Six seconds after starting from rest, a car is moving at 15 m/s. What is the car's
average acceleration?
6 m/s2
0-5 m/s?
5 m/s2
2.5 m/s?
-2.5 m/s?
Answer:
2.5 m/s²
Explanation:
a = ∆v/∆t = (15 m/s)/(6 s) = (15/6) m/s² = 2.5 m/s²
What is the approximate weight of a 400 kg object?
Answer:
881.84905 LBS
Explanation:
ThErE :p
3922.66 newtons.
This is an exact amount, to get newtons form kg, multiply by 9.8, or in this case, 10.
This gives you 4000 newtons
(iii) Why do right angle mirrors produce three images of the object?
Explanation:
The two mirrors inclined to each other formed the first two images with are of the same size as the object while the third mirror is produced from the intersection of rays that emanated during the production of the first two images to produce a third image which is smaller than the object and there making the total number of images to be 3.
Hence this mirrors produces 3 images due to the third image formed from the intersection of the rays that produces the first two images.
The formula that relates the image produced by inclined mirror and the angle of inclination is expressed as:
number of images n = 360/θ - 1
θ is the angle of inclination of the two mirrors
n is the number of images
If the mirrors are inclined at right angles, then θ = 90°
Substitute into the formula;
n = 360/90 -1
n = 36/9 -1
n = 4-1
n = 3
a man weighing 490 n on earth weighs only 81.7 n on the moon. His mass on the moon is__kg. (Use g=9.8 m/s2
Answer:
m = 50 [kg]
Explanation:
In order to solve this problem we must be clear about the difference between weight and mass. Weight is the product of mass by the acceleration of the planet or the star. While the mass is always preserved it never changes regardless of where it is located.
So for the earth we have:
g = gravity acceleration = 9.8 [m/s^2]
m = mass [kg]
W = weigth = 490 [N]
therefore the mass will be:
m = W/g
m = 490/9.8
m = 50 [kg]
Now it is important to remember that the mass will be the same on the moon or on the earth, but the weight will be different, because the gravity acceleration of the moon is different from the gravity acceleration on earth
So the gravity on the moon is equal to:
81.7 = 50 * gm
gm = 1.634 [m/s^2]
A "lovesick" individual wants to throw a bag of candy and love notes into the open window of their significant other’s bedroom 10.0 m above. Assuming it just reaches the window, they throw the gift at 60.0o to the ground: At what velocity should they throw the bag? How far from the house are they standing when they throw the bag? (Answer: A. 16.2m/s B. 11.5m)
Answer:
Explanation:
Let the velocity be v .
vertical component of the velocity = v sin 60 = √3 v /2
it reaches maximum height of 10 m .
v² = 2 gh
( √3 v/2 )² = 2 x 9.8 x 10
3 v² = 196 x 4
v² = 65.33 x 4
v = 16.2 m /s
Let time taken to reach height of 10 m
v = u - gt
v sin 60 = 9.8 t
16.2 x √3 /2 = 9.8 t
t = 1.43 s
horizontal distance covered = v cos 60 x t
16.2 x .5 x 1.43 = 11 .5 m
Determine the electrical force of attraction between two balloons
that are charged with the opposite type of charge but the same
quantity of charge. The charge on the balloons is 6.0 x 10-7 C and they
are separated by a distance of 0.50 m.
Answer:
F=1.3x10^-2N
Explanation:
Fe= k(6x10^-7C)^2/(0.5)^2
Electrical force of attraction between the balloons is F=1.3x10^-2N
The electric force of attraction between two balloons should be F=1.3x10^-2N.
Calculation of the electric force;Since The charge on the balloons is 6.0 x 10-7 C and they are separated by a distance of 0.50 m.
So, here the electric force is
Fe= k(6x10^-7C)^2/(0.5)^2
F=1.3x10^-2N
hence, The electric force of attraction between two balloons should be F=1.3x10^-2N.
Learn more about force here: https://brainly.com/question/19848845
3 For this force system the equivalent system at P is ___________ A FRP 40 lb along x dir and MRP 60 ft lbB FRP 0 lb and MRP 30 ft lbC FRP 30 lb along y dir and MRP 30 ft lbS FRP 40 lb along x dir and MRP 30 ft lb
This question is incomplete, the complete question is;
For this force system the equivalent system at P is ___________
A) FRP = 40 lb (along +x-dir.) and MRP = +60 ft.lb
B) FRP = 0 lb and MRP = +30 ft.lb
C) FRP 30 lb (along +y-dir.) and MRP = -30 ft.lb
D) FRP 40 lb (along +x-dir.) and MRP = +30 ft.lb
Answer:
D) FRP 40 lb (along +x-dir.) and MRP = +30 ft.lb
Explanation:
From the figure in the image i uploaded along this answer;
FRP = ( 40 lb i + 30 lb j ) + [30 lb (-j)]
Where i and j are the unit vectors along X & Y axis respectively.
