Answer:
TRUE
Step-by-step explanation:
In a triangle having sides a, b and c units,
For a right triangle following condition should be fulfilled,
(Largest side)² = (Leg 1)² + (Leg 2)² [Pythagoras theorem]
If the sides of a triangle are 4, 12 and [tex]\sqrt{160}[/tex]
[tex](\sqrt{160})^{2}[/tex] = 4² + 12²
160 = 16 + 144
160 = 160
True.
Therefore, the given statement is TRUE.
Need help with number 20
Answer:
A
Step-by-step explanation:
Since we are given BC is congruent to DC and angle b and d are 90. We can prove that <C is congruent to itself by reflexive property of congruence. We can also you use linear pair theorem to prove <CDA is congruent to <CBE. Since they are right angles, we can prove that they are congruent by rt <s thm. Thus, we cna prove they are congruent by ASA. Hope it helps
Suppose that you have 9 cards. 5 are green and 4 are yellow. The 5 green cards are numbered 1, 2, 3, 4, and 5. The 4 yellow cards are numbered 1, 2, 3, and 4. The cards are well shuffled. Suppose that you randomly draw two cards, one at a time, and without replacement. • G1 = first card is green • G2 = second card is green a) Draw a tree diagram of the situation. (Enter your answers as fractions.) b) Enter the probability as a fraction. P(G1 AND G2) = c)Enter the probability as a fraction. P(at least one green) = d)Enter the probability as a fraction. P(G2 | G1) = _______.
The probability of picking greens on both occasions will be 5/18.
How to explain the probability?The probability of picking greens cards will be:
= 5/9 × 4/8
= 5/18
The probability of picking at least one green will be:
= 1 - P(both aren't green)
= 1 - (4/9 × 3/8)
= 1 - 1/6.
= 5/6
From the tree diagram, the probability as a fraction of P(G2 | G1) will be:
= 4/8 = 1/2
Learn more about probability on:
brainly.com/question/24756209
#SPJ1
Evaluate. Write your answer as a fraction or whole number without exponents. 1/10^-3 =
Answer:
1000
Step-by-step explanation:
=> [tex]\frac{1}{10^{-3}}[/tex]
According to the law of exponents, [tex]\frac{1}{a^{-m}} = a^{m}[/tex]
So, it becomes
=> [tex]10^{3}[/tex]
=> 1000
please i need this answer right now !!!! Dx
Answer: the answer is d sin30degrees equal 5/x because sin is opposite over hyponuese
Please check my answer! The faculty at a particular school have attended up to an average 4 years of college with a standard deviation of 2 years. Faculty members who are in the lower 10% of the distribution will be offered the opportunity to obtain additional training. A faculty member must have attended less than ___________ years of school to qualify for the training. Round your answer to the year. My answer: 1 – 0.10 = 0.90 0.9 - 0.5 = 0.40 z-score = 1.28 (corresponds with 0.3997) x = (1.28)(2) + 4 = 7 years (rounded)
Answer:
1 year
Step-by-step explanation:
1. Convert 10% into a z-score, using a calculator or whateva
2. Z = -1.281551 ( you can find this by doing the following equation: (x - mean) / (standard deviation)
3. Hence -1.281551 = (x - 4) / 2 or, x = 1.436898, ( rounded to the nearest year ) = 1 year
Four students are working on a Math problem to find the soulution to 2x-3=11. Each student got a different answer. The four answers were 5,6,7 and 8. Which of these numbers make the equation true?
Answer:
7
Step-by-step explanation:
2x-3=11
Move the -3 to the right side by adding 3 to both sides of the equation
2x=14
Divide both sides by 2 to get x by itself
x=7
Answer:
7
Step-by-step explanation:
2x -3 = 11
2x = 14 . . . . add 3
x = 7 . . . . . . divide by 2
The number 7 makes the equation true when substituted for x.
Suppose that the scores of bowlers in particular league follow a normal distribution such that the standard deviation of the population is 6. Find the 95% confidence interval of the mean score for all bowlers in this league, using the accompanying data set of 10 random scores. Round your answers to two decimal places and use ascending order. Score 86 86 93 88 98 107 93 75 89
Answer:
A 95% confidence interval for the population mean score for all bowlers in this league is [86.64, 94.48].
Step-by-step explanation:
Since in the question only 9 random scores are given, so I am performing the calculation using 9 random scores.
