How much heat, in kilojoules, is associated with the production of 281 kg of slaked lime, Ca(OH)2.CaO+H2O-->Ca(OH)2in KJ?

Answers

Answer 1

The heat associated with the production of 281 kg of slaked lime is approximately -242,662.4 kJ.

The balanced equation shows that one mole of CaO reacts with one mole of [tex]H_2O[/tex] to produce one mole of [tex]Ca(OH)_2[/tex]. The molar heat of the reaction for this equation is -64 kJ/mol.

First, we need to find the number of moles of [tex]Ca(OH)_2[/tex] in 281 kg. The molar mass [tex]Ca(OH)_2[/tex] is approximately 74.1 g/mol.

Number of moles = mass (kg) / molar mass (g/mol)

Number of moles = 281,000 g / 74.1 g/mol = 3,791.6 mol

Now, we can calculate the heat in kilojoules:

Heat = number of moles × molar heat of reaction

Heat = 3,791.6 mol × -64 kJ/mol = -242,662.4 kJ

To know more about slaked lime, here

brainly.com/question/29985346

#SPJ4


Related Questions

. If humans had to expend one molecule of ATP for every molecule of water retained, approximately how many molecules of ATP would be required? Enter your answer into the first answer field in accordance with the question statement. 6.022x10^27 moles
Please I know the answer is 6.022x10^27 moles but I need you to convert it to a regular number thank you

Answers

Approximately 3.62x10^51 molecules of ATP would be required for every molecule of water retained.

If humans had to expend one molecule of ATP for every molecule of water retained, and the given value is 6.022x10^27 moles of ATP, we can convert this to molecules by using Avogadro's number. Avogadro's number is approximately 6.022x10^23 particles (atoms, ions, or molecules) per mole.
To convert moles to molecules, you simply multiply the given value in moles by Avogadro's number:
6.022x10^27 moles × 6.022x10^23 molecules/mole = 3.62x10^51 molecules
So, approximately 3.62x10^51 molecules of ATP would be required for every molecule of water retained.

To know more about ATP Molecules visit:
https://brainly.com/question/8367148
#SPJ11

consider the following reaction: 2al(s) 6hcl(aq) → 2alcl3(aq) xh2(g) in order for this equation to be balanced, the value of x must be _____.

Answers

Main Answer: In order for the given equation to be balanced, the value of x must be 3.

Supporting Answer: The given chemical equation is unbalanced as the number of atoms of some elements is not equal on both sides. The balanced equation should have the same number of atoms of each element on both sides of the equation. To balance the equation, we need to first balance the number of aluminum (Al) atoms on both sides, which can be achieved by placing a coefficient of 2 in front of the Al(s) reactant. The balanced equation then becomes:

2Al(s) + 6HCl(aq) → 2AlCl3(aq) + 3H2(g)

Now the number of Al atoms is equal on both sides, but the number of hydrogen (H) atoms is still unbalanced. To balance the hydrogen atoms, we need to place a coefficient of 3 in front of the H2(g) product. This gives the final balanced equation:

2Al(s) + 6HCl(aq) → 2AlCl3(aq) + 3H2(g)

Therefore, the value of x in the balanced equation is 3.

Learn more about balancing chemical equations at

https://brainly.com/question/14072552?referrer=searchResults

#SPJ11.

Consider cobal (ii) chloride and cobalt (ii) iodide will disolve seeprately. will cobalt (ii) fluoride be more or less soluble than clhoride (ii) bromide?

Answers

Cobalt (II) fluoride will be less soluble than cobalt (II) chloride.

Solubility of a salt is influenced by several factors, including the nature of the ions involved and their relative sizes. In general, as the size of the anion increases, the solubility of the salt decreases. Similarly, as the size of the cation increases, the solubility of the salt also increases.

Comparing cobalt (II) fluoride with cobalt (II) chloride and cobalt (II) bromide, we can see that the fluoride ion (F⁻) is smaller than the chloride ion (Cl⁻) and bromide ion (Br⁻). This means that cobalt (II) fluoride has a higher lattice energy than cobalt (II) chloride and cobalt (II) bromide due to the stronger electrostatic attraction between the smaller fluoride ions and the cobalt (II) ions. This strong lattice energy makes cobalt (II) fluoride less soluble than cobalt (II) chloride and cobalt (II) bromide.

learn more about Solubility here:

https://brainly.com/question/31493083

#SPJ11

What are three possible products of a double replacement reaction?

Answers

Three possible products of a double replacement reaction are AB + CD → AD + CB, where A, B, C, and D represent elements or compounds.

In a double replacement reaction, the cations and anions of two ionic compounds switch places to form two new compounds. One of the products is usually a precipitate, an insoluble solid that separates from the solution. Another product could be a gas that bubbles out of the solution. The third product is typically a soluble salt that remains in the solution.

