect of a southern pole of a magnet on the coil. Since the current is decreasing, there is a flux change on the lower ring; generating an induced current on the lower ring. According to Lenz law of electromagnetic induction, "the induced current will act in such a way as to oppose the motion or the action producing it". In this case, the induced current will have to be the same polarity to the polarity of the current change producing it so as to repel the two rings far enough to stop the electromagnetic induction. The induced current will then be in the clockwise direction on the lower ring.Thus, we can conclude that the direction of the induced current in the bottom ring is in the clockwise direction.
Learn more about the concept of induced current here:
https://brainly.com/question/3712635
distributed uniformly over the surface of a metal sphere with a radius 24.0 cm. If the potential is zero at a point at infinity, find the value of the pote my jobntA total electric charge of 3.50 nC is distributed uniformly over the surface of a metal sphere with a radius 24.0 cm. If the potential is zero at a point at infinity, find the value of the potential at the following distances from the center of the sphere: (a) 48.0 cm (b) 2ial at the following distances from the center of the sphere: (a) 48.0 cm (b) 24.0 cm (c) 12.0 cm
Answer:
(a) V = 65.625 Volts
(b) V = 131.25 Volts
(c) V = 131.25 Volts
Explanation:
Recall that:
1) in a metal sphere the charges distribute uniformly around the surface, and the electric field inside the sphere is zero, and the potential is constant equal to:
[tex]V=k\frac{Q}{R}[/tex]
2) the electric potential outside of a charged metal sphere is the same as that of a charge of the same value located at the sphere's center:
[tex]V=k\frac{Q}{r}[/tex]
where k is the Coulomb constant ( [tex]9\,\,10^9\,\,\frac{N\,m^2}{C^2}[/tex] ), Q is the total charge of the sphere, R is the sphere's radius (0.24 m), and r is the distance at which the potential is calculated measured from the sphere's center.
Then, at a distance of:
(a) 48 cm = 0.48 m, the electric potential is:
[tex]V=k\frac{Q}{r}=9\,\,10^9 \,\frac{3.5\,\,10^{-9}}{0.48} =65.625\,\,V[/tex]
(b) 24 cm = 0.24 m, - notice we are exactly at the sphere's surface - the electric potential is:
[tex]V=k\frac{Q}{r}=9\,\,10^9 \,\frac{3.5\,\,10^{-9}}{0.24} =131.25\,\,V[/tex]
(c) 12 cm (notice we are inside the sphere, and therefore the potential is constant and the same as we calculated for the sphere's surface:
[tex]V=k\frac{Q}{R}=9\,\,10^9 \,\frac{3.5\,\,10^{-9}}{0.24} =131.25\,\,V[/tex]
Answer:
c) a difference in electric potential
Explanation:
my insta: priscillamarquezz
A uniform thin rod of mass ????=3.41 kg pivots about an axis through its center and perpendicular to its length. Two small bodies, each of mass m=0.249 kg , are attached to the ends of the rod. What must the length L of the rod be so that the moment of inertia of the three-body system with respect to the described axis is ????=0.929 kg·m2 ?
Answer:
The length of the rod for the condition on the question to be met is [tex]L = 1.5077 \ m[/tex]
Explanation:
The Diagram for this question is gotten from the first uploaded image
From the question we are told that
The mass of the rod is [tex]M = 3.41 \ kg[/tex]
The mass of each small bodies is [tex]m = 0.249 \ kg[/tex]
The moment of inertia of the three-body system with respect to the described axis is [tex]I = 0.929 \ kg \cdot m^2[/tex]
The length of the rod is L
Generally the moment of inertia of this three-body system with respect to the described axis can be mathematically represented as
[tex]I = I_r + 2 I_m[/tex]
Where [tex]I_r[/tex] is the moment of inertia of the rod about the describe axis which is mathematically represented as
[tex]I_r = \frac{ML^2 }{12}[/tex]
And [tex]I_m[/tex] the moment of inertia of the two small bodies which (from the diagram can be assumed as two small spheres) can be mathematically represented as
[tex]I_m = m * [\frac{L} {2} ]^2 = m* \frac{L^2}{4}[/tex]
Thus [tex]2 * I_m = 2 * m \frac{L^2}{4} = m * \frac{L^2}{2}[/tex]
Hence
[tex]I = M * \frac{L^2}{12} + m * \frac{L^2}{2}[/tex]
=> [tex]I = [\frac{M}{12} + \frac{m}{2}] L^2[/tex]
substituting vales we have
[tex]0.929 = [\frac{3.41}{12} + \frac{0.249}{2}] L^2[/tex]
[tex]L = \sqrt{\frac{0.929}{0.40867} }[/tex]
[tex]L = 1.5077 \ m[/tex]
A simple random sample is a sample drawn in such a way that each member of the population has some chance for being included in the sample every tenth element of an arranged population is included each member of the population has equal chance for being included in the sample each member of the population has 0.10 chance for being included in the sample:__________.
