Step-by-step explanation:
If the scale factor of two similar solids is a: b:. then
(1) the ratio of corresponding perimeters is a:b
(2) the ratio of the base areas, of the lateral areas, and of the total areas is [tex]a^2: b^2[/tex]
(3) the ratio of the volumes is [tex]a^3:b^3[/tex]
Number of non sqaure number are there between 36² and 37²
Answer:
A 1,296
B 1,369
36 answer
If f(x)=2x−1, show that f(f(x))=4x−3. Find f(f(f(x))).
Answer: f(f(f(x)))=8x-7
Step-by-step explanation:
Since we were given f(x) and f(f(x)), We plug that into f(x) again to get f(f(f(x))).
2(4x-3)-1 [distribute]
8x-6-1 [combine like terms]
8x-7
Rita is making a beaded bracelet. She has a collection of 160 blue beads, 80 gray beads, and 240 pink beads. What is the estimated probability that Rita will need to pick at least five beads before she picks a gray bead from her collection? Use the table of randomly generated outcomes to answer the question. Each letter represents the first letter of the bead color.
Step-by-step explanation:
Given that Rita is making a beaded bracelet. She has a collection of 160 blue beads, 80 gray beads, and 240 pink beads. We are to calculate the probability that Rita will need to pick atleast 5 beads before she picks a grey bead from her collection.
Prob for drawing atleast 5 beads before she picks a grey bead from her collection
= 1-Prob for drawing atleast one grey beed in the first 5 draws.
(Because these two are complementary events)
no of grey beeds drawn in first 5 trials is
Bi=(5,1/6)
Prob for drawing atleast one grey beed in the first 5 draws.
=1-Prob of no grey
Hence required prob=P(X=0 in first 5 draws)
= 0.4018
6th beeds onwards can be grey also.
Nearest answer is c)0.45
Answer:
o.45
Step-by-step explanation:
i just did the test
Determine whether the given value is from a discrete or continuous data set. When a car is randomly selected, it is found to have 8 windows. Choose the correct answer below. A. A discrete data set because there are a finite number of possible values. B. A continuous data set because there are infinitely many possible values and those values cannot be counted. C. A continuous data set because there are infinitely many possible values and those values can be counted. D. The data set is neither continuous nor discrete.
Answer:
A discrete data set because there are a finite number of possible values.
Step-by-step explanation:
We are given the following data set below;
When a car is randomly selected, it is found to have 8 windows.
Firstly, as we know that the discrete data is that data that have countable or finite values, and also we can observe at a point value.
On the other hand, the continuous data is that data in which there is a range of values and we can't count or observe each and every value.
So, in our question; as we can observe that we can count all the windows and it is also a finite number which means that the given data set is a discrete data set because there are a finite number of possible values.
Two vehicles begin traveling at the same time. Vehicle A travels at 45
miles per hour (MPH) for two hours. Vehicle B travels at 80 MPH for
one hour. Which vehicle travels the farthest, and how much farther
does it travel?
Answer:
The answer is A because 45x2= 90 miles and 80×1 = 80 miles and 90-80= 10 so Vehicle A travels 10 miled farther than Vehicle B. Hope that helps!
Vehicle which travels the farthest is vehicle A and the distance it travels farther is 10 miles.
What is Speed?Speed is the unit rate in terms of distance travelled by an object and the time taken to travel the distance.
Speed is a scalar quantity as it only has magnitude and no direction.
Given that,
Speed of vehicle A = 45 miles per hour
Speed of vehicle B = 80 miles per hour
Vehicle A travels for 2 hours.
Total distance travelled = Speed × Time = 45 × 2 = 90 miles
Vehicle B travels for 1 hour.
Distance travelled = 80 miles
Vehicle A travels farthest since the distance is greater for A.
Difference in the distance = 90 - 80 = 10 miles
Hence the vehicle A travels 10 miles farther.
Learn more about Speed here :
https://brainly.com/question/312131
#SPJ2
Work out the surface area of this sphere.
Give your answer to 1 decimal place.
Answer:
452.4
Step-by-step equation:
surface area of a sphere formula= 4πr²
plug 6 in for r
4π(6)² =452.389 rounded to 452.4
make d the subject of the formula; n=k/d^2
Answer:
[tex]n = \frac{k}{ {d}^{2} } [/tex]
[tex] {d}^{2} = \frac{k}{n} [/tex]
[tex]d = \sqrt{ \frac{k}{n} } [/tex]
Here is the required firmula....Answer:
d = √(k/n)
Step-by-step explanation:
n = k/d²
n/1 = k/d²
Cross multiply.
k = nd²
Divide both sides by n.
k/n = nd²/n
k/n = d²
Take the square root on both sides.