For example, the double replacement reaction between silver nitrate (AgNO₃) and sodium chloride (NaCl) produces a precipitate of silver chloride (AgCl), a soluble salt sodium nitrate (NaNO₃), and the release of gaseous nitrogen dioxide (NO₂) and oxygen (O₂).

2AgNO₃ + 2NaCl → 2AgCl↓ + 2NaNO₃

The reaction can be used to test for the presence of chloride ions in a solution.

learn more about double replacement reaction here:

https://brainly.com/question/31864474

#SPJ11

You were given a dose of 500 mg rather than 500 µg of a drug. How much of the drug did you receive? A) 1000 times more B) 100 times more C) 1000 times less D) 100 times less

Answers

Answer: A 1000 times more

Explanation:

there are 1000 micro grams in 1 milligram.

If you were given a dose of 500 mg instead of 500 µg of a drug, you received 1000 times more of the drug.

If you were given a dose of 500 mg instead of 500 µg, you received 1000 times more of the drug. This is because 1 mg is equal to 1000 µg, so 500 mg is 500,000 µg. Therefore, you received 1000 times more of the drug than the intended dose.

Learn more about Calculating Dosage here:

https://brainly.com/question/33443595

#SPJ2

calculate the mass percent of nickel chlorate in a solution made by dissolving 0.265 g ni(clo3)2 in 10.00 g water

Answers

The mass percent of nickel chlorate in the solution is 2.57%. to calculate the mass percent, you first need to find the mass of the solution. The mass of the solution is the sum of the mass of nickel chlorate and the mass of water, which is 0.265 g + 10.00 g = 10.265 g.

Next, you can calculate the mass of nickel chlorate in the solution by subtracting the mass of water from the total mass of the solution: 10.265 g - 10.00 g = 0.265 g.

Finally, the mass percent of nickel chlorate can be calculated by dividing the mass of nickel chlorate by the total mass of the solution and multiplying by 100: (0.265 g / 10.265 g) x 100 = 2.57%.

Therefore, the mass percent of nickel chlorate in the solution is 2.57%.

Learn more about chlorate here:

https://brainly.com/question/20758434

#SPJ11

A solution containing 0. 13 M each of F− , Cl− , CrO2−4 , and SO2−4 is titrated by a solution containing Pb2+. Place the anions in the order in which they will precipitate. Consulting a table of Ksp values may be helpful

Answers

The order of precipitation for the given anions,[tex]F^-, Cl^-, CrO_2^-^4[/tex], and [tex]SO_2^-^4[/tex], when titrated with [tex]Pb^2^+[/tex] can be determined by comparing their respective solubility product constant (Ksp) values.

When titrating a solution containing multiple anions with [tex]Pb^2^+[/tex], the order of precipitation can be determined by comparing the solubility product constant (Ksp) values of the corresponding salts. The anion with the lowest Ksp value will precipitate first, followed by the anions with progressively higher Ksp values.

To determine the order of precipitation, we need to consult a table of Ksp values for the given anions. Comparing the Ksp values, we find that the order of precipitation is as follows: [tex]F^- < CrO_2^-^4[/tex] < [tex]SO_2^-^4[/tex] < [tex]Cl^-[/tex].

Hence,[tex]F^-[/tex] will precipitate first, followed by [tex]CrO_2^-^4[/tex], then [tex]SO_2^-^4[/tex], and finally [tex]Cl^-[/tex]. This means that when the titration reaches the point where all the [tex]F^-[/tex] ions have reacted with [tex]Pb^2^+[/tex] and precipitated as [tex]PbF_2[/tex], further addition of [tex]Pb^2^+[/tex]will result in the precipitation of [tex]CrO_2^-^4[/tex] as [tex]PbCrO_4[/tex]. Subsequently, [tex]SO_2^-^4[/tex] will precipitate as [tex]PbSO_4[/tex], and finally, [tex]Cl^-[/tex] will precipitate as [tex]PbCl_2[/tex].

Learn more about solubility product constant here:

https://brainly.com/question/1419865

#SPJ11

Each of the following reactions is allowed to come to equilibrium and then the volume is changed as indicated. Predict the effect (shift right, shift left, or no effect) of the indicated volume change.Part a)I2(g)⇌2I(g) (volume is increased)- no effect- shifts left-shifts rightPart B)2H2S(g)⇌2H2(g)+S2(g) (volume is decreased)- no effect- shifts right- shifts leftPart c)I2(g)+Cl2(g)⇌2ICl(g) (volume is decreased)- shifts left-shifts right- no effect

Answers

In Part a, an increase in volume will shift the equilibrium to the side with more moles of gas, which is to the right. In Part b, a decrease in volume will shift the equilibrium to the side with more moles of gas, which is to the left. In Part c, a decrease in volume will shift the equilibrium to the side with fewer moles of gas, which is to the right.

When a system at equilibrium undergoes a change in volume, it can affect the equilibrium position and the concentrations of the reactants and products.

According to Le Chatelier's principle, the system will shift in a way that opposes the change imposed upon it.