So, FRP = 40 lb i
that is, FRP = 40 lb along +X direction
MRP = [ 30 lb x ( 1 ' + 1' ) ] +( -30 lb x 1 ' )
= (30 lb x 2 ' )- 30 lb ft
= 60 lb ft - 30 lb ft
= 30 lb ft
Therefore option(D) is correct
Peter is running laps around a circular track with a diameter of 100 meters. If it takes Peter 12 minutes to run 4 laps, how quickly is he running (in meters per second)?
Answer:
v = 1.74 m/s
Explanation:
Given that,
Diameter of a circular track, d = 100 m
Distance covered for the 4 laps,
[tex]D=4\pi d\\\\D=4\pi \times 100\\\\D=1256.63\ m[/tex]
Time, t = 12 minutes = 720 s
We need to find the velocity of the peter. It can be calculated as follows :
[tex]v=\dfrac{D}{t}\\\\v=\dfrac{1256.63\ m}{720\ s}\\\\v=1.74\ m/s[/tex]
So, the speed is running with a velocity of 1.74 m/s.
Peter is running at 1.7453 m/sec.
Given to us,
Diameter of the circular track, D = 100 meters,
Number of laps Peter run, L = 4 laps,
Time taken by Peter, t = 12 minutes,
1 lap = circumference of the circle,
4 laps = 4 x circumference of the circle,
As we know, the circumference of a circle is given by πD.
So, 4 laps = 4 x circumference of the circle,
[tex]\begin{aligned}4 laps &= 4\times \pi \times D\\&= 4 \times \pi \times 100\\& = 1,256.6370\ meters\\\end{aligned}[/tex]
Also, we know that 1 minute has 60 sec.
so, 4 minutes = (4 x 60) seconds
Further, speed is given [tex]\bold{(\dfrac{Distance}{Time} )}[/tex]
Thus,
[tex]\begin{aligned}speed &= \dfrac{Distance\ coverd\ by\ Peter}{Time\ taken\ by\ Peter}\\&=\dfrac{1,256.6370}{12\times 60}\\&=1.7453\ m/sec \end{aligned}[/tex]
Hence, Peter is running at 1.7453 m/sec.
To know more visit:
https://brainly.com/question/7359669
waht is science
wjwissbsskdldmndndnd
Answer:
the intellectual and practical activity encompassing the systematic study of the structure and behaviour of the physical and natural world through observation and experiment.
Explanation:
What is the force of a 12 kg object that is accelerating 6 m/s
We are given:
Mass of object (m) = 12 kg
acceleration (a) = 6 m/s²
Solving for the Force:
From newton's second law of motion:
F = ma
replacing the variables
F = 12*6
F = 72N
A car moving with an intial velocity of 60m/s is brought to rest in 30 seconds calculate the acceleration
Answer:
a = 2 [m/s^2]
Explanation:
To solve this problem we must use the expressions of kinematics, we must bear in mind that when a body is at rest its velocity is zero.
[tex]v_{f} = v_{i} - (a*t)[/tex]
where:
Vf = final velocity = 0
Vi = initial velocity = 60 [m/s]
a = desacceleration [m/s^2]
t = time = 30 [s]
Note: the negative sign of the above equation means that the car is slowing down, i.e. its speed decreases.
0 = 60 - (a*30)
a = 2 [m/s^2]
How many turns are in its secondary coil, if its input voltage is 120 V and the primary coil has 210 turns
Complete Question
How many turns are in its secondary coil, if its input voltage is 120 V and the primary coil has 210 turns.
The output from the secondary coil is 12 V
Answer:
The value is [tex]N_s = 21 \ turns [/tex]
Explanation:
From the equation we are told that
The input voltage is [tex]V_{in} = 120 \ V[/tex]
The number of turns of the primary coil is [tex]N_p = 210 \ turn[/tex]
The output from the secondary is [tex]V_o = 12V[/tex]
From the transformer equation
[tex]\frac{N_p}{V_{in}} =\frac{N_s}{V_o}[/tex]
Here [tex]N_s[/tex] is the number of turns in the secondary coil
=> [tex]N_s = \frac{N_p}{V_{in}} * V_s[/tex]
=>[tex]N_s = \frac{210}{120} * 12[/tex]
=>[tex]N_s = 21 \ turns [/tex]
An electron moving in the direction of the x-axis enters a magnetic field. If the electron experiences a magnetic deflection in the -y direction, the direction of the magnetic field in this region points in the direction of the
Answer:
-z
Explanation:
The force on a moving charge due to a magnetic field follows the right hand rule, so a positive charge, experiencing a magnetic deflection in the -y direction, while it moves in the direction of the x-axis, will do it due to a magnetic field pointing in the +z direction.