√(k/n) = √(d²)
√(k/n) = d
Find the value of c such that the three points (5,5), (-3,1), and (6,c) lie on the same line. Note: Three points are on the same line if the slope of the line through any two points is always the same.
Answer:
c = 5.5
Step-by-step explanation:
We can find the slope of the line using the given points (5,5) and (-3,1) using rise over run:
-4/-8 = 1/2
Now, we can plug in the slope and a point into the equation y = mx + b to find b:
5 = 1/2(5) + b
5 = 2.5 + b
2.5 = b
Then, we can plug in 6 in the point (6,c) to find c:
y = (1/2)(6) + 2.5
y = 3 + 2.5
y = 5.5
c = 5.5
Answer:
c = 5.5
Step-by-step explanation:
Find the slope with two points
m = (y2-y1)/(x2-x1)
m = (1-5)/(-3-5)
= -4/-8
= 1/2
If all the points are on the same line, then they have the same slope
m = (y2-y1)/(x2-x1)
Using the first and third points
1/2 = (c-5)/(6-5)
1/2 = (c-5)/1
1/2 = c-5
Add 5 to each side
5+1/2 = c
5.5 =c
Graph the solution set for this inequality:
4x - 2y > 8
Answer:
x-intercept: 2 y-intercept= -4
Step-by-step explanation:
First, change the given equation 4x-2y>8 to slope-intercept form, which is y=mx+b. We do this by solving for y.
4x-2y>8. Subtract 4x from each side
-2y> -4x+8. Divide by -2. Don't forget to switch the sign!
y< 2x-4 is our equation in slope-intercept form.
Now, we can graph it. We know the slope (m)= 2 and the y-intercept= -4. Start at -4 and move up two, over one, making points until you can form a line. We can see from the graph that when x=0, (0, -4) y= -4. When y=0, (2, 0), x=2. These are our intercepts of the graph!
Hope this helps!
The graph of inequality 2x - y > 4 is shown in image.
We have to given that,
The inequality is,
⇒ 4x - 2y > 8
Since, A relation by which we can compare two or more mathematical expression is called an inequality.
Now, We can simplify it as,
⇒ 4x - 2y > 8
Take 2 as common,
⇒ 2 (2x - y) > 8
⇒ 2x - y > 4
So, The graph of inequality 2x - y > 4 is shown in image.
Learn more about the inequality visit:
https://brainly.com/question/25944814
#SPJ6
A tank contains 4,000 L of brine with 18 kg of dissolved salt. Pure water enters the tank at a rate of 40 L/min. The solution is kept thoroughly mixed and drains from the tank at the same rate.
a. How much salt is in the tank after t minutes?
b. How much salt is in the tank after 30 minutes? (Round your answer to one decimal place.
Answer:
(a)[tex]A(t)=18e^{ -\frac{t}{100}}[/tex]
(b)13.3 kg
Step-by-step explanation:
The volume of brine in the tank = 4000L
Initial Amount of salt, A(0)=18 kg
The rate of change in the amount of salt in the tank at any time t is represented by the equation:
[tex]\dfrac{dA}{dt}=$Rate In$-$Rate Out[/tex]
Rate In = (concentration of salt in inflow)(input rate of brine)
Since pure water enters the tank, concentration of salt in inflow =0
Rate In = 0
Rate Out=(concentration of salt in outflow)(output rate of brine)
[tex]=\frac{A(t)}{4000}\times 40\\ =\frac{A(t)}{100}[/tex]
Therefore:
[tex]\dfrac{dA}{dt}=-\dfrac{A(t)}{100}\\\dfrac{dA}{dt}+\dfrac{A(t)}{100}=0[/tex]
This is a linear D.E. which we can then solve for A(t).
Integrating Factor: [tex]e^{\int \frac{1}{100}d}t =e^{ \frac{t}{100}[/tex]
Multiplying all through by the I.F.
[tex]\dfrac{dA}{dt}e^{ \frac{t}{100}}+\dfrac{A(t)}{100}e^{ \frac{t}{100}}=0e^{ \frac{t}{100}}\\(Ae^{ \frac{t}{100}})'=0[/tex]
Taking integral of both sides
[tex]Ae^{ \frac{t}{100}}=C\\A(t)=Ce^{ -\frac{t}{100}}[/tex]
Recall our initial condition
A(0)=18 kg
[tex]18=Ce^{ -\frac{0}{100}}\\C=18[/tex]
Therefore, the amount of salt in the tank after t minutes is:
[tex]A(t)=18e^{ -\frac{t}{100}}[/tex]
(b)When t=30 mins
[tex]A(30)=18e^{ -\frac{30}{100}}\\=18e^{ -0.3}\\=13.3 $kg(correct to 1 decimal place)[/tex]
The amount of salt in the tank after 30 minutes is 13.3kg
In this exercise we have to use the integral to calculate the salt concentration:
(a)[tex]A(t)=18e^{-\frac{t}{100} }[/tex]
(b)[tex]13.3 kg[/tex]
Knowing that the volume of brine in the tank = 4000L, the initial Amount of salt, A(0)=18 kg. The rate of change in the amount of salt in the tank at any time t is represented by the equation:
[tex]\frac{dA}{dt} = Rate \ in - Rate \ out[/tex]
Rate In = (concentration of salt in inflow)(input rate of brine). Since pure water enters the tank, concentration of salt in inflow =0.