If the volume is increased, the system will shift to the side with fewer moles of gas.

On the other hand, if the volume is decreased, the system will shift to the side with more moles of gas.

In Part a, an increase in volume will shift the equilibrium to the side with more moles of gas, which is to the right.

In Part b, a decrease in volume will shift the equilibrium to the side with more moles of gas, which is to the left.

In Part c, a decrease in volume will shift the equilibrium to the side with fewer moles of gas, which is to the right.

Learn more about moles at: https://brainly.com/question/23991631

#SPJ11

Identify the following diagnostic procedure that gives the highest dose of radiation.upper gastrointestinal tract x-raychest x-raydental x-ray ? two bitewingsthallium heart scan

Answers

The diagnostic procedure that gives the highest dose of radiation is the thallium heart scan.


A thallium heart scan is a type of nuclear imaging test that uses a small amount of radioactive material, called thallium, to create images of the heart muscle. During the procedure, the patient receives an injection of the thallium, which travels through the bloodstream and accumulates in the heart muscle. A special camera is then used to detect the radioactive signal emitted by the thallium, which is used to create detailed images of the heart.

The thallium heart scan involves exposure to a higher dose of radiation compared to other diagnostic procedures such as an upper gastrointestinal tract x-ray, chest x-ray, or dental x-ray. This is because the thallium used in the test is a radioactive material and emits ionizing radiation that is detected by the camera. However, the amount of radiation used in the thallium heart scan is still considered safe for most people, and the benefits of the test usually outweigh the risks. The actual amount of radiation exposure will depend on factors such as the patient's body size and the specific imaging protocol used by the medical professional.

The diagnostic procedure that gives the highest dose of radiation among the options provided is the thallium heart scan. This procedure involves the use of a radioactive tracer (thallium) to assess the blood flow and function of the heart, and it exposes the patient to a higher dose of radiation compared to upper gastrointestinal tract x-rays, chest x-rays, and dental x-rays with two bitewings.

For more such questions on radiation , Visit:

https://brainly.com/question/29940486

#SPJ11

Among the diagnostic procedures listed, the thallium heart scan is the one that typically involves the highest dose of radiation.

A thallium heart scan, also known as myocardial perfusion imaging, is a nuclear medicine procedure used to assess the blood flow to the heart muscle. It involves the injection of a small amount of radioactive material (thallium) into the bloodstream, which is then detected by a gamma camera to create images of the heart. The radioactive material emits gamma radiation, and the level of radiation exposure during this procedure is relatively higher compared to other diagnostic tests.  Therefore, the thallium heart scan is the diagnostic procedure that typically results in the highest dose of radiation.

Learn more about thallium heart scans here:

https://brainly.com/question/31169149

#SPJ11

A physical chemist measures the temperature T inside a vacuum Chamber. Here is the result. T=-71.484 °C Convert T to SI units. Be sure your answer has the correct number of significant digits. х ?

Answers

The temperature T converted in SI units is 201.666 K.

To convert -71.484 °C to SI units, we first need to convert it to Kelvin (K) as Kelvin is the SI unit for temperature. We can do this by adding 273.15 to -71.484 °C, giving us a result of 201.666 K.

It is important to note that when converting between units, we need to ensure that we maintain the correct number of significant digits. In this case, the original temperature measurement had six significant digits, so our final answer should also have six significant digits. Therefore, our final answer for the temperature in SI units is 201.666 K.

In summary, the physical chemist measured a temperature of -71.484 °C inside a vacuum chamber, which we converted to SI units by adding 273.15 to get 201.666 K. It is important to maintain the correct number of significant digits throughout the conversion process.

Learn more about Kelvin here: https://brainly.com/question/30459553

#SPJ11

The activation energy for the gas phase decomposition of dichloroethane is 207 kJ. CH3 CHCl2 ---->CH2=CHCl + HCl The rate constant at 715 K is 9.82×10-4 /s. The rate constant will be 1.36×10-2 /s at _____ K.

Answers

The activation energy for the gas phase decomposition of dichloroethane is 207 kJ. The rate constant at 715 K is 9.82×10-4 /s.

The activation energy for the gas phase decomposition of dichloroethane is 207 kJ. This means that a certain amount of energy, equal to 207 kJ, is required to initiate the reaction. The chemical reaction is as follows: CH3 CHCl2 ---->CH2=CHCl + HCl. The rate constant at 715 K is 9.82×10-4 /s. A rate constant is a measure of the rate of reaction. It is expressed in terms of the concentration of reactants and products in the reaction. Now, we need to calculate the rate constant at a different temperature, which is not given.

To calculate the rate constant at a different temperature, we need to use the Arrhenius equation, which is given by k = Ae^(-Ea/RT), where k is the rate constant, A is the pre-exponential factor, Ea is the activation energy, R is the gas constant, and T is the temperature in Kelvin. We know the value of Ea, and we can calculate the value of A using the rate constant at 715 K.