We are given that the scores of bowlers in particular league follow a normal distribution such that the standard deviation of the population is 6.
The accompanying data set of 9 random scores in ascending order is given as; 75, 86, 86, 88, 89, 93, 93, 98, 107
Firstly, the pivotal quantity for finding the confidence interval for the population mean is given by;
P.Q. = [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex] ~ N(0,1)
where, [tex]\bar X[/tex] = sample mean score = [tex]\frac{\sum X}{n}[/tex] = [tex]\frac{815}{9}[/tex] = 90.56
[tex]\sigma[/tex] = population standard deviation = 6
n = sample of random scores = 9
[tex]\mu[/tex] = population mean score for all bowlers
Here for constructing a 95% confidence interval we have used a One-sample z-test statistics because we know about population standard deviation.
So, 95% confidence interval for the population mean, [tex]\mu[/tex] is ;
P(-1.96 < N(0,1) < 1.96) = 0.95 {As the critical value of z at 2.5% level
of significance are -1.96 & 1.96}
P(-1.96 < [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex] < 1.96) = 0.95
P( [tex]-1.96 \times {\frac{\sigma}{\sqrt{n} } }[/tex] < [tex]\bar X-\mu}[/tex] < [tex]1.96 \times {\frac{\sigma}{\sqrt{n} } }[/tex] ) = 0.95
P( [tex]\bar X-1.96 \times {\frac{\sigma}{\sqrt{n} } }[/tex] < [tex]\mu[/tex] < [tex]\bar X+1.96 \times {\frac{\sigma}{\sqrt{n} } }[/tex] ) = 0.95
95% confidence interval for [tex]\mu[/tex] = [ [tex]\bar X-1.96 \times {\frac{\sigma}{\sqrt{n} } }[/tex] , [tex]\bar X+1.96 \times {\frac{\sigma}{\sqrt{n} } }[/tex] ]
= [ [tex]90.56-1.96 \times {\frac{6}{\sqrt{9} } }[/tex] , [tex]90.56+1.96 \times {\frac{6}{\sqrt{9} } }[/tex] ]
= [86.64 , 94.48]
Therefore, a 95% confidence interval for the population mean score for all bowlers in this league is [86.64, 94.48].
The total area under the standard normal curve to the left of zequalsnegative 1 or to the right of zequals1 is
Answer:
0.3174
Step-by-step explanation:
Z-score:
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the area under the normal curve to the left of Z. Subtracting 1 by the pvalue, we find the area under the normal curve to the right of Z.
Left of z = -1
z = -1 has a pvalue of 0.1587
So the area under the standard normal curve to the left of z = -1 is 0.1587
Right of z = 1
z = 1 has a pvalue of 0.8413
1 - 0.8413 = 0.1587
So the area under the standard normal curve to the right of z = 1 is 0.1587
Left of z = -1 or right of z = 1
0.1587 + 0.1587 = 0.3174
The area is 0.3174
The weight of a box of cereal can vary by of an ounce and still be sold as a full box. Each box is supposed to contain 18 ounces of cereal. Which graph represents the possible weights of boxes that are overfilled or underfilled and cannot be sold as full boxes?
Answer:
Its B
Step-by-step explanation:
Answer:
The answer is B
Step-by-step explanation:
Its B on edge
Give examples of three sets A,B,C for which A-(B-C)=(A-B)-C.
Need help with this as soon as possible.
Answer:
after 9 weeks it would become 9*1+10=19 inches
and after w weeks it will be w*1+10 inches tall
hope this helps
Step-by-step explanation:
Answer:
a) 19 inches
b) 10+w inches
Step-by-step explanation:
The equation for this problem is 10 + w. In the first part, w = 9, so the plant is 19 inches tall.
How do you determine whether the sign of a trigonometric function (sine, cosine, tangent) is positive or negative when dealing with half angles? Explain your reasoning and cite examples. Why do you think the half-angle identities include positive and negative options but the other identities don't seem to have this option built in?
Answer:
This question is about:
sin(A/2) and cos(A/2)
First, how we know when we need to use the positive or negative signs?
Ok, this part is kinda intuitive:
First, you need to know the negative/positve regions for the sine and cosine function.
Cos(x) is positive between 270 and 90, and negative between 90 and 270.
sin(x) is positive between 0 and 180, and negative between 180 and 360.
Then we need to see at the half-angle and see in which region it lies.
