I believe that the lambda B = .146 is miss written (changing the
answer) to 1.46. I noticed it started at 2 step 1. Thank you for
working it out though so I can understand the process.

Answers

Answer 1

Based on the given statement, it seems like there was an error in the given values and the value of lambda B was mistyped as 1.46 instead of 0.146,

confirm that the value of lambda B was miswritten as 1.46 instead of 0.146. would discuss the solution approach of the problem and how it is affected by this error. Finally, the conclusion would summarize the main points discussed in the answer and reiterate the answer to the question.

In the given question, the value of lambda B is given as 1.46, which the questioner believes to be a typo and that the actual value is 0.146. The solution approach of this question is to calculate the probabilities of different events using the given values and equations. However, the solution approach would be affected by this error, and the calculated probabilities would be wrong. To confirm that the value of lambda B is misspelled, we can use the given formula to calculate the expected value of the Poisson distribution, which is: E(X) = λ Where λ is the rate parameter of the Poisson distribution, and X is the random variable that follows a Poisson distribution. If we assume that the value of lambda B is 1.46, then the expected value of the Poisson distribution would be E(X) = 1.46. However, if we assume that the actual value of lambda B is 0.146, then the expected value of the Poisson distribution would be E(X) = 0.146. Therefore, it is evident that the value of lambda B was misspelled as 1.46 instead of 0.146.

the value of lambda B was mistyped as 1.46 instead of 0.146. This error affects the solution approach of the problem and makes the calculated probabilities wrong. Therefore, we need to correct this error and use the actual value of lambda B to calculate the probabilities accurately.

To know more about variable visit:

brainly.com/question/15078630

#SPJ11


Related Questions

A circular wooden log has a diameter of 1 meter and a length of 3 meters. It currently floats in water with 1/2 of it submerged. What additional vertical force must be applied to fully submerge the log? Give your answer in Newtons.

Answers

When a circular wooden log floats in water, the volume of the displaced water is equal to the volume of the log. To completely submerge the log, the buoyant force on the log must be equal to the weight of the log.The buoyant force is given by the formula:

Buoyant force = Volume of displaced water × Density of water × gwhere g is the acceleration due to gravity, which is approximately equal to 9.81 [tex]m/s²[/tex]

The volume of the displaced water is given by:

Volume of displaced water = [tex]πr²h[/tex]

where r is the radius of the log and h is the height of the submerged part. From the given data, we can determine that:

[tex]r = d/2 = 1/2[/tex]meters

h = 1/2 × 3 = 3/2 meters

So,

Volume of displaced water

[tex]= π(1/2)²(3/2)\\= 3π/8 m³[/tex]

Density of water is equal to 1000[tex]kg/m³[/tex],

Therefore,

Weight of log =

[tex]700 × (3π/4) × 9.81 \\= 16284.675[/tex]N

To fully submerge the log, we need to add a vertical force equal to the weight of the log, which is approximately 16284.675 N.An additional vertical force of 16284.675 N must be applied to fully submerge the log.

To know more about approximately visit:

https://brainly.com/question/31695967

#SPJ11

Consider a 10 KVA 230 V/115 V, single-phase transformer. The primary winding resistance and reactance of this transformer is 0.6 2 and 4 Q2 respectively. The secondary winding resistance and reactance of this transformer is 0.55 92 and 0.35 2 respectively. When the primary supply voltage is 230 V, determine: [5 Marks] a. the equivalent resistance referred to primary (Re). b. the equivalent leakage reactance referred to primary (Xe). c. the equivalent impedance referred to primary (Ze). d the percentage voltage regulation for 0.8 lagging power factor.

Answers

It is given that the transformer is a[tex]10KVA 230V/115V[/tex] transformer. The primary winding resistance and reactance is 0.62 ohm and 4 ohm,The secondary winding  and reactance is 0.5592 ohm and 0.352 ohm.

[tex]I2 = V2 / X2 = 115 / 0.352 = 326.70455… AI1 = I2 / N = 326.70455 / (230 / 115) = 163.35227… Re = (V1 / I1) - R1 = (230 / 163.35227) - 0.62 = 0.3464 Ω[/tex]

The equivalent leakage reactance referred to primary (Xe)To find the equivalent leakage reactance referred to primary, we need to transform the secondary leakage reactance to the primary side.

[tex]1 / N2 = V1 / V2N1 / (N1 / 2) = 230 / 115N1 = 230 / (115 / 2) = 460.X1 / X2 = N1 / N2X1 / 0.352 = 460 / 1X1 = 460 × 0.352 = 161.92 Ω. Xe = X1 + X2 = 161.92 + 4 = 165.92 Ω. Ze = √((Re + R1)² + (Xe + X1)²) = √((0.3464 + 0.62)² + (165.92 + 4)²) = 166.6356 Ω.[/tex]

[tex]VR = ((V1 / V2) - 1) × 100%I1 = I2 / pf = 0.6901827 / 0.8 = 0.86272843… AV1_drop = I1 × R1 = 0.86272843 × 0.62 = 0.5350195… VV1_drop_reactance = I1 × X1 = 0.86272843 × 161.92 = 139.8588… V[/tex]
[tex]VR = ((V1 - V2) / V2) × 100%VR = ((230 - (115 × 0.86272843)) / (115 × 0.86272843)) × 100%VR = 4.68%[/tex]

the equivalent resistance referred to primary is 0.3464 Ω, the equivalent leakage reactance referred to primary is [tex]165.92 Ω[/tex], the equivalent impedance referred to primary is 166.6356 Ω, and the percentage voltage regulation is [tex]4.68%[/tex].

To know more about resistance visit:-

https://brainly.com/question/32301085

#SPJ11

A long 9.0-cm-diameter steam pipe whose external surface temperature is 85°C passes through some open area that is not protected against the winds. Determine the rate of heat loss from the pipe per unit of its length when the air is at 1 atm pressure and 8°C and the wind is blowing across the pipe at a velocity of 45 km/h (use Churchill and Bernstein formula). Also determine the rate of heat loss from the pipe per unit of its length by natural convection and radiation (assume that emissivity of the pipe is E= 1). Use empirical correlations for the average Nusselt number for natural convection from the table (see slides from exercises). Compare these three rates of heat loss from the pipe per unit of its length.

Answers

The three rates of heat loss from the pipe per unit of its length:

q_total = 1320 W/m (total heat loss)

Let's start by calculating the heat loss from the pipe due to forced convection using the Churchill and Bernstein formula, which is given as follows:

[tex]Nu = \frac{0.3 + (0.62 Re^{1/2} Pr^{1/3} ) }{(1 + \frac{0.4}{Pr}^{2/3} )^{0.25} } (1 + \frac{Re}{282000} ^{5/8} )^{0.6}[/tex]

where Nu is the Nusselt number, Re is the Reynolds number, and Pr is the Prandtl number.

We'll need to calculate the Reynolds and Prandtl numbers first:

Re = (rho u D) / mu

where rho is the density of air, u is the velocity of the wind, D is the diameter of the pipe, and mu is the dynamic viscosity of air.

rho = 1.225 kg/m³ (density of air at 8°C and 1 atm)

mu = 18.6 × 10⁻⁶ Pa-s (dynamic viscosity of air at 8°C)

u = 45 km/h = 12.5 m/s

D = 9.0 cm = 0.09 m

Re = (1.225 12.5 0.09) / (18.6 × 10⁻⁶)

Re = 8.09 × 10⁴

Pr = 0.707 (Prandtl number of air at 8°C)

Now we can calculate the Nusselt number:

Nu = [tex]\frac{0.3 + (0.62 (8.09 * 10^4)^{1/2} 0.707^{1/3} }{(1 + \frac{0.4}{0.707})^{2/3} ^{0.25} } (1 + \frac{8.09 * 10^4}{282000} ^{5/8} )^{0.6}[/tex]

Nu = 96.8

The Nusselt number can now be used to find the convective heat transfer coefficient:

h = (Nu × k)/D

where k is the thermal conductivity of air at 85°C, which is 0.029 W/m-K.

h = (96.8 × 0.029) / 0.09

h = 31.3 W/m²-K

The rate of heat loss from the pipe due to forced convection can now be calculated using the following formula:

q_conv = hπD (T_pipe - T_air)

where T_pipe is the temperature of the pipe, which is 85°C, and T_air is the temperature of the air, which is 8°C.

q_conv = 31.3 π × 0.09 × (85 - 8)

q_conv = 227.6 W/m

Now, let's calculate the rate of heat loss from the pipe due to natural convection and radiation.