Rate In = 0
Rate Out=(concentration of salt in outflow)(output rate of brine)
[tex]\frac{A(t)}{4000}*(40)[/tex]
[tex]= \frac{A(t)}{100}[/tex]
Therefore:
[tex]\frac{dA}{dt} = \frac{A(t)}{100}\\\frac{dA}{dt} + \frac{A(t)}{100} = 0[/tex]
This is a linear D.E. which we can then solve for A(t). Integrating Factor: [tex]e^{\int\limits {\frac{t}{100} } \, dt\\e^{t/100}[/tex] . Multiplying all through by the Integrating Factor:
[tex]\frac{dA}{dt} = e^{t/100}+\frac{A(t)}{100}e^{t/100}\\(Ae^{1/100})'=0[/tex]
Taking integral of both sides:
[tex]Ae^{t/100}=C\\A(t)=Ce^{-t/100}[/tex]
Recall our initial condition:
[tex]A(0)=18 kg\\18=Ce^{0}\\C=18[/tex]
Therefore, the amount of salt in the tank after t minutes is:
[tex]A(t)=18e^{-t/100}[/tex]
(b)When t=30 mins
[tex]A(30)=18e^{-30/100}\\=18e^{-0.3}\\=13.3[/tex]
The amount of salt in the tank after 30 minutes is 13.3kg.
See more about concentration at brainly.com/question/12970323
Express the confidence interval (0.036, 0.086) in the form of p-e< p
Answer:
p-e< p < p+e
(0.061 - 0.025) < 0.061 < (0.061 + 0.025)
0.036 < 0.061 < 0.086
Step-by-step explanation:
Given;
Confidence interval CI = (a,b) = (0.036, 0.086)
Lower bound a = 0.036
Upper bound b = 0.086
To express in the form;
p-e< p < p+e
Where;
p = mean Proportion
and
e = margin of error
The mean p =( lower bound + higher bound)/2
p = (a+b)/2
Substituting the values;
p = (0.036+0.086)/2
Mean Proportion p = 0.061
The margin of error e = (b-a)/2
Substituting the given values;
e = (0.086-0.036)/2
e = 0.025
Re-writing in the stated form, with p = 0.061 and e = 0.025
p-e< p < p+e
(0.061 - 0.025) < 0.061 < (0.061 + 0.025)
0.036 < 0.061 < 0.086
Find an equation of the tangent line to the curve at the given point.x2+2xy−y2+x=101, (7,9) (hyperbola)
Answer:
The equation of the tangent line of the given curve
[tex]\frac{dy}{dx} = \frac{- (2x +2y +1)}{( 2 x - 2 y)}[/tex]
The tangent of the given curve at the point
[tex](\frac{dy}{dx})_{(7,9)} = \frac{33}{4}[/tex]
Step-by-step explanation:
Explanation :-
Step(i):-
Given equation of the parabola
x²+2xy−y²+x=101 ...(i)
apply derivative Formulas
a) [tex]\frac{dx^{n} }{dx} = n x ^{n-1}[/tex]
b) [tex]\frac{d U V }{dx} = U \frac{dV}{dx} + V \frac{dU}{dx}[/tex]
Step(ii):-
Differentiating equation (i) with respective to 'x' , we get
[tex]2 x + 2 ( x \frac{dy}{dx} + y) - 2 y \frac{dy}{dx} +1 = 0[/tex]
[tex]2 x + 2 x \frac{dy}{dx} +2 y - 2 y \frac{dy}{dx} +1 = 0[/tex]
on simplification , we get
[tex]( 2 x - 2 y) \frac{dy}{dx} = - (2x +2y +1)[/tex]
[tex]\frac{dy}{dx} = \frac{- (2x +2y +1)}{( 2 x - 2 y)}[/tex]
The tangent of the given curve at the point ( 7,9)
[tex](\frac{dy}{dx})_{(7,9)} = \frac{- ((2(7) +2(9) +1))}{( 2 (7) - 2 (9)}[/tex]
[tex](\frac{dy}{dx})_{(7,9)} = \frac{- (33)}{( -4} = \frac{33}{4}[/tex]
Final answer :-
The equation of the tangent line of the given curve
[tex]\frac{dy}{dx} = \frac{- (2x +2y +1)}{( 2 x - 2 y)}[/tex]
The tangent of the given curve at the point
[tex](\frac{dy}{dx})_{(7,9)} = \frac{33}{4}[/tex]
forex is the name of the U.S. stock exchange.