If the half-angle is larger than 360°, then you subtract 360° enough times such that the angle lies in the range between (0° and 360°)
and: Tan(A/2) = Sin(A/2)/Cos(A/2)
So using that you can infer the sign of the Tan(A/2)
Now, why these relationships use the two signs?
Well... this is because of the square root in the construction of the relationships.
This happens because:
(-√x)*(-√x) = (-1)*(-1)*(√x*√x) = (√x*√x)
For any value of x.
so both -√x and √x are possible solutions of these type of equations, but for the periodic nature of the sine and cosine functions, we can only select one of them.
So we should include the two possible signs, and we select the correct one based on the reasoning above.
PLS HELP ASAP!!!!........
Answer:
aaaaha pues
Step-by-step explanation:
Answer:
what happened
Step-by-step explanation:
Solve the system of equations for the variables: x+2y-z=3 x+y-2z= -1
Answer:
z=0
x= -5
y=4
Step-by-step explanation:
Check the attachment please
Hope this helps :)
Step-by-step explanation:
x + 2y − z = 3
x + y − 2z = -1
There are three variables but only two equations, so this system of equations is undefined. We cannot solve for the variables, but we can eliminate one of them and reduce this to a single equation.
Double the first equation:
2x + 4y − 2z = 6
Subtract the second equation.
(2x + 4y − 2z) − (x + y − 2z) = (6) − (-1)
2x + 4y − 2z − x − y + 2z = 7
x + 3y = 7
Which of the following (x,y) pairs is the solution for the system of equations x+2y=4 and -2x+y=7
Answer:
(-2 ,3)
Step-by-step explanation:
Step 1: Rewrite first equation
x = 4 - 2y
-2x + y = 7
Step 2: Substitution
-2(4 - 2y) + y = 7
Step 3: Solve y
-8 + 4y + y = 7
-8 + 5y = 7
5y = 15
y = 3
Step 3: Plug in y to find x
x + 2(3) = 4
x + 6 = 4
x = -2
Researchers wanted to know whether it is better to give the diphtheria, tetanus and pertussis (DTaP) vaccine in the thigh or the arm. They collect data on severe reactions to this vaccine in children aged 3 to 6 years old. What would be the best statistical test for them to utilize?
A. One-sample chi-square
B. Linear regression
C. T-test
D. Two-sample chi-square
Answer:
D. Two-sample chi-square
Step-by-step explanation:
A chi-square test is a test used to compare the data that is observed, from the data that is expected.
In a two-sample chi-square test the observed data should be similar to the expected data if the two data samples are from the same distribution.
The hypotheses of the two-sample chi-square test is given as:
H0: The two samples come from a common distribution.
Ha: The two samples do not come from a common distribution
Therefore, in this case, the best statistical test to utilize is the two-sample chi-square test.
(0, 3) and (-2, -1)
Write an equation in slope intercept from of the line that passes through the given points.
Answer:
y = 2x + 3
Step-by-step explanation:
Slope Formula: [tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]
Slope-Intercept Form: y = mx + b
Step 1: Find slope m
m = (-1 - 3)/(-2 - 0)
m = -4/-2
m = 2
y = 2x + b
Step 2: Rewrite equation
y = 2x + 3
*You are given y-intercept (0, 3), so simply add it to your equation.
are the two triangles below similar
Answer:
Hey!
Your answer is YES!
AKA the Last Option on your screen!
Step-by-step explanation:
It is this because...
They both have the angles 105 in it...
And looking at the other angle on the smaller one (25)
50 + 25 = 75 ... 180 - 75 = 105
WE HAVE 105 as an angle on the larger triangle...which makes them SIMILAR but congruent Angles!
It cant be the "corresponding sides" as we do not have the notations (lines intersecting the sides) that let us know that the lines are the same.
Hope this helps!
Find the value of y. log 4 64 = y A. 3 B. 4 C. 8 D. 16
Answer:
A. 3
Step-by-step explanation:
[tex] log_{4}(64) = y \\ 64 = {4}^{y}(\because if \: log_a b = x \implies b = a^x) \\ {4}^{3} = {4}^{y} \\3 = y..(equal \: bases \: have \: equal \: exponents ) \\ \huge \purple { \boxed{y = 3}}[/tex]
Translate into an algebraic expression and simplify if possible. I have a total of 10 gigabytes of data on my computer, x gigabytes are movies and the rest is music. How many gigabytes of music is stored on my computer?