As the electron has a negative charge, the magnetic field will point in the opposite direction, i.e., in the -z direction.
A fountain shoots a jetof water straight up. The nozzle is 1 cm in diameter and the speed of the water exiting the nozzle is 30 m/s. What is the force exerted by the water jet
Answer:
Explanation:
mass of water coming out per second = A x v where A is area of cross section of the nozzle and v is velocity of water
A = 3.14 x .005²
= 785 x 10⁻⁷ m²
mass of water coming out per second = 785 x 10⁻⁷ x 30 = 23.55 x 10⁻⁴ kg
momentum of this mass = 23.55 x 10⁻⁴ x 30 = 706.5 x 10⁻⁴ kg m /s .
Rate of change of momentum = 706.5 x 10⁻⁴
Let force be F
F - mg = 706.5 x 10⁻⁴
F = mg + 706.5 x 10⁻⁴
F = 23.55 x 10⁻⁴ x 9.8 + 706.5 x 10⁻⁴
= 937.3 x 10⁻⁴ N .
What is the maximum current flow possible through a 12 Ohm resistor from a 120V source?
Answer:
I=10.0A
Explanation:
V=RI(120)=(12)II=10.0AAn airplane accelerates down a runway at 4.3 m/s2 for 48 s until it finally lifts off the ground. Determine the distance traveled before takeoff.
I
Answer:
x=4953.6m
Explanation:
used formula x=xo+vot+1/2at^2
Please provide explanation!!!
Thank you.
Answer:
(a) 102 cm/s
(b) 0.490 cm²
Explanation:
(a) Use Bernoulli equation.
P₁ + ½ ρ v₁² + ρgh₁ = P₂ + ½ ρ v₂² + ρgh₂
0 + ½ ρ v₁² + ρgh₁ = 0 + ½ ρ v₂² + 0
½ ρ v₁² + ρgh₁ = ½ ρ v₂²
½ v₁² + gh₁ = ½ v₂²
½ (25.0 cm/s)² + (980 cm/s²) (5.00 cm) = ½ v²
v = 102 cm/s
(b) The flow rate is constant.
v₁ A₁ = v₂ A₂
(25.0 cm/s) (2.00 cm²) = (102 cm/s) A
A = 0.490 cm²
Who is the founding father of modern psychology?
Answer:
Sigmund Freud
Explanation:
Answer:
Wilhelm Wundt
What is the speaker’s power output if the sound intensity level is 102 dBdB at a distance of 25 mm ? Express your answer to two significant figures and include the appropriate units.
Answer:
Power = 124.50 W
Explanation:
Given that:
The Sound intensity of a speaker output is 102 dB
and the distance r = 25 m
For the intensity of sound,
[tex]\beta (dB)= 10 \ log_{10 } (\dfrac{I}{I_o})[/tex]
where;
the threshold of hearing [tex]I_o = 10^{-12} (W/m^2)[/tex]
[tex]\dfrac{102 }{10}= log_{10}( \dfrac{I}{10^{-12}})[/tex]
[tex]10^{10.2} = \dfrac{I}{10^{-12}}[/tex]
[tex]I = 10^{10.2} \times 10^{-12}[/tex]
I = 0.01585 W/m²
If we recall, we know remember that ;
Power = Intensity × A rea
Power = 0.01585 W/m² × 4 × 3.142 × (25 m)²
Power = 124.50 W
A recipe gives the instructions below
After browning the meat pour off fat from the pan to further reduce fat use a strainer.
what type lf separation methods are described in the recipe
A decantation and screening
B distillation and screening
C decantation and centrifugation
D distillation and filtration
Answer:
A. decantation and screening
Explanation:
Decantation is the one of the process of separating the mixture. In this process the precipitated liquid is separated from the solid. According to the given instruction for the recipe, the fat which is in liquid state is separated from meat. In the process of screening, more liquid is separated by placing the mixture on the screen. Here, the gravity plays an important role for the process of separation.
Answer:
a
Explanation:
Calculate the effective charges on the H and F atoms of the HF molecule in units of the electronic charge, e.