-true
-false
Answer:
false
Step-by-step explanation:
hello
this is false
FOREX means Foreign Exchange
it refers to the foreign exchange market
hope this helps
Answer:
true, forex trading is a profitable than staking cryptocurrency. forex trading is the best thing I will refer someone I love because learning never stops and no on is above blowing accounts when beginning Forex
Assume that the profit generated by a product is given by where x is the number of units sold. If the profit keeps changing at a rate of per month, then how fast are the sales changing when the number of units sold is 1900
Answer:
21794.495 units/month
Step-by-step explanation:
Some data are missing which i can assume as per requirement of the Question.
Let us consider that profit generated by a product is given by
p(x) =4√x
Also, consider that the profit keeps changing at a rate of $1000 per month.
Now, Using the chain rule we can write
dp/dx=(dp/dt)÷(dx/dt).
So, we can calculate
dp/dx=2x^(-1/2)=2/√x.
As per question we have to find out dx/dt
Since, dx/dt= (dp/dt)/(dp/dx),
so plugging x=1900 we get 1000√1900/2=21794.495 units/month increase in sales.
I don't know what to do.
Answer:
104.93 in
Step-by-step explanation:
When we draw out a picture of our triangle, we should see that we need to use sin∅ to solve:
sin23° = 41/x
xsin23° = 41
x = 41/sin23°
x = 104.931
you are given an 8-gallon jug filled with water and also two empty jugs: one that holds 5 gallons and other that holds 3 gallons. Using these three jugs, how much can you measure exactly 4 gallons of water. Explain
Answer:
Step-by-step explanation:
We will use following steps to measure exactly 4 gallons of water with the help of 5 gallons and 3 gallons empty jugs.
1). Fill 3 gallons jug completely.
2). Pour this 3 gallons of water into 5 gallons jug. Now we have 3 gallons of water in 5 gallons jug and 3 gallons jug empty.
We can add 2 gallons of water in the empty space of 5 gallons jug more.
3). Fill the 3 gallons jug with the water again.
4). Pour this water into 5 gallons jug which can hold 2 gallons of water more.
Now we have 5 gallons of jug filled fully and 1 gallon water remaining in the 3 gallons jug.
5). Empty the 5 gallons jug completely.
6). Pour the remaining 1 gallon of remaining water in 3 gallons jug into 5 gallons jug.
7). Fill the 3 gallons jug completely and pour it into 5 gallon jug.
8). Finally we have 4 gallons of water in the 5 gallons jug.
Please help me with this question!!
Answer:
rationalirrationalirrationalirrational√7, it is irrationalStep-by-step explanation:
A rational number is one that can be expressed as the ratio of two integers. All fractions that have integer numerators and (non-zero) denominators are rational numbers. Any finite decimal number, or any repeating decimal number, is a rational number. These can always be expressed as the ratio of two integers. For example, 0.4040... = 40/99, and 0.286 = 286/1000.
To make an irrational sum, at least one of the contributors must be irrational. You want an irrational 2-number sum that has 7/8 as one of the contributors. Since 7/8 is rational, the other contributor must be irrational.
__
Step 1. The number 7/8 is rational.
Step 2. The desired sum is irrational.
Step 3. The rule rational + irrational = irrational applies.
Step 4. An irrational number must be chosen.
Step 5. √7 will produce an irrational sum, because it is irrational.
Which point is located at (Negative 3.5, Negative 4.5)? On a coordinate plane, point A is 3.5 units to the left and 4.5 units down. Point K is 3.5 units to the right and 4.5 units up. Point R is 3.5 units to the left and 4.5 units up. Point Y is 4.5 units to the left and 3.5 units down. point A point K point R point Y
Answer:
Point A
Step-by-step explanation:
We know that on a coordinate plane, negative numbers can be found by moving down or moving to the left. This point must be found by moving down and left. To establish whether it is point A or point Y, we can remember that x coordinates move left and right and y coordinates move up and down. So, we would need to move 3.5 units left for x and then 4.5 units down for y. This leads us to point A.
hope this helps!
Answer:
it is point A
Step-by-step explanation:
Suppose you and your three friends have two dice each. When everyone rolls, what are the chances that there is at least one 6?