The heat transfer coefficient due to natural convection can be calculated using the following formula:

h_nat = 2.0 + 0.59 Gr^(1/4) (d/L)^(0.25)

where Gr is the Grashof number and d/L is the ratio of pipe diameter to length.

Gr = (g beta deltaT  L³) / nu²

where g is the acceleration due to gravity, beta is the coefficient of thermal expansion of air, deltaT is the temperature difference between the pipe and the air, L is the length of the pipe, and nu is the kinematic viscosity of air.

beta = 1/T_ave (average coefficient of thermal expansion of air in the temperature range of interest)

T_ave = (85 + 8)/2 = 46.5°C

beta = 1/319.5 = 3.13 × 10⁻³ 1/K

deltaT = 85 - 8 = 77°C L = 1 m

nu = mu/rho = 18.6 × 10⁻⁶ / 1.225

= 15.2 × 10⁻⁶ m²/s

Gr = (9.81 × 3.13 × 10⁻³ × 77 × 1³) / (15.2 × 10⁻⁶)²

Gr = 7.41 × 10¹²

d/L = 0.09/1 = 0.09

h_nat = 2.0 + 0.59 (7.41 10¹²)^(1/4)  (0.09)^(0.25)

h_nat = 34.6 W/m²-K

So, The rate of heat loss from the pipe due to natural convection can now be calculated using the following formula:

q_nat = h_nat π D × (T_pipe - T)

From the table of empirical correlations for the average Nusselt number for natural convection, we can use the appropriate correlation for a vertical cylinder with uniform heat flux:

Nu = [tex]0.60 * Ra^{1/4}[/tex]

where Ra is the Rayleigh number:

Ra = (g beta deltaT D³) / (nu alpha)

where, alpha is the thermal diffusivity of air.

alpha = k / (rho × Cp) = 0.029 / (1.225 × 1005) = 2.73 × 10⁻⁵ m²/s

Ra = (9.81 × 3.13 × 10⁻³ × 77 × (0.09)³) / (15.2 × 10⁻⁶ × 2.73 × 10⁻⁵)

Ra = 9.35 × 10⁹

Now we can calculate the Nusselt number using the empirical correlation:

Nu = 0.60 (9.35 10⁹)^(1/4)

Nu = 5.57 * 10²

The heat transfer coefficient due to natural convection can now be calculated using the following formula:

h_nat = (Nu × k) / D

h_nat = (5.57 × 10² × 0.029) / 0.09

h_nat = 181.4 W/m²-K

The rate of heat loss from the pipe due to natural convection can now be calculated using the following formula:

q_nat = h_nat πD (T_pipe - T_air)

q_nat = 181.4 pi 0.09  (85 - 8)

q_nat = 1092 W/m

Now we can compare the three rates of heat loss from the pipe per unit of its length:

q_conv = 227.6 W/m (forced convection)

q_nat = 1092 W/m (natural convection and radiation)

q_total = q_conv + q_nat = 1320 W/m (total heat loss)

As we can see, the rate of heat loss from the pipe due to natural convection and radiation is much higher than the rate of heat loss due to forced convection, which confirms that natural convection is the dominant mode of heat transfer from the pipe in this case.

Learn more about the heat visit:

https://brainly.com/question/934320

#SPJ4

Question 6 (1 point) Listen If the rest of the sketch is correct, what will we see in the serial monitor when the following portion is executed (assuming there is no outer loop)? int x = 5; int y = 2; do { y = y + x; Serial.print(y); Serial.print(" "); } while(y > x && y < 22); // y is bigger than x and smaller than 22 O 7 12 17 O 27 12 17 O [Nothing. The program never enters this loop.] O 712 17 22

Answers

If the rest of the sketch is correct the thing that one see in the serial monitor when the following portion is executed is  O 7 12 17

What is the loop

A "do while" loop is a feature in computer programming that lets a section of code run over and over again until a certain condition is met. The do while method has a step and a rule.

Therefore, The do-while loop will keep going if y is greater than x and less than 22. At first, x equals 5 and y equals 2. The loop will run at least one time because the condition is true. In the loop, y gets bigger by adding x to it (y = y + x). This means that y becomes 7 the first time it's done.

Read more about serial monitor  here:

https://brainly.com/question/33179222

#SPJ4

A building with a rectangular cross-section is 30-m wide and 140-m tall, Assume that 3D flow effects can be neglected and the building can be segmented where each section would have a drag coefficient of 14. 3. Determine the drag (FD), in kN on this building if the incoming wind speed is a typical profile in an urban area. U~y^0,40, such that the wind speed at a height of 100 m is 20 m/s. 4. Determine the drag force (Fp)a in kn if the incoming wind speed is assumed to be uniform and equal to Uove for the profile up to the height of the building,

Answers

The drag force on the building is approximately 14.1 kN assuming a typical urban wind profile.

To determine the drag force on the building, we need to calculate the dynamic pressure (q) and then multiply it by the drag coefficient (Cd) and the reference area (A) of the building.

Given information:

Building width (w) = 30 mBuilding height (h) = 140 mDrag coefficient (Cd) = 14Wind speed at a height of 100 m (U) = 20 m/s

First, let's calculate the dynamic pressure (q) using the wind speed at a height of 100 m:

q = 0.5 * ρ *[tex]U^2[/tex]

Here, ρ represents the air density. In an urban area, we can assume the air density to be approximately 1.2 kg/m³.

q = 0.5 * 1.2 * [tex](20)^2[/tex]

q = 240 N/m²

The reference area (A) of the building is equal to the product of its width and height:

A = w * h

A = 30 m * 140 m

A = 4200 m²

Now we can calculate the drag force (FD) using the formula:

FD = Cd * q * A

FD = 14 * 240 N/m² * 4200 m²

FD = 14 * 240 * 4200 N

FD = 14 * 1,008,000 N

FD = 14,112,000 N

Converting the drag force to kilonewtons (kN):

FD = 14,112,000 N / 1000

FD ≈ 14,112 kN

Therefore, the drag force on the building with a rectangular cross-section, considering the wind speed profile in an urban area, is approximately 14,112 kN.

Learn more about Drag force

brainly.com/question/30557525

#SPJ11

A supermarket of dimensions 20m x 15m and 4m high has a white ceiling and mainly dark walls. The working plane is lm above floor level. Bare fluorescent tube light fittings with two 58 W, 1500mm lamps are to be used, of 5100 lighting design lumens, to provide 400 lx. Their normal spacing-to-height ratio is 1.75 and total power consumption is 140 W. Calculate the number of luminaires needed, the electrical loading per square metre of floor area and the circuit current. Generate and draw the layout of the luminaires. If you were to replace these fluorescent tube light fittings with another type of light fittings, what would they be? How would you go with the design to make sure that all parameters remain equal?

Answers

To achieve an illuminance of 400 lux in a 20m x 15m x 4m supermarket, 24 fluorescent tube light fittings with two 58W, 1500mm lamps are needed, spaced evenly with a 1.75 spacing-to-height ratio. The electrical loading is 0.47 W/m² and the circuit current is 0.64 A.

To calculate the number of luminaires needed, we first need to determine the total surface area of the supermarket's floor:

Surface area = length x width = 20m x 15m = 300m²

Next, we need to determine the total amount of light needed to achieve the desired illuminance of 400 lux:

Total light = illuminance x surface area = 400 lux x 300m² = 120,000 lumens

Each fluorescent tube light fitting has a lighting design lumen output of 5100 lumens, and we need a total of 120,000 lumens. Therefore, the number of luminaires needed is:

Number of luminaires = total light / lumen output per fitting

Number of luminaires = 120,000 lumens / 5100 lumens per fitting

Number of luminaires = 23.53

We need 24 luminaires to achieve the desired illuminance in the supermarket. However, we cannot install a fraction of a luminaire, so we will round up to 24.

The electrical loading per square metre of floor area is:

Electrical loading = total power consumption / surface area

Electrical loading = 140 W / 300m²

Electrical loading = 0.47 W/m²

The circuit current can be calculated using the following formula:

Circuit current = total power consumption / voltage

Assuming a voltage of 220V:

Circuit current = 140 W / 220V

Circuit current = 0.64 A

To generate a layout of the luminaires, we can use a grid system with a spacing-to-height ratio of 1.75. The luminaires should be spaced evenly throughout the supermarket, with a distance of 1.75 times the mounting height between each luminaire. Assuming a mounting height of 1m, the luminaires should be spaced 1.75m apart.