A simple random sample is a sample drawn in such a way that each member of the population has equal chance for being included in the sample.
The mass percent of hydrogen in CH₄O is 12.5%.
What is the mass percent?Mass percent is the mass of the element divided by the mass of the compound or solute.
Step 1: Calculate the mass of the compound.
mCH₄O = 1 mC + 4 mH + 1 mO = 1 (12.01 amu) + 4 (1.00 amu) + 1 (16.00 amu) = 32.01 amu
Step 2: Calculate the mass of hydrogen in the compound.
mH in mCH₄O = 4 mH = 4 (1.00 amu) = 4.00 amu
Step 3: Calculate the mass percent of hydrogen in the compound.
%H = (mH in mCH₄O / mCH₄O) × 100%
%H = 4.00 amu / 32.01 amu × 100% = 12.5%
The mass percent of hydrogen in CH₄O is 12.5%.
CO2 = 1.580 grams H2O = 0.592 grams Lookup the molar mass of each element in the compound Carbon = 12.0107 Hydrogen = 1.00794 Oxygen = 15.999 Calculate the molar mass of CH4O by adding the total masses of each element used. 12.0107 + 4 * 1.00794 + 15.999 = 32.04146 Now calculate how many moles of CH4O you have by dividing by the molar mass. m = 1.15 g / 32.04146 g/mole = 0.035891 mole Now figure out how many moles of carbon and hydrogen you have. Carbon = 0.035891 moles Hydrogen = 0.035891 moles *
Therefore, The mass percent of hydrogen in CH₄O is 12.5%.
Learn more about mass percent here:
https://brainly.com/question/5295222
#SPJ6
mention two similarities of citizen and aliens
Answer:
The main points of difference between a citizen and alien are: (a) A citizen is a permanent resident of a state, while an alien is a temporary resident, who comes for a specific duration of time as a tourist or on diplomatic assignment. ... Aliens do not possess such rights in the state where they reside temporarily
Explanation:
The voltage between the cathode and the screen of a television set is 30 kV. If we assume a speed of zero for an electron as it leaves the cathode, what is its speed (m/s) just before it hits the screen
Answer:
The speed is [tex]v =10.27 *10^{7} \ m/s[/tex]
Explanation:
From the question we are told that
The voltage is [tex]V = 30 kV = 30*10^{3} V[/tex]
The initial velocity of the electron is [tex]u = 0 \ m/s[/tex]
Generally according to the law of energy conservation
Electric potential Energy = Kinetic energy of the electron
So
[tex]PE = KE[/tex]
Where
[tex]KE = \frac{1}{2} * m* v^2[/tex]
Here m is the mass of the electron with a value of [tex]m = 9.11 *10^{-31} \ kg[/tex]
and
[tex]PE = e * V[/tex]
Here e is the charge on the electron with a value [tex]e = 1.60 *10^{-19} \ C[/tex]
=> [tex]e * V = \frac{1}{2} * m * v^2[/tex]
=> [tex]v = \sqrt{ \frac{2 * e * V}{m} }[/tex]
substituting values
[tex]v = \sqrt{ \frac{2 * (1.60*10^{-19}) * 30*10^{3}}{9.11 *10^{-31}} }[/tex]
[tex]v =10.27 *10^{7} \ m/s[/tex]
Cass is walking her dog (Oreo) around the neighborhood. Upon arriving at Calina's house (a friend of Oreo's), Oreo turns part mule and refuses to continue on the walk. Cass yanks on the chain with a 67 N force at an angle of 30° above the horizontal. Determine the horizontal and vertical components of the tension force.
Answer:
Horizontal component: [tex]F_x = 58\ N[/tex]
Vertical component: [tex]F_y = 33.5\ N[/tex]
Explanation:
To find the horizontal and vertical components of the force, we just need to multiply the magnitude of the force by the cosine and sine of the angle with the horizontal, respectively.