...with 6 dice
15,625 / 46,656
33.49 %
31,031 / 46,656
66.51 %
Can somebody help me with this question
Answer:
93 ft
Step-by-step explanation:
the area of a triangle is :
A = (b*h)/2 where b is the base and h the height(here t)
4092 = (88*t)/2
2*4092 = 88*t
t= (4092*2)/88 = 93 ft
Determine if the matrix below is invertible. Use as few calculations as possible. Justify your answer. 3 0 -4 2 0 6 -3 0 8
a. The matrix is invertible. The columns of the given matrix span R^3.
b. The matrix is not invertible. If the given matrix is A, the columns of A do not form a linearly independent set.
c. The matrix is invertible. The given matrix has 2 pivot positions.
d. The matrix is not invertible. If the given matrix is A, the equation Ax = 0 has only the trivial solution.
Answer:
b. The matrix is not invertible. If the given matrix is A, the columns of A do not form a linearly independent set.
Step-by-step explanation:
A square matrix is said to be invertible if the product of the matrix and its inverse result into an identity matrix.
3 0 -4
2 0 6
-3 0 8
Since the second column elements are all zero, the determinant of the matrix is zero ad this implies that the inverse of the matrix does not exist(i.e it is not invertible )
A square matrix is said to be invertible if it has an inverse.
The matrix is not invertible. If the given matrix is A, the columns of A do not form a linearly independent set.
The matrix is given as:
[tex]\left[\begin{array}{ccc}3&0&-4\\2&0&6\\-3&0&8\end{array}\right][/tex]
Calculate the determinant
The determinant of the matrix calculate as:
[tex]|A| = 3 \times(0 \times 8- 6 \times 0) - 0(2 \times 8 - 6 \times -3) -4(2 \times 0 - 0 \times -3)[/tex]
[tex]|A| = 3 \times(0) - 0(34) -4(0)[/tex]
[tex]|A| = 0 - 0 -0[/tex]
[tex]|A| = 0[/tex]
When a matrix has its determinant to be 0, then
It is not invertibleIt does not form a linear independent set.Hence, the correct option is (b)
Read more about matrix at:
https://brainly.com/question/19759946
Arrange the functions for which the result is a non-infinite value and the limit exists in ascending order of their limit values as x tends to infinity. Please see picture attached.
Answer:
see attached
Step-by-step explanation:
The limit as x gets large is the ratio of the highest-degree terms. In most cases, the limit can be found by evaluating that ratio. Where an absolute value is involved, the absolute value of the highest-degree term is used.
If the ratio gives x to a positive power, the limit does not exist. If the ratio gives x to a negative power, the limit is zero.
The arrangement of functions according to the given condition
[tex]m(x)=\frac{4x^{2}-6 }{1-4x^{2} }[/tex]
[tex]h(x)=\frac{x^{3} -x^{2} +4}{1-3x^{2} }[/tex]
[tex]k(x)=\frac{5x+1000}{x^{2} }[/tex]
[tex]i(x)=\frac{x-1}{|1-4x| }[/tex]
[tex]g(x)=\frac{|4x-1|}{x-4}[/tex]
[tex]l(x)=\frac{5x^{2} -4}{x^{2} +1}[/tex]
[tex]f(x)=\frac{x^{2} -1000}{x-5}[/tex]
[tex]j(x)=\frac{x^{2}-1 }{|7x-1|}[/tex]
What is limit?A limit is the value that a function approaches as the input approaches some value.
According to the given question
[tex]l(x)=\frac{5x^{2} -4}{x^{2} +1}[/tex]
⇒[tex]\lim_{nx\to \infty} \frac{5x^{2} -1}{x^{2} +1}[/tex]
⇒[tex]\lim_{x \to \infty} \frac{x^{2} }{x^{2} } \frac{5-\frac{1}{x^{2} } }{1+\frac{1}{x^{2} } }[/tex]
= 5 ([tex]\frac{1}{x^{2} } = 0[/tex] ,as x tends to infinity [tex]\frac{1}{x^{2} }[/tex] tends to 0)
[tex]i(x)=\frac{x-1}{|1-4x|}[/tex]
⇒[tex]\lim_{x \to \infty} \frac{x-1}{|1-4x|}[/tex] = [tex]\lim_{x \to \infty} \frac{x}{x} \frac{1-\frac{1}{x} }{|\frac{-1}{4}+\frac{1}{x} | }[/tex] =[tex]\frac{1}{\frac{1}{4} }[/tex] =[tex]\frac{1}{4}[/tex]
As x tends to infinity 1/x tends to 0, and |[tex]\frac{-1}{4}[/tex]| gives 1/4
[tex]f(x)= \frac{x^{2} -1000}{x--5}[/tex]
⇒[tex]\lim_{x \to \infty} \frac{x^{2} -1000}{x-5}[/tex]= [tex]\lim_{x \to \infty} \frac{x^{2} }{x} \frac{1-\frac{1000}{x^{2} } }{1-\frac{5}{x} }[/tex]= [tex]\lim_{x \to \infty} x\frac{1-\frac{1000}{x^{2} } }{1-\frac{5}{x} }[/tex] ⇒ limit doesn't exist.