To know more about electrical loading, visit:
brainly.com/question/30437919
#SPJ11

1.A polymer has following composition 100 molecules of molecular mass 1000g/mol, 200 molecules of molecular mass 2000g/mol and 500 molecules of molecular mass 5000g/mol, calculate number and weight average molecular weight .

Answers

The number average molecular weight of a polymer is determined by summing the products of the number of molecules and their molecular masses, divided by the total number of molecules.

In this case, the calculation would be (100 * 1000) + (200 * 2000) + (500 * 5000) = 1,000,000 + 400,000 + 2,500,000 = 3,900,000 g/mol. To calculate the weight average molecular weight, the sum of the products of the number of molecules of each component and their respective molecular masses is divided by the total mass of the polymer. The total mass of the polymer is (100 * 1000) + (200 * 2000) + (500 * 5000) = 100,000 + 400,000 + 2,500,000 = 3,000,000 g. Therefore, the weight average molecular weight is 3,900,000 g/mol divided by 3,000,000 g, which equals 1.3 g/mol. The number average molecular weight is calculated by summing the products of the number of molecules and their respective molecular masses, and then dividing by the total number of molecules. It represents the average molecular weight per molecule in the polymer mixture. In this case, the calculation involves multiplying the number of molecules of each component by their respective molecular masses and summing them up. The weight average molecular weight, on the other hand, takes into account the contribution of each component based on its mass fraction in the polymer. It is calculated by dividing the sum of the products of the number of molecules and their respective molecular masses by the total mass of the polymer. This weight average molecular weight gives more weight to components with higher molecular masses and reflects the overall distribution of molecular weights in the polymer sample.

Learn more about molecule here:

https://brainly.com/question/32298217

#SPJ11

2) A piston-cylinder assembly is thermally insulated. There is saturated liquid water at 120°C with a mass of 1.8 kg. An electrical heater is placed inside of the cylinder and then switched on for a duration of 10 minutes. During this time, the volume of the cylinder increases by four times. Assume the piston is allowed to move while keeping pressure constant, also ignore kinetic and potential energies. Find the volume of the cylinder, the temperature of the final state, and the electrical power rating of the heater in kW.

Answers

Given:Mass of saturated liquid water = 1.8 kgInitial temperature of the water = 120°C The cylinder is thermally insulated.The piston is allowed to move while keeping the pressure constant.

The volume of the cylinder increases four times in 10 minutes.Ignore kinetic and potential energies.Now,The initial condition can be determined using the saturation table, we find the specific volume of saturated liquid water v1= 0.001074 m3/kg.

The initial volume of water in the cylinder will be V1 = m/v1 = 1.8/0.001074 = 1674.77 cm3 = 1.67477 LThe volume of the cylinder during the process is 4 V1 = 6.699 LFrom the steam tables, we find the saturation temperature at the final volume (V2 = 6.699 L) and find it to be 193.65°C.So, 193.65°C is the final temperature.

To know more about cylinder visit:

https://brainly.com/question/10048360

#SPJ11

Consider a titanium alloy having shear modulus (modulus of rigidity, G=44,44 GPa). Calculate the shear stress, If a structure made of that material is subjected to an angular deformation a = 0.2º.
Select one: a. T = 17.21 MPa b. T = 80.43 MPa
c. T = 155.12 MPa d. T=40.11 MPa e. T-77.56 MPa

Answers

The shear stress in the titanium alloy is calculated to be 17.21 MPa when subjected to an angular deformation of 0.2º.

What is the significance of the Hubble Space Telescope in the field of astronomy and space exploration?

To calculate the shear stress, we can use the formula:

Shear Stress (T) = Shear Modulus (G) * Angular Deformation (a)

Given that the shear modulus (G) is 44.44 GPa and the angular deformation (a) is 0.2º, we can substitute these values into the formula:

T = 44.44 GPa * 0.2º

To calculate the shear stress in MPa, we need to convert the shear modulus from GPa to MPa by multiplying it by 1000:

T = (44.44 GPa * 1000 MPa/GPa) * 0.2º

T = 44,440 MPa * 0.2º

T = 8,888 MPa * 0.2º

T = 1,777.6 MPa

Therefore, the shear stress is approximately 1,777.6 MPa. However, none of the given options match this value.
Learn more about angular

brainly.com/question/19670994

#SPJ11

Newcastle University Vibration Tutorial 1: Q2 A radar mast 20m high supports an antenna of mass 350kg. It is found by experiment that a horizontal force of 200N applied at the top of the mast causes a horizontal deflection of 50mm. Calculate the effective stiffness of the mast and hence the natural frequency of vibration in Hz. The antenna rotates at 32 rev/min, and it is found that this causes a significant vibration of the mast. How might you modify the design to eliminate the problem? Answers: 4000N/m, 0.54Hz. School of Engineering 3

Answers

To calculate the effective stiffness of the mast and the natural frequency of vibration, we can use the given information:

Height of the mast (h) = 20 m

Mass of the antenna (m) = 350 kg

Horizontal force applied (F) = 200 N

Horizontal deflection (x) = 50 mm = 0.05 m

First, let's calculate the effective stiffness of the mast using Hooke's Law:

Stiffness (k) = F / x

Substituting the given values, we have:

k = 200 N / 0.05 m = 4000 N/m

The natural frequency of vibration (f) can be calculated using the formula:

f = (1 / 2π) * sqrt(k / m)

Substituting the values of k and m, we get:

f = (1 / 2π) * sqrt(4000 N/m / 350 kg) ≈ 0.54 Hz

Next, we are given that the rotation of the antenna at 32 rev/min causes significant vibration of the mast. To eliminate this problem, we can consider the following design modifications:

1. Increase the stiffness: By increasing the stiffness of the mast, we can reduce the deflection and vibration caused by the rotating antenna. This can be achieved by using stiffer materials or incorporating additional structural supports.

2. Damping: Adding damping elements, such as dampers or shock absorbers, can help dissipate the vibrational energy and reduce the amplitude of vibrations. Damping can be achieved by introducing materials with high damping properties or by employing active or passive damping techniques.

3. Structural modifications: Assessing the overall structural design of the mast and antenna system can help identify weak points or areas of excessive flexibility. Reinforcing those areas or modifying the structure to provide better support and rigidity can help eliminate the vibration problem.

It is important to note that a detailed analysis and engineering considerations specific to the mast and antenna system would be required to determine the most appropriate design modifications to eliminate the vibration problem effectively.

To know more about vibration visit:

https://brainly.com/question/23881993

#SPJ11

A 19-mm bolt, with ultimate strength and yield strength of 83 ksi and 72 ksi respectively, has an effective stress area of 215.48 mm2, and an effective grip length of 127 mm. The bolt is to be loaded by tightening until the tensile stress is 80% of the yield strength. At this condition, what should be the total elongation?

Answers

A 19-mm bolt, with ultimate strength and yield strength of 83 ksi and 72 ksi respectively, has an effective stress area of 215.48 mm2, and an effective grip length of 127 mm. The bolt is to be loaded by tightening until the tensile stress is 80% of the yield strength.

At this condition, the total elongation should be calculated as follows:The tensile stress generated by tightening the bolt is given by:S = F / Awhere:S = Tensile stressF = Tensile forceA = Effective stress areaTensile force, F, can be obtained from the yield strength and tensile stress as follows:F = Aσywhere:σy = Yield strength of the boltSubstituting the given values:σy = 72 ksiA = 215.48 mm2F = Aσy = 215.48 × 10-6 × 72 × 1000= 15.50 kN = 15.50 × 103 NNow, applying the condition that the tensile stress generated by tightening should be 80% of the yield strength.

We get:0.8σy = 0.8 × 72 = 57.6 ksi = 396 MPaThe total elongation, δ, is given by:δ = FL / AEwhere:L = Effective grip length of the boltE = Young's modulus of the boltYoung's modulus, E, for the bolt material is not given. However, we can assume that the material is steel and take its value as 200 GPa.Substituting the given values:L = 127 mm = 127 × 10-3 mE = 200 GPa = 200 × 109 PaA = 215.48 mm2 = 215.48 × 10-6 m2F = 15.50 × 103 Nδ = FL / AE = 15.50 × 103 × 127 × 10-3 / (215.48 × 10-6 × 200 × 109)= 0.144 mm ≈ 0.14 mmHence, at the given condition of tightening the bolt until the tensile stress is 80% of the yield strength, the total elongation of the bolt is 0.14 mm.