Using the given rate constant, we get A = k*e^(Ea/RT) = 9.82×10-4 /s * e^(207000/8.314*715) = 3.17×10^12 /s. Now, we can use this value of A and the given value of Ea to calculate the rate constant at a different temperature.

Let's assume that the temperature at which we want to calculate the rate constant is T2. We can rearrange the Arrhenius equation to get ln(k2/k1) = -(Ea/R)*(1/T2 - 1/T1), where k1 is the rate constant at 715 K, and k2 is the rate constant at T2. Solving for k2, we get k2 = k1*e^-(Ea/R)*(1/T2 - 1/T1). Substituting the given values, we get k2 = 1.36×10-2 /s at T2 = 875 K. Therefore, the rate constant at 875 K is 1.36×10-2 /s.

Know more about Activation Energy of Gas phase here:

https://brainly.com/question/31597248

#SPJ11

Which separation technique(s) would you use to separate copper (II) sulfate from carbon? Describe how you would separate the components of the given mixture?

Answers

The separation technique that would be used to separate copper (II) sulfate from carbon is filtration, followed by the evaporation of the solvent.

Filtration is the best method to use since it separates solids from liquids. The mixture can be poured onto a filter paper, and the copper (II) sulfate will dissolve in the water and pass through the filter paper while the carbon remains behind.

Once the copper (II) sulfate is separated from the carbon, it can be retrieved by evaporating the solvent leaving the solid copper (II) sulfate behind. This method works because copper (II) sulfate is a water-soluble compound while carbon is not.

By using filtration and evaporation, we can separate both components of the mixture.

Learn more about components here.

https://brainly.com/questions/13488004

#SPJ11

Which of the following biomolecules contains a porphyrin-based structure containing a mg2 ion?

Answers

The biomolecule that contains a porphyrin-based structure with a Mg2+ ion is chlorophyll.

Chlorophyll is a crucial pigment in plants, algae, and cyanobacteria that plays a vital role in the process of photosynthesis. It enables these organisms to capture light energy from the sun and convert it into chemical energy to produce glucose and oxygen, supporting life on Earth. The porphyrin-based structure is responsible for the strong light absorption properties of chlorophyll, enabling efficient photosynthesis.

The central Mg2+ ion is coordinated with four nitrogen atoms from the porphyrin ring, which contributes to the stability and unique properties of chlorophyll. There are different types of chlorophyll, such as chlorophyll-a and chlorophyll-b, which differ in their side chains but share the same porphyrin-based structure with Mg2+ ion. Overall, the presence of the porphyrin-based structure containing a Mg2+ ion in chlorophyll is essential for photosynthesis and, ultimately, life on our planet.

Learn more about photosynthesis here:

https://brainly.com/question/29775046

#SPJ11

hosw to solve the change in entropy when 0.802 g of silicon is burned in excess oxygen to yield silicon dioxide at 298 k?

Answers

To solve for the change in entropy, we can use the equation:

ΔS = nS°(products) - mS°(reactants)

where:

- ΔS is the change in entropy

- n and m are the stoichiometric coefficients of the products and reactants, respectively

- S° is the standard molar entropy of the substance

First, we need to write the balanced chemical equation for the combustion of silicon:

Si + O2 -> SiO2

From the equation, we can see that the stoichiometric coefficient of silicon is 1. Therefore, n = 1.

Next, we need to determine the standard molar entropy of silicon and silicon dioxide. According to standard tables, the values are:

S°(Si) = 18.8 J/(mol K)

S°(SiO2) = 41.8 J/(mol K)

Now we can substitute the values into the equation:

ΔS = nS°(SiO2) - mS°(Si)

Since all the silicon is consumed, m = 0.802 g / (28.09 g/mol) = 0.0286 mol.

ΔS = 1(41.8 J/(mol K)) - 0.0286 mol(18.8 J/(mol K))

ΔS = 0.919 J/K

Therefore, the change in entropy when 0.802 g of silicon is burned in excess oxygen to yield silicon dioxide at 298 K is 0.919 J/K.

To know more about entropy refer here

https://brainly.com/question/13135498#

#SPJ11

calculate the standard change in gibbs free energy for the reaction at 25 °c. refer to the δg°f values. c2h2(g) 4cl2(g)⟶2ccl4(l) h2(g)

Answers

The standard change in Gibbs free energy for the reaction at 25°C is -487.2 kJ/mol.