Answer:
simple really
Step-by-step explanation:
10 gigabytes of data on my computer, x gigabytes are movies and the rest is music.
so it will have to be 10-X= remaining gigabites of music
Answer:
Movies: x gig
pictures: x/2 gig
music: 10 - x - x/2 = 10 - (3/2)x
what is 1% of 62 like i dont understand this
Answer:
0.62
Step-by-step explanation:
1. We assume, that the number 62 is 100% - because it's the output value of the task.
2. We assume, that x is the value we are looking for.
3. If 62 is 100%, so we can write it down as 62=100%.
4. We know, that x is 1% of the output value, so we can write it down as x=1%.
5. Now we have two simple equations:
1) 62=100%
2) x=1%
where left sides of both of them have the same units, and both right sides have the same units, so we can do something like that:
62/x=100%/1%
6. Now we just have to solve the simple equation, and we will get the solution we are looking for.
7. Solution for what is 1% of 62
62/x=100/1
(62/x)*x=(100/1)*x - we multiply both sides of the equation by x
62=100*x - we divide both sides of the equation by (100) to get x
62/100=x
0.62=x
x=0.62
now we have:
1% of 62=0.62
what is the simplest form of this expression 2(w-1) +(-2)(2w+1)
Answer:
-2w - 4
Step-by-step explanation:
What is the simplest form of this expression
2(w - 1) + (-2)(2w + 1) =
= 2w - 2 - 4w - 2
= -2w - 4
Answer: -2w-4
Step-by-step explanation:
subtract 4w of 2w
2w-2-4w-2
subtract 2 of -2
-2w-2-2
final answer
-2w-4
Your bank balance is $102.35 and you've just made purchases for $20, $33.33, and $52.80. You then make deposits of $25 and $24.75. What's your new balance?
A. 565.77
B. 54102
C. $45.97
D. 551.22
Answer:
C
Step-by-step explanation:
102.35-20-33.33-52.80+25+24.75
45.97
Find the surface area of this composite solid. I Need answer ASAP Will give brainliest
Answer:
B. 120 m²
Step-by-step explanation:
To find the surface area of the composite solid, we would need to calculate the area of each solid (square pyramid and square prism), then subtract the areas of the sides that are not included as surface area. The sides not included as surface area is the side the pyramid and the prism is joint together.
Step 1: find the surface area of the pyramid:
Surface area of pyramid with equal base sides = Base Area (B) + ½ × Perimeter (P) × Slant height (l)
Base area = 4² = 16 m
Perimeter = 4(4) = 16 m
Slant height = 3 m
Total surface area of pyramid = 16 + ½ × 16 × 3
= 16 + 8 × 3 = 16 + 24
= 40 m²
Step 2: find the area of the prism
Area = 2(wl + hl + hw)
Area = 2[(4*4) + (5*4) + (5*4)]
Area = 2[16 + 20 + 20]
Area of prism = 2[56] = 112 m²
Step 3: Find the area of the sides not included
Area of the sides not included = 2 × area of the square base where both solids are joint
Area = 2 × (4²)
Area excluded = 2(16) = 32 m²
Step 4: find the surface area of the composite shape
Surface area of the composite shape = (area of pyramid + area of prism) - excluded areas
= (40m²+112m²) - 32m²
= 152 - 32
Surface area of composite solid = 120 m²
excel A car insurance company has determined that 8% of all drivers were involved in a car accident last year. If 15 drivers are randomly selected, what is the probability of getting 3 or more who were involved in a car accident last year
Answer:
[tex] P(X \geq 3)= 1- P(X<3)= 1-P(X \leq 2)= 1- [P(X=0) +P(X=1) +P(X=2)][/tex]
And we can find the individual probabilites using the probability mass function and we got:
[tex] P(X=0) = (15C0) (0.08)^{0} (1-0.08)^{15-0}=0.286 [/tex]
[tex] P(X=1) = (15C1) (0.08)^{1} (1-0.08)^{15-1}=0.373 [/tex]
[tex] P(X=2) = (15C2) (0.08)^{2} (1-0.08)^{15-2}=0.227 [/tex]
And replacing we got:
[tex] P(X\geq 3) = 1-[0.286+0.373+0.227 ]= 0.114[/tex]
Step-by-step explanation:
For this case we can assume that the variable of interest is "drivers were involved in a car accident last year" and for this case we can model this variable with this distribution:
[tex] X \sim Bin (n =15, p =0.08)[/tex]
And for this case we want to find this probability;
[tex] P(X \geq 3)[/tex]
and we can use the complement rule and we got:
[tex] P(X \geq 3)= 1- P(X<3)= 1-P(X \leq 2)= 1- [P(X=0) +P(X=1) +P(X=2)][/tex]
And we can find the individual probabilites using the probability mass function and we got:
[tex] P(X=0) = (15C0) (0.08)^{0} (1-0.08)^{15-0}=0.286 [/tex]
[tex] P(X=1) = (15C1) (0.08)^{1} (1-0.08)^{15-1}=0.373 [/tex]
[tex] P(X=2) = (15C2) (0.08)^{2} (1-0.08)^{15-2}=0.227 [/tex]
And replacing we got:
[tex] P(X\geq 3) = 1-[0.286+0.373+0.227 ]= 0.114[/tex]
the number 117 is divisible by nine and only if the sum of the digits in 117 are evenly divisible by 9, truth or false
Answer:
true
Step-by-step explanation:
The test for divisibility by 9 is to add all the digits of the number. If that sum is divisible by 9, then the number is divisible by 9.