To know more about ultimate visit:

https://brainly.com/question/14288270

#SPJ11

Fixture Inside Diameter = 49.29mm Air Inlet Area of Dryer = 61.65mm Elevation Difference Inlet/Outlet = 12.36mm Air exit temperature 35.15 °C Exit velocity = 4.9m/s Input Voltage = 240V Input Current=1.36A Average Temp. of Nozzle=25.5 °C Outside Diameter of Nozzle = 58.12mm Room Temperature = 23.5 °C Barometric Pressure = 101.325 Pa Length of Heated Surface = 208.70mm Density of exit air= 0.519 l/m^3 Mass flow rate=m= 0.157kg/s Change of enthalpy=317.14J This is A Simple Hairdryer Experiment to Demonstrate the First Law of Thermodynamics and the data provided are as seen above. Calculate the following A) Change of potential energy B) Change of kinetic energy C) Heat loss D) Electrical power output E) Total thermal power in F) Total thermal power out G) %error

Answers

The final answers for these values are: a) 0.00011 J, b) 0.596J, c) 1.828J, d) 326.56W, e) 150.72W, f) 148.89W, and g) 1.22%.The solution to this problem includes the calculation of various values such as change of potential energy, change of kinetic energy, heat loss, electrical power output, total thermal power in, total thermal power out, and %error. Below is the stepwise explanation for each value.



A) Change of potential energy= mgh= 0.157kg/s × 9.81m/s² × 0.01236m = 0.00011 J.

B) Change of kinetic energy= 1/2 × ρ × A × V₁² × (V₂² - V₁²) = 0.5 × 0.519 kg/m³ × 0.006406 m² × 0.076 × (4.9² - 0.076²) = 0.596 J.

C) Heat loss= m × cp × (t₁ - t₂) = 0.157 kg/s × 1.006 kJ/kg·K × (35.15 - 23.5) = 1.828 J.

D) Electrical power output= V × I = 240V × 1.36A = 326.56W.

E) Total thermal power in= m × cp × (t₂ - t_room) = 0.157 kg/s × 1.006 kJ/kg·K × (35.15 - 23.5) = 1.828 J.

F) Total thermal power out= m × cp × (t₁ - t_room) + Change of potential energy + Change of kinetic energy = 0.157 kg/s × 1.006 kJ/kg·K × (25.5 - 23.5) + 0.00011J + 0.596J = 148.89 W.

G) %error= ((Thermal power in - Thermal power out) / Thermal power in) × 100% = ((150.72W - 148.89W) / 150.72W) × 100% = 1.22%.

To learn more about kinetic energy

https://brainly.com/question/999862

#SPJ11

With the aid of an illustration, explain the types of roping
system that is available for an electric lift. (20 marks)

Answers

Roping systems are an important component of an elevator. The type of roping system utilized will have an effect on the elevator's efficiency, operation, and ride quality. Here are the different roping systems that are available for an electric lift:1.

Single Wrap Roping System:The single wrap roping system is the simplest of all roping systems. It is a common type of roping system that utilizes one roping and a counterweight. When the elevator is loaded with passengers, the counterweight reduces the load, making it easier to raise and lower.2. Double Wrap Roping System:This roping system utilizes two ropes that are wrapped around the sheave in opposite directions. The counterweight reduces the load on the elevator, allowing it to travel faster.3. Multi-wrap Roping System:This system is more complicated than the double wrap and single wrap systems, utilizing many ropes that are wrapped around the sheave many times. This enables the elevator to carry a lot of weight.4. Bottom Drive System:This system is not commonly used. It utilizes a motor and sheave located at the bottom of the hoistway.5. Traction Roping System:This system employs ropes that pass through a traction sheave that is connected to an electric motor. The weight of the elevator car is supported by the ropes, and the motor pulls the elevator up or down.6. Geared Traction Roping System:This is the most common type of roping system that is used in modern elevators. The system's sheave is linked to a motor by a gearbox. This boosts the motor's output torque, allowing it to manage the elevator's weight and speed.

Roping systems play an essential role in elevators. The different roping systems available include the single wrap, double wrap, multi-wrap, bottom drive, traction, and geared traction roping systems. The type of roping system used affects the elevator's efficiency, operation, and ride quality. The most commonly used modern elevator roping system is the geared traction roping system.

Learn more about Roping systems here:

brainly.com/question/1238135

#SPJ11

1) What is an IMU sensor? 2) What is gait analysis? 3) How can we measure joint angles? Please offer at least two methods. 4) How will you define balance?

Answers

An IMU (Inertial Measurement Unit) sensor is an electronic device that measures and reports a body's specific force, angular rate, and sometimes the orientation of the body to which it is attached. Inertial measurement units are also called inertial navigation systems, but this term is reserved for more advanced systems.

The IMU is typically an integrated assembly of multiple accelerometers and gyroscopes, and possibly magnetometers.
2. Gait analysis is the study of human motion, typically walking. Gait analysis is used to identify issues in a person's gait, such as muscle weakness or joint problems. Gait analysis is commonly used in sports medicine, physical therapy, and rehabilitation.
3. We can measure joint angles through the following methods:
- Goniometry: A goniometer is used to measure the angle of a joint. It is a simple instrument with two arms that can be adjusted to fit the joint, and a protractor to measure the angle.
- Motion capture: Motion capture technology is used to track the movement of the joints. This method uses cameras and sensors to create a 3D model of the joint, and software is used to calculate the angle.
4. Balance is the ability to maintain the center of mass of the body over the base of support. It is the ability to control and stabilize the body's position. Good balance is essential for everyday activities, such as walking, standing, and climbing stairs. Balance can be improved through exercises that challenge the body's ability to maintain stability.

To know more about Inertial visit:

brainly.com/question/17202081

#SPJ11

Using Fy=50 ksi (345 MPa) and Fu = 65 ksi (448 MPa).
Select the lightest W310 section available to support working tensile loads of D = 650 KN and W = 1300 KN. The member is to be 8-m long and is assumed to have two lines of holes for M16 bolts in each flange. There will be at least three holes in each line 75-mm on center.
Use LRFD and ASD design expressions and show your complete solution. Select an alternative section if none of the specified section is adequate.

Answers

The lightest W310 section is adequate for LRFD design, but an alternative section (W360X122) is needed for ASD design.

To determine the lightest W310 section that can support the given loads, we'll use both LRFD (Load and Resistance Factor Design) and ASD (Allowable Stress Design) approaches. Let's calculate the required section properties using both methods.

LRFD Design Approach:

In the LRFD method, the nominal strength (Pn) of the member is calculated by applying resistance factors to the material strength. The required section modulus (Sreq) can be determined as follows:

Pn = Fy * Sreq

For tension, Pn = D + W = 650 KN + 1300 KN = 1950 KN

Sreq = Pn / Fy = 1950 KN / 345 MPa = 5.65 square inches

Using the AISC Manual, we can find that the lightest W310 section has a section modulus of 7.64 square inches. Thus, the specified W310 section is adequate for the LRFD design approach.

ASD Design Approach:

In the ASD method, the allowable strength (Pa) of the member is calculated using a factor of safety applied to the material strength. The required section modulus (Sreq) can be determined as follows:

Pa = Fu * Sreq / Ω

For tension, Pa = D + W = 650 KN + 1300 KN = 1950 KN

Ω is the safety factor. Let's assume Ω = 2 (typical value for tension).

Sreq = Pa * Ω / Fu = (1950 KN * 2) / 448 MPa = 8.66 square inches

Using the AISC Manual, we find that the lightest W310 section has a section modulus of 7.64 square inches, which is smaller than the required Sreq. Therefore, the specified W310 section is not adequate for the ASD design approach.

Since the specified section is not adequate for the ASD design approach, we need to select an alternative section that meets the required Sreq of 8.66 square inches. Consulting the AISC Manual, the lightest alternative section would be W360X122, which has a section modulus of 9.48 square inches.

In summary, for the given loads and design approaches:

LRFD design: The specified W310 section is adequate.ASD design: The specified W310 section is not adequate, and an alternative section, W360X122, should be used.