To calculate the standard change in Gibbs free energy (ΔG°) for the reaction at 25°C, you need to refer to the standard Gibbs free energy of formation (ΔG°f) values for each substance involved. The reaction is:

C₂H₂(g) + 4Cl₂(g) → 2CCl₄(l) + H₂(g)

First, look up the ΔG°f values for each substance in a database. For this example, let's use the following values (in kJ/mol):

C₂H₂(g): 209.2
Cl₂(g): 0 (as it is an element in its standard state)
CCl₄(l): -139.0
H₂(g): 0 (as it is an element in its standard state)

Now, use the equation:

ΔG° = ΣΔG°f(products) - ΣΔG°f(reactants)

For this reaction, the equation will be:

ΔG° = [2(-139.0) + 1(0)] - [1(209.2) + 4(0)]

Solve for ΔG°:

ΔG° = [-278.0] - [209.2] = -487.2 kJ/mol

To learn more about Gibbs free energy visit:

https://brainly.com/question/9179942

#SPJ11

Fatty acid degradation proceeds through repeated cycles of Boxidation with each cycle containing four reactions. Arrange the four enzymes that catalyze these reactions in order from first to last. 3-hydroxyacyl-COA dehydrogenase Acyl-CoA dehydrogenase B-ketoacyl-CoA thiolase Enoyl-CoA hydratase

Answers

The order of the four enzymes that catalyze the reactions in the fatty acid degradation cycle, from first to last, is as follows :- Acyl-CoA dehydrogenase, Enoyl-CoA hydratase, B-ketoacyl-CoA thiolase, 3-hydroxyacyl-COA dehydrogenase.

The enzymes are arranged in the order in which they act on the fatty acid molecule during each cycle of the degradation.

During each cycle of the fatty acid degradation, the acyl-CoA molecule is oxidized by acyl-CoA dehydrogenase to produce a trans-Δ2-enoyl-CoA. The enoyl-CoA molecule is then hydrated by enoyl-CoA hydratase to produce a β-hydroxyacyl-CoA.

This molecule is then oxidized by 3-hydroxyacyl-COA dehydrogenase to produce a β-ketoacyl-CoA. Finally, this molecule is cleaved by B-ketoacyl-CoA thiolase to produce acetyl-CoA and a new, shorter acyl-CoA molecule, which can enter another cycle of the fatty acid degradation.

To know more about enzymes refer here :-

https://brainly.com/question/17292676#

#SPJ11

classify the bonds as ionic, polar covalent, or nonpolar covalent. n-f se-cl rb-f na-f f-f i-i

Answers

Ionic bonds are formed between a metal and a nonmetal, where one atom loses one or more electrons to another atom that gains those electrons.

Polar covalent bonds are formed between two nonmetals that share electrons unequally, creating partial positive and negative charges. Nonpolar covalent bonds are formed between two nonmetals that share electrons equally, creating no partial charges. Using this information, we can classify the bonds as follows:

N-F: Polar covalent bond

Se-Cl: Polar covalent bond

Rb-F: Ionic bond

Na-F: Ionic bond

F-F: Nonpolar covalent bond

I-I: Nonpolar covalent bond

Note that for N-F and Se-Cl, the electronegativity difference between the atoms is greater than 0.5 but less than 1.7, so the bonds are considered polar covalent. For Rb-F and Na-F, the electronegativity difference is greater than 1.7, so the bonds are considered ionic. For F-F and I-I, the electronegativity difference is zero, so the bonds are considered nonpolar covalent.

For more questions like bonds visit the link below:

https://brainly.com/question/7140445

#SPJ11

how many moles of copper ii ion are there in the solid sample

Answers

To determine the number of moles of copper(II) ions in a solid sample, you would need to know the mass of the sample and the molar mass of copper. The formula for calculating moles is:

moles = (mass of sample) / (molar mass of copper)

Copper has a molar mass of approximately 63.5 g/mol. Once you have the mass of the solid sample, you can divide it by the molar mass of copper to find the moles of copper(II) ions present.

Learn more about moles here:

brainly.com/question/31993371

#SPJ11

how many kilograms of co₂ equivalents are emitted in the production and post-farmgate processing of 23 kg of pork?

Answers

Answer:The carbon footprint of pork varies depending on the location and the production methods used. On average, the carbon footprint of pork production is estimated to be around 3.8 kg CO2e per kg of pork.

So for 23 kg of pork, the total carbon footprint would be:

3.8 kg CO2e/kg * 23 kg = 87.4 kg CO2e

Therefore, approximately 87.4 kg of CO2 equivalents are emitted in the production and post-farmgate processing of 23 kg of pork.

learn more about equivalents

https://brainly.com/question/25197597?referrer=searchResults

#SPJ11

What mass of Hydrogen Gas is produced when 2. 2g Zn is reacted with excess aqueous hydrochloric acid in grams

Answers

To calculate the mass of hydrogen gas produced when 2.2g of zinc (Zn) reacts with excess aqueous hydrochloric acid (HCl), we need to consider the balanced chemical equation for the reaction and the molar ratios.

The balanced chemical equation for the reaction is:

Zn + 2HCl → ZnCl2 + H2

From the equation, we can see that 1 mole of zinc reacts with 2 moles of hydrochloric acid to produce 1 mole of hydrogen gas.