HElp 64 points and Brainlyiest to who ever can solve the problem question on the picture
Which property was applied in this step?
Addition Property of Equality
O Subtraction Property of Equality
Multiplication Property of Equality
Division Property of Equalit
Answer:
Addition Property of Equality
Step-by-step explanation:
You are adding 3/4 to both sides to isolate the x.
A lady buys bananas at 3 Rs 5 and sells them at 2 Rs for Rs 5; find her gain percent.
Answer:
50%
Step-by-step explanation:
Cost of 3 bananas= Rs. 5 ⇒ cost of 1 banana= Rs. 5/3
Selling price of 2 bananas= Rs. 5 ⇒ selling price of 1 banana= Rs. 5/2
Gain= Rs. (5/2- 5/3)= Rs. (15/6- 10/6)= Rs. 5/6
Gain %= 5/6÷5/3 × 100%= 50%
ASK YOUR TEACHER Does the function satisfy the hypotheses of the Mean Value Theorem on the given interval? f(x) = x3 + x − 9, [0, 2]
Answer:
Yes
Step-by-step explanation:
The Mean Value Theorem states that if f(x) is defined and continuous on the interval [a,b] and differentiable on (a,b), then there is at least one number c in the interval (a,b) (that is a < c < b) such that
[tex]f'(c)=\dfrac{f(b)-f(a)}{b-a}[/tex]
Given [tex]f(x)=x^3+x-9$ in [0,2][/tex]
f(x) is defined, continuous and differentiable.
[tex]f(2)=2^3+2-9=1\\f(0)=0^3+0-9=-9[/tex]
[tex]f'(c)=\dfrac{f(2)-f(0)}{2-0}=\dfrac{1-(-9)}{2}=5[/tex]
[tex]f'(x)=3x^2+1[/tex]
Therefore:
[tex]f'(c)=3c^2+1=5\\3c^2=5-1\\3c^2=4\\c^2=\frac{4}{3} \\c=\sqrt{\frac{4}{3}} =1.15 \in [0,2][/tex]
Since c is in the given interval, the function satisfy the hypotheses of the Mean Value Theorem on the given interval.
Find the values of b and c so g(x)=6x^2+bx+c has a vertex of (7,-9).
Answer:
b = -84
c = 285
Step-by-step explanation:
Given that:
[tex]g(x)=6x^2+bx+c[/tex]
Vertex of (7, -9).
To find:
Value of b and c = ?
Solution:
It can be seen that the given equation is of a parabola.
Standard equation of a parabola is given as:
[tex]y =Ax^2+Bx+C[/tex]
x coordinate of vertex is given as:
[tex]h=\dfrac{-B}{2A}[/tex]
Here, A = 6, B = b and C = c, h = 7 and k = -9
[tex]7=\dfrac{-b}{2\times 6}\\\Rightarrow b = -84[/tex]
So, the equation of given parabola becomes:
[tex]y=6x^2-84x+c[/tex]
Now, putting the value of vertex in the equation to find c.
[tex]-9=6\times 7^2-84\times 7+c\\\Rightarrow -9=294-588+c\\\Rightarrow -9=-294+c\\\Rightarrow c = 285[/tex]
So, the answer is :
b = -84
c = 285