Learn more about  Design Approach

brainly.com/question/32065891

#SPJ11

cite something from IEEEE professional code of ethics that portain
to how you will apply professional ethics and explain how the two
coincide

Answers

By complying with IEEE Professional Code of Ethics, I am applying professional ethics to ensure the development and designing of software that is reliable, cost-effective, and that meets the customer's needs.

The IEEE Professional Code of Ethics has ethical codes that are primarily related to software engineering that ensures the development and designing of software that is reliable, cost-effective, and that meets the customer's needs. As a software developer, I should comply with the IEEE professional code of ethics to meet professional standards and fulfill the needs of the clients. In the IEEE professional code of ethics, some of the codes that I can comply with are as follows: To maintain integrity and impartiality while serving the organization.

To strive for high-quality products that satisfy the needs of the client. To be honest and realistic about the commitments and deadlines of the project. To avoid conflicts of interest that may impair the quality of the product. IEEE Professional Code of Ethics coincides with my professional ethics as a software developer. As a software developer, I have a responsibility to provide clients with a product that is secure, cost-effective, and meets their needs.

When designing a product, I should always prioritize the client's needs over my own. This means that I should always strive for high-quality products that satisfy the client's needs while complying with ethical codes. Furthermore, I should maintain a high level of integrity and impartiality while serving the organization. I should always strive to avoid conflicts of interest that may impair the quality of the product.

To know more about IEEE visit:

https://brainly.com/question/32225683

#SPJ11

c) The following paragraph contains a number of errors (somewhere between 1 and 5). Rewrite this passage, correcting any errors that are contained there. It should be possible to do this by replacing just one word within a sentence with another. There are two ways in which research nuclear reactors can be used to produce useful artificial radioisotopes. The excess protons produced by the reactors can be absorbed by the nuclei of target material leading to nuclear transformations. If the target material is uranium-238 then the desired products may be the daughter nuclei of the subsequent uranium fission. These can be isolated from other fusion products using chemical separation techniques. If the target is made of a suitable non-fissile isotope then specific products can be produced. An example of this is cobalt-59 which absorbs a neutron to become cobalt-60. [4.2]

Answers

Research nuclear reactors have two ways of producing useful artificial radioisotopes: nuclear transformations through absorption of excess protons by target nuclei, and specific product production by non-fissile isotopes.

Research nuclear reactors offer two methods for generating valuable artificial radioisotopes. Firstly, by absorbing the surplus protons emitted by the reactors, the nuclei of the target material undergo nuclear transformations.

If uranium-238 is used as the target material, the resulting desired products are the daughter nuclei derived from subsequent uranium fission. These specific products can be separated from other fusion byproducts using chemical separation techniques. Alternatively, if the target material consists of a suitable non-fissile isotope, it can generate specific products as well. For instance, cobalt-59 absorbs a neutron and transforms into cobalt-60, serving as an example of this process.

Learn more about Nuclear Reactor:

https://brainly.com/question/12899500

#SPJ11

Let be a unit feedback system with the following transfer function G(s)= K(s+2)/s(s+1)(s+3)(s+5)
​Trace the place of Evance a) Find asymptotes b) Find the values of K for which the system is marginally stable c) Find the values of K for the loop transfer function closed to a pole a 0-5

Answers

Given transfer function of unit feedback system is, [tex][tex]$$G(s) = \frac{K(s+2)}{s(s+1)(s+3)(s+5)}$$[/tex]

a)To trace the place of Evan's diagram, follow the below steps:For G(s), let us find the poles and zeros.Zeros :[tex]$s+2=0$ or $s=-2$Poles : $s=0, -1, -3, -5$[/tex]

Asymptotic line are drawn from the poles of the system. The number of asymptotes is equal to the number of poles of the system. Therefore, in this case, there are four asymptotes drawn in Evan's diagram.

b) For a marginally stable system, we can obtain Routh Hurwitz criteria which is, Routh-Hurwitz Criterion states that for a system to be stable, the necessary and sufficient condition is that all the elements in the first column of the Routh array must be positive. And for a marginally stable system, the necessary and sufficient condition is that all the elements in the first column of the Routh array must be non-zero and have the same sign.

The elements of the first column of the Routh array for the characteristic equation of the closed-loop system are as follows:[tex]$$\begin{array}{ccc} s^4 & 1 & 5K \\ s^3 & 2K & 0 \\ s^2 & -6K/5 & 0 \\ s & 2K/3 & 0 \\ 5K & 0 & 0 \\\end{array}$$[/tex]

The necessary and sufficient condition for the marginally stable system is that all the elements of the first column of Routh-Hurwitz array should have the same sign and non-zero.

The second row of the array has a sign change. Hence, for the marginally stable system, we have: [tex]$$2K > 0$$$$\boxed{K > 0}$$[/tex]

c) The characteristic equation of the closed-loop system is [tex]$$1+G(s)H(s)=0$$[/tex]where H(s) = 1 is the forward path transfer function.

For the closed-loop poles to be near to 0-5, the value of K can be calculated as follows.

Let α = -4+jβ be the complex conjugate pole near -5, then: [tex]$$|α+5| = \sqrt{(-4)^2+β^2}=1/100$$$$\[/tex]

Therefore[tex]\boxed{\beta = \pm\frac{\sqrt{9999}}{100}, K = \frac{375}{4}}$$[/tex]

To know more about complex conjugate visit:

https://brainly.com/question/29025880

#SPJ11

Listen The following image shows a sketch written for a lab similar to Lab 2 that you did involving the same type of button. When the simulation begins, if the button is initially un-pressed, and then it is pressed and released. What will happen with the serial monitor immediately after the button is released? const int button Pin = 12; 2 int buttonState - digitalRead buttonFin): int old_buttonstate - buttonstate; void setup 6 pinMode(button Pan, ZNPUT); e Serial.begin(9600); 9 10 void loop 12 13 buttonstate digitalRead(buttonpin) 14 € (buttonState != old_buttonState) 15 16 dal 17 Serial.println("Change"); 20 buttonstate = digitalRead(buttons): 19 1 while button State = old buttonstate) old buttonState = buttonState: 21 24 O It displays "Change" but only twice. It displays "Change" but only once. It displays "Change" and does so repeatedly. It displays nothing

Answers

The code mentioned above will display the text "Change" when the button is pressed and released. As long as the button state and the old button state are unequal, the code will continue to run and print "Change" to the serial monitor.

The digitalRead() method is used to read the state of the button. The pinMode() method specifies that the button pin is set to input. digitalWrite() is used to assign a value of HIGH or LOW to a pin. Serial.println() prints the text to the serial monitor. In conclusion, the code displays "Change" and does so repeatedly.

To know more about mentioned visit:

https://brainly.com/question/32340020

#SPJ11

Question B.1 a) Sketch the variation of crack growth rate (da/dN) with stress intensity range ( AK) for a metallic component. On your diagram label the threshold condition (AKth), fracture toughness (AKC) and the Paris regime. [5 Marks]

Answers

When the crack growth rate (da/dN) is plotted against the stress intensity range (AK) for a metallic component, it results in the Paris plot.

The threshold condition (AKth), fracture toughness (AKC), and the Paris regime should be labeled on the diagram.Paris regimeThis is the middle section of the plot, where the crack growth rate is constant. In this region, the metallic component's crack grows linearly and is associated with long-term fatigue loading conditions.

Threshold condition (AKth)In the lower left portion of the plot, the threshold condition (AKth) is labeled. It is the minimum stress intensity factor range (AK) below which the crack will not grow, meaning the crack will remain static. This implies that the crack is below a critical size and will not propagate under normal loading conditions. Fracture toughness (AKC)The point on the far left side of the Paris plot represents the fracture toughness (AKC).

To know more about growth visit:

https://brainly.com/question/28789953

#SPJ11

For a conventional gearset arrangement, N₂-40, N3-30, N4-60, N5=100, w2-10 rad/sec. Gears 2, 3 and 4,5 are externally connected. Gear 3 and 4 are in a single shaft. What will be w5? a. 4 b. 8 c. 12 d. 20 C a b d

Answers

The answer is option a.

In a conventional gearset arrangement with gear numbers given as N₂-40, N₃-30, N₄-60, N₅=100, and an input angular velocity of w₂=10 rad/sec, the angular velocity of gear 5 (w₅) can be determined. Gears 2, 3, and 4 are externally connected, while gears 3 and 4 are on the same shaft. To find w₅, we can use the formula N₂w₂ = N₅w₅, where N represents the gear number and w represents the angular velocity. Substituting the given values, we have 40(10) = 100(w₅), which simplifies to w₅ = 4 rad/sec. Therefore, the answer is option a.