To calculate the mass of hydrogen gas produced, we can use the following steps:

1. Convert the given mass of zinc to moles using its molar mass.

2. Use the mole ratio between zinc and hydrogen gas from the balanced equation.

3. Calculate the moles of hydrogen gas produced.

4. Convert the moles of hydrogen gas to grams using its molar mass.

By following these steps and using the appropriate values, we can find the mass of hydrogen gas produced from the given mass of zinc.To

To learn more about mass click here:brainly.com/question/11954533

#SPJ11

19) CCC Stability and Change Predict whether or not the substances in the table will


sublime at STP. Base your predictions only on the type of force holding the solid


together.

Answers

Answer:

no lol

Explanation:i forgor

The task is to predict whether the substances listed in the table will sublime at standard temperature and pressure (STP), based solely on the type of force that holds the solid together.

Sublimation is the process in which a solid directly transitions into a gas without passing through the liquid phase. It occurs when the intermolecular forces holding the solid together are weak enough to allow the solid to convert to a gas at a given temperature and pressure.

The prediction of whether a substance will sublime at STP can be made by considering the type of force that binds the solid particles. Substances with weak intermolecular forces, such as hydrogen bonding, dipole-dipole interactions, or London dispersion forces, are more likely to sublime at STP.

On the other hand, substances with stronger forces, like ionic or metallic bonds, are less likely to sublime at STP. By analyzing the intermolecular forces in the substances listed in the table, we can make predictions about their likelihood of sublimation.

Learn more about weak intermolecular forces here:

https://brainly.com/question/31797315

#SPJ11

To calculate how many grams NH3 will be formed from 6. 0 g H2, the first step you need



A) information about chemical reaction is balanced or not.


B) set up given mole ratio of reactant vs products.


C) information about the mass of N2 reacting.


D) Set up mole ratios of reactants vs products from balanced chemical equation.



N2 + H2 → NH3

Answers

The correct answer is D) Set up mole ratios of reactants vs products from balanced chemical equation.

In order to calculate how many grams of NH3 will be formed from 6.0 g of H2, we need to set up the appropriate mole ratios from the balanced chemical equation. The balanced equation given is:

N2 + H2 → NH3

From this equation, we can determine the stoichiometric relationship between the reactants (N2 and H2) and the product (NH3). The coefficients in the balanced equation represent the mole ratios.

In this case, we see that the coefficient of H2 is 3, indicating that 3 moles of H2 react with 1 mole of NH3. Therefore, we can set up the mole ratio:

3 moles H2 : 1 mole NH3

Since we are given the mass of H2 (6.0 g), we would then convert this mass to moles using the molar mass of H2. Once we have the moles of H2, we can use the mole ratio to calculate the moles of NH3 formed. Finally, we can convert the moles of NH3 to grams using the molar mass of NH3.

To learn more about mole click here:brainly.com/question/28239680

#SPJ11

Consider the reaction that occurs when copper is added to nitric acid. Cu(s) 4HNO3(aq) mc024-1. Jpg Cu(NO3)2(aq) 2NO2(g) 2H2O(l) What is the reducing agent in this reaction? Cu NO3– Cu(NO3)2 NO2.

Answers

In the reaction between copper (Cu) and nitric acid (HNO_{3}), copper acts as the reducing agent.

In a chemical reaction, the reducing agent is the species that donates electrons, leading to a decrease in its oxidation state. In the given reaction, copper (Cu) undergoes oxidation, losing electrons to form Cu^{+2}ions in the product [tex]Cu(NO_{3}) _{2}[/tex].

Cu(s) → [tex]Cu^{+2}[/tex](aq) + 2e-

The oxidation state of copper increases from 0 in the reactant (Cu) to +2 in the product (Cu2+). This indicates that copper loses electrons and gets oxidized. On the other hand, nitric acid (HNO_{3}) is the oxidizing agent in the reaction since it accepts electrons during the reaction. Nitric acid is reduced as nitrogen in HNO_{3} gains electrons and goes from +5 oxidation state to +4 oxidation state in [tex]NO_{2}[/tex]

[tex]HNO_{3}[/tex](aq) + 3e- → NO2(g) + 2[tex]H_{2}O[/tex](l)

Therefore, copper is the reducing agent in this reaction as it undergoes oxidation by losing electrons, while nitric acid acts as the oxidizing agent by accepting those electrons and getting reduced.