[tex]m(x)=\frac{4x^{2}-6 }{1-4x^{2} }[/tex]
⇒[tex]\lim_{x\to \infty} \frac{4x^{2} -6}{1-4x^{2} }[/tex]=[tex]\lim_{x\to \infty} \frac{x^{2} }{x^{2} } \frac{4-\frac{6}{x^{2} } }{\frac{1}{x^{2} } -4}[/tex] [tex]= \lim_{n \to \infty} \frac{4}{-4}[/tex] = -1
As x tends to infinity [tex]\frac{1}{x^{2} }[/tex] tends to 0.
[tex]g(x)=\frac{|4x-1|}{x-4}[/tex]
⇒[tex]\lim_{x\to \infty} \frac{|4x-1|}{x-4}[/tex] = [tex]\lim_{x \to \infty} \frac{|x|}{x} \frac{4-\frac{1}{x} }{1 -\frac{4}{x} } }[/tex] = 4
as x tends to infinity 1/x tends to 0
and |x|=x ⇒[tex]\frac{|x|}{x}=1[/tex]
[tex]h(x)=\frac{x^{3}-x^{2} +4 }{1-3x^{3} }[/tex][tex]\lim_{x \to \infty} \frac{x^{3} -x^{2} +4}{1-3x^{3} }[/tex][tex]= \lim_{x \to \infty} \frac{x^{3} }{x^{3} } \frac{1-\frac{1}{x}+\frac{4}{x^{3} } }{\frac{1}{x^{3} -3} }[/tex] = [tex]\frac{1}{-3}[/tex] =[tex]-\frac{1}{3}[/tex]
[tex]k(x)=\frac{5x+1000}{x^{2} }[/tex]
[tex]\lim_{x \to \infty} \frac{5x+1000}{x^{2} }[/tex] = [tex]\lim_{x \to \infty} \frac{x}{x} \frac{5+\frac{1000}{x} }{x}[/tex] =0
As x tends to infinity 1/x tends to 0
[tex]j(x)= \frac{x^{2}-1 }{|7x-1|}[/tex]
[tex]\lim_{x \to \infty} \frac{x^{2}-1 }{|7x-1|}[/tex] = [tex]\lim_{x \to \infty} \frac{x}{|x|}\frac{x-\frac{1}{x} }{|7-\frac{1}{x}| }[/tex] = [tex]\lim_{x \to \infty} 7x[/tex] = limit doesn't exist.
Learn more about limit here:
https://brainly.in/question/5768142
#SPJ2
Which of the following is a negation for "There exists a real number x such that for all real numbers y, xy > y."1) There exists a real number x such that for all real numbers y, xy ≤ y.2) There exists a real number y such that for all real numbers x, xy ≤ y.3) There exists real numbers x and y such that xy ≤ y.4) For all real numbers x there exists a real number y such that xy ≤ y.5) For all real numbers y there exists a real number x such that xy ≤ y.
Answer:
1) There exists a real number x such that for all real numbers y, xy ≤ y.
Step-by-step explanation:
Given the statement:
"There exists a real number x such that for all real numbers y, xy > y"
The negation of the statement is:
"There exists a real number x such that for all real numbers y, xy ≤ y"
The correct option is 1
is 0.790 greater than or equal to 0.79?
It's the same vallue. If they were different, i could argue that 2.000 is greater than 2.00. Impossible, because 2 is equal to 2.
Forty-two divided by seven plus the quantity three divided by six 1. Write the numerical expression. 2. Evaluate within parentheses. 3. There are no exponents to evaluate. 4. Multiply and divide from left to right. 5. Add and subtract from left to righ
Answer:
6.5Step-by-step explanation:
Given Forty-two divided by seven plus the quantity three divided by six, the equivalent numerical expression will be;
[tex]\frac{42}{7} + \frac{3}{6}[/tex]
To evaluate the numerical expression, we will find the LCM of the denominator
[tex]\frac{42}{7} + \frac{3}{6} = \frac{6(42)+7(3)}{42}\\ = \frac{252+21}{42}\\= \frac{273}{42}\\= 6.5[/tex]
The value of the expression 6.5
Answer:
Write and simplify this numerical expression.
Forty-two divided by seven plus the quantity three divided by six
1. Write the numerical expression.
✔ 42 ÷ 7 + (3 ÷ 6)
2. Evaluate within parentheses.
✔ 42 ÷ 7 + 0.5
3. There are no exponents to evaluate.
4. Multiply and divide from left to right.
✔ 6 + 0.5
5. Add and subtract from left to right.
✔ 6.5
Step-by-step explanation:
hope this helps! :)
Type the correct answer in each box. Use numerals instead of words. If necessary, use / for the fraction bar(s).