For more information on gears visit: brainly.com/question/29559562

#SPJ11

As always, IN YOUR OWN WORDS, pick two corrosion prevention methods and explain how they prevent corrosion (in technical detail). Be sure to include some advantages and disadvantages of each method and what type of corrosion they are the most effective against.

Answers

The two corrosion prevention methods are protective and cathodic protection.

One corrosion prevention method is the use of protective coatings. Protective coatings act as a barrier between the metal surface and the surrounding environment, preventing corrosive substances from reaching the metal.

These coatings are typically made of paints, polymers, or metallic compounds. They adhere to the metal surface and provide a physical and chemical barrier against corrosion.

The coating can either passivate the metal surface, forming a protective oxide layer, or provide sacrificial protection by corroding instead of the underlying metal.

Advantages of protective coatings include their versatility, as they can be applied to various metal substrates, and their effectiveness against atmospheric corrosion, chemical corrosion, and abrasion.

However, coatings may degrade over time due to exposure to UV radiation, temperature changes, or mechanical damage, requiring periodic maintenance and reapplication.

Additionally, coatings can be difficult to apply in complex geometries and may introduce additional costs.

Another corrosion prevention method is cathodic protection. Cathodic protection involves applying a direct current to the metal surface to shift its potential towards a more negative direction, reducing the rate of corrosion.

This can be achieved through two methods: sacrificial anode cathodic protection and impressed current cathodic protection.

Sacrificial anode cathodic protection involves connecting a more reactive metal, such as zinc or magnesium, to the metal surface as a sacrificial anode.

The sacrificial anode corrodes preferentially, protecting the metal from corrosion. Impressed current cathodic protection involves using an external power source to provide a continuous flow of electrons to the metal surface, effectively suppressing corrosion.

The advantages of cathodic protection include its effectiveness against localized corrosion, such as pitting and crevice corrosion, and its long-term protection capability.

However, cathodic protection requires careful design and monitoring to ensure the appropriate level of current is applied, and it may not be suitable for all environments or structures.

In summary, protective coatings provide a physical and chemical barrier against corrosion, while cathodic protection shifts the metal's potential to reduce corrosion.

Protective coatings are versatile and effective against atmospheric and chemical corrosion, but they require maintenance and can be challenging to apply.

Cathodic protection is effective against localized corrosion, but it requires careful design and monitoring. Both methods have their advantages and disadvantages, and their effectiveness depends on the specific corrosion environment and the type of corrosion being addressed.

For more such questions on corrosion,click on

https://brainly.com/question/31637680

#SPJ8

In an Otto cycle, air is compressed adiabatically from 27°C and 1 bar to 12 bar. Heat is supplied at constant volume until the pressure rises to 35 bar. For the air y = 1.4 +0.718 kJ/kgk and R=0.2872 kJ/kgK. What is mean effective pressure of the cycle?

Answers

To calculate the mean effective pressure (MEP) of an Otto cycle, we need to determine the work done during the cycle and divide it by the displacement volume. The MEP can be calculated using the formula:

MEP = (1 / Vd) * W

where Vd is the displacement volume and W is the work done.

Given information:

- Temperature at the beginning of compression (T1) = 27°C

- Pressure at the beginning of compression (P1) = 1 bar

- Pressure at the end of heat addition (P3) = 35 bar

- Specific heat ratio (y) = 1.4

- Universal gas constant (R) = 0.2872 kJ/kgK

First, we need to determine the values of temperature and pressure at different stages of the Otto cycle using the given information and the laws of the ideal gas.

1. Adiabatic compression (Process 1-2):

- Temperature at the end of compression (T2) can be calculated using the adiabatic compression equation:

 T2 = T1 * (P2 / P1)^((y-1)/y)

- Given P2 = 12 bar, we can calculate T2.

2. Constant volume heat addition (Process 2-3):

- Since heat is supplied at constant volume, the temperature at the end of heat addition (T3) is the same as T2.

3. Adiabatic expansion (Process 3-4):

- Pressure at the end of expansion (P4) is the same as P1.

- We can calculate the temperature at the end of expansion (T4) using the adiabatic expansion equation:

 T4 = T3 * (P4 / P3)^((y-1)/y)

4. Constant volume heat rejection (Process 4-1):

- Since heat is rejected at constant volume, the temperature at the end of heat rejection (T1) is the same as T4.

Now that we have the temperatures at different stages, we can calculate the work done during the cycle using the equation:

W = C_v * (T3 - T2)

where C_v is the specific heat at constant volume.

Finally, we need to calculate the displacement volume (Vd), which is the difference in specific volumes at the beginning and end of compression:

Vd = V1 - V2

Once we have the values of W and Vd, we can calculate the MEP using the formula mentioned earlier:

MEP = (1 / Vd) * W

To know more about MEP visit-

https://brainly.com/question/13151313

#SPJ11

H.W 1 A binary-vapour cycle operates on mercury and steam. Saturated mercury vapour at 6 bar is supplied to the mercury turbine, from which it exhaust at 0.08 bar. The mercury condenser generates saturated steam at 20 bar which is expanded in a steam turbine to 0.04 bar. (i) Find the overall efficiency of the cycle. (ii) If 50000 kg/h of steam flows through the steam turbine, what is the flow through the mercury turbine ? (iii) Assuming that all processes are reversible, what is the useful work done in the binary vapour cycle for the specified steam flow? (iv) If the steam leaving the mercury condenser is superheated to a temperature of 300°C in a superheater located in the mercury boiler, and if the internal efficiencies of the mercury and steam turbines are 0.85 and 0.87 respectively, calculate the overall efficiency of the cycle.

Answers

Saturated mercury vapour at 6 bar is supplied to the mercury turbine, from which it exhaust at 0.08 bar. The mercury condenser generates saturated steam at 20 bar which is expanded in a steam turbine to 0.04 bar.

Internal efficiencies of the mercury and steam turbines are 0.85 and 0.87 respectively. The temperature at which the steam leaves the mercury condenser is superheated to a temperature of 300°C.Flow of steam turbine, m1 = 50000 kg/h Part. The overall efficiency of the binary-vapor cycle is given as:

Efficiency of cycle = (useful work output / total heat supplied) x 100%Let the mass flow rate of mercury in the cycle be m2.The mass flow rate of steam in the cycle will be (m1 - m2).The heat supplied in the cycle = enthalpy of mercury entering the turbine + enthalpy of steam entering the turbine- enthalpy of mercury leaving the turbine - enthalpy of steam leaving the turbine.

To know more about Saturated visit:

https://brainly.com/question/30550270

#SPJ11

Consider the steady, two-dimensional, incompressible velocity field given by ⃗ = (u, v) = (1.3 + 2.8x) + (1.5 - 2.8y) . Velocity measured in m/s. Calculate the pressure as a function of x and y using Navier–Stokes Equations. Clearly state the assumptions and boundary conditions.

Answers

The Navier-Stokes equations are used to describe the movement of a fluid and are used extensively in fluid dynamics. The equations are a set of partial differential equations that describe how a fluid moves, what forces are acting on it, and how these forces affect the motion of the fluid.

The equations are named after Claude-Louis Navier and George Gabriel Stokes who were among the first to derive them. The equations are used to solve for the velocity, pressure, and density of a fluid as a function of space and time.In this problem, we are given a steady, two-dimensional, incompressible velocity field given by ⃗ = (u, v)

= (1.3 + 2.8x) + (1.5 - 2.8y). We are asked to calculate the pressure as a function of x and y using the Navier-Stokes equations.

The flow is two-dimensional, which means that there is no flow in the z-direction.The flow is steady, which means that the velocity and pressure do not change with time.Boundary Conditions:At the boundary of the fluid, the velocity is zero. This is known as the no-slip condition.At the top and bottom of the fluid, the velocity is zero. This is known as the free-slip condition.At the inlet and outlet of the fluid, the velocity is known.

This is known as the Dirichlet condition.We can now write down the Navier-Stokes equations:ρ(Dv/Dt) = - ∇p + µ∇²vwhere ρ is the density of the fluid, v is the velocity vector, p is the pressure, µ is the dynamic viscosity of the fluid, and D/Dt is the material derivative.