Learn more about  oxidation here: https://brainly.com/question/31844777

#SPJ11

Which alkyl halide is needed to produce leucine from Gabriel synthesis? 1-bromo-2-methylpropane 2-bromobutane 2-bromopropane bromomethane

Answers

The alkyl halide needed to produce leucine from Gabriel synthesis is 2-bromobutane. The correct answer is: 2-bromobutane

Gabriel synthesis involves the reaction of phthalimide with an alkyl halide to form the corresponding primary amine. The phthalimide is then hydrolyzed to release the amine. In this case, 2-bromobutane will react with phthalimide to form N-(2-butyl)phthalimide, which can be hydrolyzed to produce 2-amino butane, the precursor for leucine. The other options listed, 1-bromo-2-methylpropane, 2-bromopropane, and bromomethane, do not have a sufficient alkyl chain length to form the necessary precursor for leucine. Therefore, 2-bromobutane is the alkyl halide needed for the synthesis of leucine in the Gabriel synthesis. Hence, 2-bromobutane is the correct answer

To know more about 2-bromobutane, here

brainly.com/question/31789656

#SPJ4

Isocitrate dehydrogenase is found only in the mitochondria, but malate dehydrogenase is found in both the cytosol and mitochondria. What is the role of cytosolic malate dehydrogenase? It is a point of electron entry into the mitochondrial respiratory chain. a It delivers the reducing equivalents from NADH through FAD to ubiquinone and thus into Complex III. It plays a key role in the transport of reducing equivalents across the inner mitochondrial membrane via the malate-aspartate shuttle. It plays a key role in the conversion of mitochondrial pyruvate to cytosolic oxaloacetate to fuel gluconeogenesis. It catalyzes the oxidation of malate to oxaloacetate, coupled to the reduction of NAD+ to NADH, in the last reaction of the citric acid cycle.

Answers

The role of cytosolic malate dehydrogenase is to catalyze the conversion of malate to oxaloacetate, coupled with the reduction of NAD+ to NADH. This reaction is the last step in the citric acid cycle, which takes place in the mitochondria.

However, cytosolic malate dehydrogenase plays a key role in the transport of reducing equivalents across the inner mitochondrial membrane via the malate-aspartate shuttle. This shuttle involves the transport of cytosolic malate into the mitochondria and its conversion to oxaloacetate, which is then converted to aspartate and transported back to the cytosol. This allows for the transfer of reducing equivalents from the cytosol to the mitochondria, which is important for energy production. Additionally, cytosolic malate dehydrogenase plays a role in the conversion of mitochondrial pyruvate to cytosolic oxaloacetate, which fuels gluconeogenesis. In summary, while malate dehydrogenase is found in both the cytosol and mitochondria, its role is crucial in transporting reducing equivalents and in the conversion of pyruvate to oxaloacetate for gluconeogenesis.
To know more about dehydrogenase visit :

https://brainly.com/question/29312833

#SPJ11

the following chemical reaction takes place in aqueous solution: zncl2(aq) nh42s(aq)→zns(s) 2nh4cl(aq) write the net ionic equation for this reaction

Answers

The net ionic equation for the given chemical reaction is: Zn²⁺(aq) + S²⁻(aq) → ZnS(s). This equation represents the key species involved in the reaction, ignoring the spectator ions.

Here is the net ionic equation for the chemical reaction:
Zn²⁺(aq) + S²⁻(aq) → ZnS(s)
The net ionic equation only includes the species that are directly involved in the chemical reaction and excludes spectator ions, which in this case are NH4+ and Cl-.

The entire symbols of the reactants and products, as well as the states of matter under the conditions under which the reaction is occurring, are expressed in the complete equation of a chemical reaction.

Only those chemical species that are directly involved in the chemical reaction are written in the net ionic equation of the reaction.

In the net ion equation, mass and charge must be equal.

It is utilised in double displacement processes, redox reactions, and neutralisation reactions.

Learn more about net ionic equation  here

https://brainly.com/question/22885959

#SPJ11

a 3.592 g sample of hydrated magnesium bromide, MgBr2. xH20, is dried in an oven. when the anhydrous salt is removed from the oven, it's mass is 2.263 g. what is the value of x?

Answers

According to law of conservation of mass, the value of x is 1.329 grams.

What is law of conservation of mass?

According to law of conservation of mass, it is evident that mass is neither created nor destroyed rather it is restored at the end of a chemical reaction .

Law of conservation of mass and energy are related as mass and energy are directly proportional which is indicated by the equation E=mc².Concept of conservation of mass is widely used in field of chemistry, fluid dynamics.

Mass of hydrated compound= mass of anhydrous compound +mass of water(x), thus mass of x= 3.592-2.263=1.329 grams.

Learn more about law of conservation of mass,here:

https://brainly.com/question/28711001

#SPJ1

Temperature can put stress on a reaction that is at equilibrium. How would you alter the temperature of an aqueous calcium hydroxide solution at equilibrium to favor the product formation? a. I'd increase the temperature by making a hot water bath b. I'd lower the temperature by making an ice water bath Please provide a brief explanation for your choice.

Answers

I would increase the temperature by making a hot water bath.  According to Le Chatelier's principle, a system at equilibrium will shift its equilibrium position in response to a stress. In this case, increasing the temperature is a stress that will cause the reaction to shift in the endothermic direction to absorb the excess heat.

The forward reaction is endothermic, meaning it absorbs heat to produce the products. Therefore, increasing the temperature will favor the forward reaction, resulting in more product formation. By making a hot water bath, the temperature of the aqueous calcium hydroxide solution will increase, leading to the formation of more product.