Therefore, for the horizontal component, we have:
[tex]F_x = F * cos(angle)[/tex]
[tex]F_x = 67 * cos(30)[/tex]
[tex]F_x = 58\ N[/tex]
For the vertical component, we have:
[tex]F_y = F * sin(angle)[/tex]
[tex]F_y = 67 * sin(30)[/tex]
[tex]F_y = 33.5\ N[/tex]
So the horizontal component of the tension force is 58 N and the vertical component is 33.5 N.
Zuckerman’s test for sensation seeking measures which of the following characteristics?
dangerousness, antisocial traits, “letting loose,’ and intolerance for boredom
thrill and adventure seeking, experience seeking, disinhibition, and susceptibility to boredom
adventurousness, physical prowess, creative morality, and charisma
dangerousness, adventurousness, creativity, and thrill and adventure seeking
The correct answer is B. thrill and adventure seeking, experience seeking, disinhibition, and susceptibility to boredom
Explanation:
Marvin Zuckerman was an important American Psychologists mainly known for his research about personality and the creation of a model to study this aspect of human psychology. This model purposes five factors define personality, these are the thrill and adventure-seeking that involves seeking for adventures and danger; experience seeking that implies a strong interest in participating in new activities; disinhibition that implies being open and extrovert; and susceptibility to boredom that implies avoiding boredom or repetition. Thus, option B correctly describes the characteristics used in Zuckerman's test.
A 25-kilogram object is placed on a compression spring, and it creates a displacement of 0.15 meters. What is the weight of an object that creates a displacement of 0.23 m on the same spring? Enter your answer as a number rounded to the nearest tenth, such as: 42.5
Answer:
I hope it is correct ✌️
A car has a mass of 1200 kg and an acceleration of 4 m/s^2. If the friction on the car is 200 N, how much force is the thrust providing?
Answer:
5000N
Explanation:
According to Newton's second law of motion, the net force (∑F) acting on a body is the product of the mass (m) of the body and the acceleration (a) of the body caused by the force. i.e
∑F = m x a -------------(i)
From the question, the net force is the combined effect of the thrust (F) and the friction force (Fₓ). i.e
∑F = F + Fₓ -------------(ii)
Where;
Fₓ = -200N [negative sign because the friction force opposes motion]
Combine equations(i) and (ii) together to get;
F + Fₓ = m x a
F = ma - Fₓ -------------(iii)
Where;
m = mass of car = 1200kg
a = acceleration of the car = 4m/s²
Now substitute the values of m, a and Fₓ into equation (iii) as follows;
F = (1200 x 4) - (-200)
F = 4800 + 200
F = 5000N
Therefore, the force the thrust is providing is 5000N
Which characteristic gives the most information about what kind of element an atom is ?
Answer:
The atomic number
Explanation:
A motorcyclist changes his speed from 20 km / h to 100 km / h in 3 seconds, maintaining a constant acceleration in that time interval. If the mass of the motorcycle is 200 kg and that of its rider is 80 kg, what is the value of the net force to accelerate the motorcycle? Help!
Answer:
2000 N
Explanation:
20 km/h = 5.56 m/s
100 km/h = 27.78 m/s
F = ma
F = m Δv/Δt
F = (200 kg + 80 kg) (27.78 m/s − 5.56 m/s) / (3 s)
F = 2074 N
Rounded to one significant figure, the force is 2000 N.
The low-frequency speaker of a stereo set has a surface area of 0.07 m2 and produces 1.63 W of acoustical power. What is the intensity at the speaker (in W/m2)?
Answer:
I = 81.5 W/m^2
Explanation:
In order to calculate the intensity of the sound at the speaker, you use the following formula:
[tex]I=\frac{P}{A}[/tex] (1)
P: power of the speaker's sound = 1.63W
A: surface area of the stereo set = 0.07m^2
You assume that the intensity of the sound at the speaker depends only of the surface area of the stereo set. Furthermore, you consider that the wave front of the sound is approximately plane.
You replace the values of the parameters in the equation (1):
[tex]I=\frac{1.63W}{0.02m^2}=81.5\frac{W}{m^2}[/tex]
The intensity of the speaker's sound at the speaker is 81.5 W/m^2