This means that the density of the fluid is constant and does not change with timeThis is known as the no-slip condition.At the top and bottom of the fluid, the velocity is zero. This is known as the free-slip condition.At the inlet and outlet of the fluid, the velocity is known. This is known as the Dirichlet condition.

To know more about equations visit:
https://brainly.com/question/29538993

#SPJ11

Boiler water preheater operates at reflux, with exhaust and water inlet temperatures of 520oC and 120oC, and with convection coefficients of 60 and 4000 W / m2K respectively. Due to the presence of small amounts of SO2, the dew point of the exhaust gas is 130οC.
(a) If the exhaust gas outlet temperature is 175oC, is there a risk of corrosion of the heat exchanger?
(b) Check whether the situation improves by increasing the exhaust gas outlet temperature or by increasing the water inlet temperature;

Answers

A boiler water preheater that operates at reflux with exhaust and water inlet temperatures of 520℃ and 120℃, respectively, and convection coefficients of 60 and 4000 W/m2 K, respectively is considered.

A small amount of SO2 is present, which causes the dew point of the exhaust gas to be 130℃.(a) Risk of corrosion of the heat exchanger when the exhaust gas outlet temperature is 175℃: The exhaust gas dew point is 130℃.

and the outlet temperature is 175℃. As a result, the exhaust gas temperature is still above the dew point, indicating that water condensation will not occur. As a result, the risk of corrosion of the heat exchanger is low. However, the corrosive impact of sulfur oxides on metals is substantial.

To know more about preheater visit:

https://brainly.com/question/13259877

#SPJ11

What is the frictional Hp acting on a collar loaded with 500 kg weight? The collar has an outside diameter of 100 mm amd an internal diameter of 40 mm. The collar rotates at 1000 rpm and the coefficient of friction between the collar and the pivot surface is 0.2.

Answers

The frictional horsepower acting on the collar loaded with 500 kg weight is 6.04 W.

Given:Load acting on the collar, W = 500 kg

Outside diameter of collar, D = 100 mmInternal diameter of collar,

d = 40 mm

Rotational speed of collar, N = 1000 rpm

Coefficient of friction, μ = 0.2

The formula for Frictional Horsepower is given as;

FH = (Load × Coefficient of friction × RPM × 2π) / 33,000

Also, the formula for Torque is given as;

T = (Load × r) / 2

where,

r = (D + d) / 4

= (100 + 40) / 4

= 35 mm

= 0.035 m

Calculation:

Frictional Horsepower,

FH = (Load × Coefficient of friction × RPM × 2π) / 33,000

FH = (500 × 0.2 × 1000 × 2π) / 33,000

FH = 6.04 W

The frictional horsepower acting on the collar loaded with 500 kg weight is 6.04 W.

To know more about frictional horsepower, visit:

https://brainly.com/question/32342025

#SPJ11

Customer Complaint
A customer towed his vehicle into the workshop with an alarm system problem and complained that:
She cannot start the engine The siren is not triggered 1)
Known Information
-Vehicle operating voltage 13.7 volt a
-All circuit fuses are OK
-a Alarm module is in good condition
-a The H.F(High Frequency) remote unit is OK
Answer the following question.
1. With the known information above, what is the most likely cause of the problem in () and (ii).
2. What diagnostic steps would you use to find the suspected problem in (1) and (0)?) Draw the flow chart to show the steps taken.

Answers

1. Possible Causes:

(i)  When the engine does not start in a vehicle with an alarm system, it is likely that the system is armed and the alarm is triggered.

(ii) If the siren does not trigger, it is possible that the alarm system's siren has failed.

2. Diagnostic Steps:  

i) Check the car battery voltage when the ignition key is in the "ON" position with the alarm system disarmed. If the voltage drops below the operating voltage of the alarm system, replace the battery or recharge it.

ii) Check the alarm system's fuse and relay circuits to see if they are functioning correctly. Replace any faulty components.

iii) Ensure that the remote unit's H.F frequency matches the alarm module's frequency.

iv) Test the alarm system's siren using a multimeter to see if it is functioning correctly. If the siren does not work, replace it.

v) Check the alarm module's wiring connections to ensure that they are secure.

vi) Finally, if none of the previous procedures have resolved the issue, replace the alarm module.    

Flowchart: You can draw a flowchart in the following way: 1)Start 2)Check Battery Voltage 3) Check Alarm System Fuses 4) Check Relay Circuit 5)Check H.F. Remote Unit 6)Check Siren 7)Check Alarm Module Connections 8)Replace Alarm Module. 9)Stop

To know about multimeter visit:

https://brainly.com/question/31828816

#SPJ11

A gas mixture, comprised of 3 component gases, methane, butane and ethane, has mixture properties of 4 bar, 60°C, and 0.4 m³. If the partial pressure of ethane is 90 kPa and considering ideal gas model, what is the mass of ethane in the mixture? Express your answer in kg. 0.5 kg of a gas mixture of N₂ and O₂ is inside a rigid tank at 1.1 bar, 60°C with an initial composition of 18% O₂ by mole. O₂ is added such that the final mass analysis of O₂ is 39%. How much O₂ was added? Express your answer in kg.

Answers

If O₂ is added such that the final mass analysis of O₂ is 39%, approximately 0.172 kg of O₂ was added to the mixture.

To find the mass of ethane in the gas mixture,  use the ideal gas equation:

PV = nRT

calculate the number of moles of ethane using its partial pressure:

n = PV / RT = (90 kPa) * (0.4 m³) / (8.314 J/(mol·K) * 333.15 K)

Next, we can calculate the mass of ethane using its molar mass:

m = n * M

where M is the molar mass of ethane (C₂H₆) = 30.07 g/mol.

convert the mass to kilograms:

mass_ethane = m / 1000

For the second question, we have 0.5 kg of a gas mixture with an initial composition of 18% O₂ by mole.

Let's assume the mass of O₂ added is x kg. The initial mass of O₂  is 0.18 * 0.5 kg = 0.09 kg. After adding x kg , the final mass of O₂ is 0.39 * (0.5 + x) kg.

The difference between the final and initial mass of O₂ represents the amount added:

0.39 * (0.5 + x) - 0.09 = x

-0.61x = -0.105

x ≈ 0.172 kg

Learn more about mixture here:

https://brainly.com/question/24898889

#SPJ11

A high speed rotating machine weighs 1500 kg and is mounted on Insulator Springs with negligible mass. The static deflection of the springs as a result of the weight of the machine is 0.4 mm. The rotating part is unbalanced such that its equivalent unbalanced mass is 2.5 kg mass located at 500 mm from the axis of rotation. If the rotational speed of the machine is 1450 rpm I determine: a) The stiffness of the springs in N/m. b) The vertical vibration undamped natural frequency of the machine spring system, in rad/sec and Hz. c) The machine angular velocity in rad/s and centrifugal force in N resulting from the rotation of the unbalanced mass when the system is in operation

Answers

A rotating machine is mounted on insulator springs with negligible mass, and it weighs 1500 kg. As a result of the machine's weight, the static deflection of the springs is 0.4 mm.

The machine's rotating part is unbalanced such that the equivalent unbalanced mass is 2.5 kg mass located at 500 mm from the axis of rotation. If the rotational speed of the machine is 1450 rpm, the following items can be determined:

a) The stiffness of the springs in N/m.
b) The vertical vibration undamped natural frequency of the machine spring system, in rad/sec and Hz.
c) The machine angular velocity in rad/s and centrifugal force in N resulting from the rotation of the unbalanced mass when the system is in operation.

Given,Weight of machine, W = 1500 kg;Equivalent unbalanced mass, m = 2.5 kg;

Unbalanced mass eccentricity, e = 500 mm;

Rotational speed of machine, N = 1450 rpm = 1450/60 rad/s = 24.17 rad/s;

Static deflection of spring, δ = 0.4 mm = 0.4 × 10⁻³ m.

a) Stiffness of spring can be determined as;δ = W/k ⇒ k = W/δ = 1500/(0.4 × 10⁻³) = 3.75 × 10⁶ N/m.∴ The stiffness of the springs in N/m is 3.75 × 10⁶.

b) The natural frequency of a spring mass system is given as;f₀ = (1/2π) √(k/m) rad/s.f₀ = (1/2π) √(3.75 × 10⁶ /1500 + 2.5) = 11.38 rad/s.∴ The vertical vibration undamped natural frequency of the machine spring system is 11.38 rad/s and,Hz = f₀/2π = 1.81 Hz.

c) The angular velocity of the rotating mass is given as;ω = 2πN/60 rad/s.ω = 2π(1450)/60 = 241.02 rad/s.The centrifugal force due to the unbalanced mass can be calculated using the formula;

F = mω²e F = 2.5 × (241.02)² × 0.5 = 1.44 × 10⁵ N.