Rewrite the following equation in the form y = a(x - h)2 + k. Then, determine the x-coordinate of the minimum.
y = 2x2 - 32x + 56
The rewritten equation is y =
(x -
)2 +
.
The x-coordinate of the minimum is
.
Answer:
Therefore the x - coordinate of the minimum is x = -8
Step-by-step explanation:
[tex]y = 2x^2 + 32x + 56 = 2(x^2 + 16x ) + 56 = 2(x^2 + 16x +64 - 64) + 56 \\= 2(x^2 + 16x +64) - 128 + 56 = 2(x+8)^2 - 72[/tex]
Therefore the x - coordinate of the minimum is x = -8
I don't know what to do.
Answer:
13 Compute using the 2 right angles, we know that m<FIG=90* and
1. Lisa is a regional manager for a restaurant chain that has locations in the towns of Berwick, Milton, and Leesburg. She would like to investigate if a difference exists in the proportion of customers who rate their experience as satisfactory or better between the three locations. The following data represent the number of customers who indicated they were satisfied from random samples taken at each location.
Berwick Milton Leesburg
Number Satisfied 80 85 60
Sample Size 100 120 80
The expected frequency of satisfied customers from the Berwick sample is________.
a. 60
b. 75
c. 80
d. 90
2. Lisa is a regional manager for a restaurant chain that has locations in the towns of Berwick, Milton, and Leesburg. She would like to investigate if a difference exists in the proportion of customers who rate their experience as satisfactory or better between the three locations. The following data represent the number of customers who indicated they were satisfied from random samples taken at each location.
Berwick Milton Leesburg
Number Satisfied 80 85 60
Sample Size 100 120 80
The expected frequency of satisfied customers from the Milton sample is________.
a. 60
b. 75
c. 80
d. 90
3. Lisa is a regional manager for a restaurant chain that has locations in the towns of Berwick, Milton, and Leesburg. She would like to investigate if a difference exists in the proportion of customers who rate their experience as satisfactory or better between the three locations. The following data represent the number of customers who indicated they were satisfied from random samples taken at each location.
Berwick Milton Leesburg
Number Satisfied 80 85 60
Sample Size 100 120 80
The expected frequency of satisfied customers from the Leesburg sample is________.
a. 60
b. 75
c. 80
d. 90
4. Lisa is a regional manager for a restaurant chain that has locations in the towns of Berwick, Milton, and Leesburg. She would like to investigate if a difference exists in the proportion of customers who rate their experience as satisfactory or better between the three locations. The following data represent the number of customers who indicated they were satisfied from random samples taken at each location.
Berwick Milton Leesburg
Number Satisfied 80 85 60
Sample Size 100 120 80
The chi-square test statistic for these samples is_______.
a. 1.49
b. 2.44
c. 4.15
d. 5.33
5. Lisa is a regional manager for a restaurant chain that has locations in the towns of Berwick, Milton, and Leesburg. She would like to investigate if a difference exists in the proportion of customers who rate their experience as satisfactory or better between the three locations. The following data represent the number of customers who indicated they were satisfied from random samples taken at each location.
Berwick Milton Leesburg
Number Satisfied 80 85 60
Sample Size 100 120 80
The degrees of freedom for the chi-square critical value is_______.
a. 1
b. 2
c. 3
d. 4
6. Lisa is a regional manager for a restaurant chain that has locations in the towns of Berwick, Milton, and Leesburg. She would like to investigate if a difference exists in the proportion of customers who rate their experience as satisfactory or better between the three locations. The following data represent the number of customers who indicated they were satisfied from random samples taken at each location.
Berwick Milton Leesburg
Number Satisfied 80 85 60
Sample Size 100 120 80
The chi-square critical value using alpha = 0.05 is_______.
a. 2.706
b. 3.841
c. 5.991
d. 7.815
7. Lisa is a regional manager for a restaurant chain that has locations in the towns of Berwick, Milton, and Leesburg. She would like to investigate if a difference exists in the proportion of customers who rate their experience as satisfactory or better between the three locations. The following data represent the number of customers who indicated they were satisfied from random samples taken at each location.
Berwick Milton Leesburg
Number Satisfied 80 85 60
Sample Size 100 120 80
Using alpha = 0.05, the conclusion for this chi-square test would be that because the test statistic is
A. More than the critical value, we can reject the null hypothesis and conclude that there is a difference in proportion of satisfied customers between these three locations.
B. Less than the critical value, we can reject the null hypothesis and conclude that there is a difference in proportion of satisfied customers between these three locations.
C. More than the critical value, we fail to reject the null hypothesis and conclude that there is no difference in proportion of satisfied customers between these three locations.