Answer:
Explanation:
Hydrogen fluoride (HF) is an ionic/electrovalent compound that dissociates into ions when dissolved in water. It's dissociation is as seen below
HF ⇄ H⁺ + F⁻
There is a transfer of electron from the hydrogen atom which produces the hydrogen ion (H⁺), while the fluorine atom receives the donated ion to become negatively charged (F⁻). The amount of charge in one electron is generally given as 1.602 × 10⁻¹⁹ coloumbs.
The required value of effective charge on HF molecule, due to H and F is 1.602 × 10⁻¹⁹ Coulombs.
The given problem is based on the concept of effective charges. The net positive charge carried out by the electrons of atomic species, after forming a polyelectronic atom is known as Effective charge.
As per the given problem, the Hydrogen fluoride (HF) is an ionic/electrovalent compound that dissociates into ions when dissolved in water. It's dissociation is given as,
HF ⇄ H⁺ + F⁻
There is a transfer of electron from the hydrogen atom which produces the hydrogen ion (H⁺), while the fluorine atom receives the donated ion to become negatively charged (F⁻). The amount of charge in one electron is generally given as 1.602 × 10⁻¹⁹ Coulombs.
Thus, we can conclude that the required value of effective charge on HF molecule, due to H and F is 1.602 × 10⁻¹⁹ Coulombs.
Learn more about the effective charge here:
https://brainly.com/question/25002720
Notice that the electromagnet in the virtual simulation is made up of a battery and a wire. What item could you add to the electromagnet to make it even stronger?
Answer:
Explanation:
Have y’all seen steeleflag19 at all on here?
A 0.5 kg basketball moving 5 m/s to the right collides with a 0.05 kg tennis
ball moving 30 m/s to the left. After the collision, the tennis ball is moving 34
m/s to the right. What is the velocity of the basketball after the collision?
Assume an elastic collision occurred.
O A. 11.4 m/s to the left
O B. 11.4 m/s to the right
O C. 1.4 m/s to the right
O D. 1.4 m/s to the left
Answer:
1.4 m/s to the left
Explanation:
just took it c:
How do I proton and and electron compared
Who was the first who traveled to the moon?
NEIL ARMSTRONG WAS THE FIRST MAN WHO TRAVELLED TO THE MOON.
Answer:
On July 20, 1969, Neil Armstrong became the first human to step on the moon.
A person following a liberal ideology would likely approve of
The acceleration of the spacecraft in which the Apollo astronauts took off from the moon was 3.4 m/s2 m / s 2 . On the moon, g g = 1.6 m/s2 m / s 2 . what's the apparent weight
Complete Question
The acceleration of the spacecraft in which the Apollo astronauts took off from the moon was 3.4 m/s2. On the moon, g = 1.6 m/s2. What was the apparent weight of a 75 kg astronaut during takeoff?
Answer:
The value is [tex]N = 375 \ N[/tex]
Explanation:
From the question we are told that
The acceleration is [tex]a = 3.4 \ m/s^2[/tex]
The acceleration due to gravity in the moon is [tex]g = 1.6 m/s^2[/tex]
The mass of the astronaut is [tex]m = 75 \ kg[/tex]
Generally the apparent weight is mathematically represented as
[tex]W = ma + mg[/tex]
=> [tex]W = 3.4 * 75 + 1.6 * 75[/tex]
=> [tex]W = 375 \ N[/tex]
An airplane, starting at rest, takes off on a 600. m long runway accelerating at a rate of 12 m/s/s. How many seconds does it take to reach the end of the runway?
Answer:
10 seconds
Explanation:
As it starts from rest, then u=0
and by III rd equation of motion:
A 30.0-kgkg box is being pulled across a carpeted floor by a horizontal force of 230 NN , against a friction force of 210 NN . What is the acceleration of the box?
Answer:
The acceleration of the box is 0.67 m/s²
Explanation:
Given that,
Mass of box = 30.0 kg
Horizontal force = 230 N
Friction force = 210 N
We need to calculate the acceleration of the box
Using balance equation
[tex]F-f_{k}=ma[/tex]
[tex]a=\dfrac{F-f_{k}}{m}[/tex]
Where, F = horizontal force
[tex]f_{k}[/tex] =frictional force
m= mass of box
a = acceleration
Put the value into the formula
[tex]a=\dfrac{230-210}{30}[/tex]
[tex]a=0.67\ m/s^2[/tex]
Hence, The acceleration of the box is 0.67 m/s²
A ray is incident at at 50 degrees angle on a plane mirror. What will be the deviation after reflection from the mirror?
Answer:
Explanation:
If the ray were not deviated, it would travel straight through the mirror. Due to the mirror, the incident ray is reflected at 30°. The ray travels 30° + 30° = 60°. The angle of deviation is 180° - 60° = 120°.