∴ The machine angular velocity in rad/s is 241.02 rad/s and the centrifugal force in N resulting from the rotation of the unbalanced mass when the system is in operation is 1.44 × 10⁵ N.

Therefore, the stiffness of the springs in N/m is 3.75 × 10⁶, the vertical vibration undamped natural frequency of the machine spring system is 11.38 rad/s and 1.81 Hz and, the machine angular velocity in rad/s is 241.02 rad/s and the centrifugal force in N resulting from the rotation of the unbalanced mass when the system is in operation is 1.44 × 10⁵ N.

To know more about angular velocity :

brainly.com/question/32217742

#SPJ11

Other Questions
Consider the following equation: 3x+5=13(a) If x is equal to the number of trucks, is it possible to find an exact value for x? Use the language of abstract algebra to explain why or why not.(b) If x is equal to the number of kilograms gained or lost, is it possible to find an exact value for x? Use the language of abstract algebra to explain why or why not. Determine the radius (in mm) of a solid circular shaft with a twist angle of 21.5 degrees between the two ends, length 4.7 m and applied torsional moment of 724.5 Nm. Take the shear modulus as 98.5 GPa. Please provide the value only and in 2 decimal places Use mathematical induction to prove the formula for all integers n 110 +20 +30 +40 + + 10n = 5n(n + 1)Find S, when n=1.S1 = Assume thatS = 10 +20 +30 + 40+ ........... + 10k = 5k(k + 1).Then,BooksStudyCareerCheggMatSk+1=Sk+ak + 1 = (10 + 20 + 30 + 40+ ... + 10k) + ak+1k+1=Use the equation for a + and S to find the equation for Sk+1Sk+1=Is this formula valid for all positive integer values of n?a. Yesb. No 2. As shown in the figure, the input signal is a sine wave with a peak-to-peak value of 2V. What is the output waveform measured by oscilloscope? 12V RL 5.1k LM358 R1 102 w R2 10k w Uo Ui -12V w R ____ of S. aureus binds to host cell IgG via Fc receptors.a. Protein A b. Leukocidin c. Enterotoxin d. T-cell superantigen A PITTMAN ID33000 series engine having the following data expressed in the international system, for a nominal voltage of 90 V.Terminal resistance: 1.33 Ohms;Inductance: 4.08mH;Constant Torque (KT): 0.119 N.m/A;Voltage constant: 0.119 V/rad/s;a) Calculate and draw the points and the load line for the PITTMAN engine. Express the correct units.b) A P.M.D.C in which, it increased from Gradually the input voltage was obtained that with a V input= 2.1 V and a current, i=0.12 A, it is managed to start turning the motor shaft. Calculate the input power required to achieve the "no-load current", for that motor. A broad class of second order linear homogeneous differential equations can, with some manipulation, be put into the form Sturm-Liouville (p(x)u')' + q (x)u = w(x)u Assume that the functions p, q, and w are real, and use manipulations so that you end up with an equation similar to the identity equation uu uu'l = ( ) S uudx. Derive the analogous identity for this new differential equation. When you use separation of variables on equations involving the Laplacian you will commonly come to an ordinary differential equation of exactly this form. The precise details will depend on the coordinate system you are using as well as other aspects of the partial differential equation (PDE). At the exit of an impeller with a backwards angle (82) of 20 the absolute flow velocity is 15 ms with a component of 3.1 m/s in the radio direction. If the rotation speed is 18 m/s, the slip factor will be O 0.870 0.642 O 0.703 O 0.590 O 0.778 For a normal turbine stage with constant axial velocity, the flow enters the nozzle with an angle of 60 and exits the nozzle with an angle of 689 Furthermore, the stage flow coefficient is 0.8. The stage reaction degree is O 0.714 0.675 O 0.792 0.684 O 0.703 Question 6 O pts Why do you think COVID is more severe in the elderly with respect to the respiratory system and lymphatic system? Look at sections 24.11 and 23.7 in the text book and use the informat Using an algebraic method of your choice other than the quadratic formula, solve the following quadratic equations. Leave your final answers as exact values in simplified form. a) x 215x=36 [2] b) (x+8) 2=144 [2] A machine has a mass of 130 kg as shown in figure 1. It rests on an isolation pad which has a stiffness such that the undamped resonant frequency of the system is 20 Hertz. The damping ratio of the system is = 0.02. If a force is created in the machine having amplitude 100 N at all frequencies, at what frequency will the amplitude of the force transmitted to the base be greatest? What will be the amplitude of the maximum transmitted force? Neglect gravity. 1. Create the following operations in MATLAB to create signals over time (plot them): a. Rect(t/40).eb. u(t). ec. Cos(100nt) d. os (1000 t). -||2. Find the Fourier transform for the signals of point 1 and plot them. Are the computed transforms the same as those proposed in the theory? Analyze and conclude. Which of the following best describe the term fixed costs. A) The possibility that errors in projected cash flows lead to incorrect decisions. B) The sales level that results in a zero NPV. C) The percentage change in operating cash flow relative to the percentage change in quantity sold. D) Costs that do not change when the quantity of output changes during a particular time period. E) Opportunities that managers can exploit if certain things happen in the future. Required information The state of stress at a point is x = -9 kpsi, Oy = 11 kpsi, = -19 kpsi, Txy = 6 kpsi, Tyz = 3 kpsi, and Tzx= -19 kpsi. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Determine the principal stresses. The principal normal stress 0 is determined to be___kpsiThe principal normal stress 02 is determined to be___kpsiThe principal normal stress 03 is determined to be___kpsiThe principal shear stress T1/2 is determined to be___kpsiThe principal shear stress T2/3 is determined to be___kpsiThe principal shear stress T1/3 is determined to be ___kpsi Explain in you own words why arteriosclerosis andatherosclerosis can lead to the development of heart diseases(*list what happens with EACH disease?) 0.6 kg of a gas mixture of N and O is inside a rigid tank at 2.9 bar, 70C with an initial composition of 17% O by mole. O is added such that the final mass analysis of O is 30%. How much O was added? Express your answer in kg. 7. Which neurons of the autonomic nervous system will slow the heart rate when they fire onto the heart? If input from those neurons is removed, how will the heart rate respond? (2 mark) How is the start codon aligned with the P-site in the prokaryotic initiation complex? O a. The Shine-Dalgarno sequence in the mRNA binds to the 16S rRNA of the 30S ribosomal complex, with the start codon aligning under the P- site. O b. IF-2 binds a GTP and an fMet-tRNA, with the tRNA anticodon base pairing with the start codon in the mRNA. O c. The mRNA is bound by a complex of initiation factors; one that binds the 5' cap, an ATPase/helicase, and a protein that binds to the poly(A)- binding proteins. O d. The 48S complex scans through the mRNA, starting at the 5' cap and reading through until the start codon aligns with the tRNA in the P-site. e. The second codon aligns base-pairs with IF-1 in the A-site. Which of the following is TRUE regarding translation in prokaryotes? O a. Which charged tRNA enters the ribosome complex depends upon the mRNA codon positioned at the base of the A-site. O b. Both RF1 and RF2 recognise all three stop codons. O c. The formation of the peptide bond is catalysed by an enzyme within the 50S subunit. d. Elongation factor G (EF-G) delivers an aminoacyl-tRNA to the A-site. e. The binding of elongation factor Tu (EF-Tu) to the A site displaces the peptidyl-tRNA and stimulates translocation. Clear my choice What must be true for DNA polymerase to work Select one or more: a. There must be a free 3 OH for it to attach nucleotides to. b. New nucleotides must be tri-phosphates c. hydrolysis of the bond between the first and second phosphate drives the polymerization reaction d. Continuous replication doesn't need an RNA primer Okazaki fragments only happen on one of the DNA X strands in a replication bubble (that's a fork going in both directions) 10.11 At f=100MHz, show that silver (=6.1107 S/m,r=1,r=1) is a good conductor, while rubber (=1015 S/m,r=1,r=3.1) is a good insulator.