D. Less than the critical value, we fail to reject the null hypothesis and conclude that there is no difference in proportion of satisfied customers between these three locations.
Answer:
1) Option B is correct.
Expected frequency of satisfied customers from the Berwick sample = 75
2) Option D is correct.
Expected frequency of satisfied customers from the Milton sample = 90
3) Option A is correct.
Expected frequency of satisfied customers from the Leesburg sample = 60
4) Option B is correct.
The chi-square test statistic for these samples = 2.44
5) Option B is correct.
The degrees of freedom for the chi-square critical value = 2
6) Option C is correct.
The chi-square critical value using alpha = 0.05 is 5.991
7) Option D is correct.
The conclusion for this chi-square test would be that because the test statistic is less than the critical value, we fail to reject the null hypothesis and conclude that there is no difference in proportion of satisfied customers between these three locations.
Step-by-step explanation:
Berwick Milton Leesburg
Number Satisfied 80 85 60
Unsatisfied 20 35 20
Sample Size 100 120 80
Since this is a chi test that aims to check if there are differences in the proportion of expected number of customers for each location, we state the null and alternative hypothesis first.
The null hypothesis usually counters the claim we hope to test and would be that there is no difference between the proportion of expected frequency of satisfied customers at the three locations.
The alternative hypothesis confirms the claim we want to test and is that there is a significant difference between the proportion of expected frequency of satisfied customers at the three locations.
So, the total proportion of satisfied customers is used to calculate the expected number of satisfied customers for each of the three locations.
80+85+60= 225
Total number of customers = 100 + 120 + 80 = 300
Proportion of satisfied customers = (225/300) = 0.75
1) Expected frequency of satisfied customers from the Berwick sample = np = 100 × 0.75 = 75
2) Expected frequency of satisfied customers from the Milton sample = np = 120 × 0.75 = 90
3) Expected frequency of satisfied customers from the Leesburg sample = np = 80 × 0.75 = 60
4) Berwick Milton Leesburg
Number Satisfied 80 85 60
Unsatisfied 20 35 20
Sample Size 100 120 80
Proportion for unsatisfied ccustomers = 0.25
So, expected number of unsatisfied customers for the three branches are 25, 30 and 20 respectively.
Chi square test statistic is a sum of the square of deviations from the each expected value divided by the expected value.
χ² = [(X₁ - ε₁)²/ε₁] + [(X₂ - ε₂)²/ε₂] + [(X₃ - ε₃)²/ε₃] + [(X₄ - ε₄)²/ε₄] + [(X₅ - ε₅)²/ε₅] + [(X₆ - ε₆)²/ε₆]
X₁ = 80, ε₁ = 75
X₂ = 85, ε₂ = 90
X₃ = 60, ε₃ = 60
X₄ = 20, ε₄ = 25
X₅ = 35, ε₅ = 30
X₆ = 20, ε₆ = 20
χ² = [(80 - 75)²/75] + [(85 - 90)²/90] + [(60 - 60)²/60] + [(20 - 25)²/25] + [(35 - 30)²/30] + [(20 - 20)²/20]
χ² = 0.3333 + 0.2778 + 0 + 1 + 0.8333 + 0 = 2.4444 = 2.44
5) The degree of freedom for a chi-square test is
(number of rows - 1) × (number of columns - 1)
= (2 - 1) × (3 - 1) = 1 × 2 = 2
6) Using the Chi-square critical value calculator for a degree of freedom of 2 and a significance level of 0.05, the chi-square critical value is 5.991.
7) Interpretation of results.
If the Chi-square test statistic is less than the critical value, we fail to reject the null hypothesis.
If the Chi-square test statistic is unusually large and is greater than the critical value, we reject the null hypothesis.
For this question,
Chi-square test statistic = 2.44
Critical value = 5.991
2.44 < 5.991
test statistic < critical value
The test statistic is Less than the critical value, we fail to reject the null hypothesis and conclude that there is no difference in proportion of satisfied customers between these three locations.
Hope this Helps!!!
Find the missing number if the average is 7.
6 and
A) 8
B) 10
C) 12
D) none of the above
Answer:
A) 8
Step-by-step explanation:
The average of two numbers is 7.
6 and x have an average of 7.
sum of terms / number of terms = average
(6 + x)/2 = 7
6+x = 14
x = 8
The number is 8.
Answer: a 8
i forgot how I got that answer
Simplify (7+1) - (11+39) 4.
ОА17
ов 59
ос -3
D - 13
Answer:
-41
Step-by-step explanation:
(7 + 1) - (11 + 39) =
= 8 - 50
= -41
Answer:
Step-by-step explanation:
Do the work inside parentheses first. We get:
(8) - (50)(4), or
8 - 200 = -192