Calcium hydroxide dissociation is an endothermic reaction, meaning it absorbs heat from the surroundings. According to Le Chatelier's principle, when an equilibrium system is subjected to a change in temperature, the system will shift in a direction that counteracts the change. In this case, increasing the temperature by making a hot water bath will shift the equilibrium towards the product side (more dissociation of calcium hydroxide), favoring the formation of products.

To Know more about calcium hydroxide  visit;

https://brainly.com/question/20362079

#SPJ11

Give the major organic product of each reaction of methyl pentanoate with the given 6 reagents under the conditions shown. Do not draw any byproducts formed.
−→−−−−−Reagent→Reagent Product
a. Reaction with NaOH,H2ONaOH,H2O, heat; then H+,H2OH+,H2O.
SelectDrawRingsMoreEraseSelectDrawRingsMoreEraseSelectDrawRingsMoreErase
CHO
b. Reaction with (CH3)2CHCH2CH2OH(CH3)2CHCH2CH2OH (excess), H+H+.
SelectDrawRingsMoreEraseSelectDrawRingsMoreEraseSelectDrawRingsMoreErase
CHO
c. Reaction with (CH3CH2)2NH(CH3CH2)2NH and heat.
SelectDrawRingsMoreEraseSelectDrawRingsMoreEraseSelectDrawRingsMoreErase
CHNO
d. Reaction with CH3MgICH3MgI (excess), ether; then H+/H2OH+/H2O.
SelectDrawRingsMoreEraseSelectDrawRingsMoreEraseSelectDrawRingsMoreErase
CHO
e. Reaction with LiAlH4LiAlH4, ether; then H+/H2OH+/H2O.
SelectDrawRingsMoreEraseSelectDrawRingsMoreEraseSelectDrawRingsMoreErase
CHO
f. Reaction with DIBAL (diisobutylaluminum hydride), toluene, low temperature; then H+/H2OH+/H2O.
SelectDrawRingsMoreEraseSelectDrawRingsMoreEraseSelectDrawRingsMoreErase
CHO

Answers

The major organic product for this reaction sequence is pentanoic acid.

a. NaOH, H₂O, heat; then H⁺, H₂O:

The reaction with NaOH and heat will result in the saponification of methyl pentanoate to form sodium pentanoate and methanol. The sodium pentanoate will then be protonated with H+ and form the corresponding pentanoic acid.

The major organic product for this reaction sequence is pentanoic acid.

b. (CH₃)₂CHCH₂CH₂OH (excess), H+:

The reaction with (CH₃)₂CHCH₂CH₂OH and H+ is an example of an esterification reaction, which will result in the formation of an ester product.

The major organic product for this reaction is isopentyl pentanoate.

c. (CH₃CH₂)₂NH, heat:

The reaction with (CH₃CH₂)₂NH and heat is an example of an amide formation reaction, which will result in the formation of an amide product.

The major organic product for this reaction is N,N-diethylpentanamide.

d. Reaction with CH₃MgI(excess), ether; then H+/H₂O:

The reaction with CH₃MgI and excess will result in the formation of a Grignard reagent which will act as a nucleophile and attack the carbonyl group of methyl pentanoate to form a new carbon-carbon bond. The resulting product will have an alcohol functional group.

The major organic product for this reaction sequence is 3-hydroxypentanoic acid.

e. Reaction with LiAlH₄, ether; then H+/H₂O:

The reaction with LiAlH₄ is a reduction reaction, which will reduce the carbonyl group of methyl pentanoate to an alcohol group. The resulting product will have a primary alcohol functional group.

The major organic product for this reaction sequence is 3-pentanol.

f. Reaction with DIBAL (diisobutylaluminum hydride), toluene, low temperature; then H+/H₂O:

The reaction with DIBAL is a reduction reaction, which will reduce the ester group of methyl pentanoate to an aldehyde group. The aldehyde group can then be further reduced to an alcohol group with H+/H₂O.

The major organic product for this reaction sequence is 3-pentanol.

The Correct Question is:

Give the major organic product of each reaction of methyl pentanoate with the following reagents under the conditions shown. Do not draw any byproducts formed.

a. NaOH, H₂O, heat; then H+, H₂O

b. (CH₃)₂CHCH₂CH₂OH (excess), H+

c. (CH₃CH₂)₂NH, heat

d. Reaction with CH₃MgI(excess), ether; then H+/H₂O

e. Reaction with LiAlH₄, ether; then H+/H₂O

f. Reaction with DIBAL (diisobutylaluminum hydride), toluene, low temperature; then H+/H₂O

To know more about pentanoic acid follow the link:

https://brainly.com/question/16945257

#SPJ4

Which of these solutions is a buffer? Explain your answer. i. 0.50 M HCI + 0.50 M HCIO4ii. 0.10 M HCl + 0.20 M KOH iii. 0.65 M CH3NH2 +0.50 M CH3NH3NO3 iv. 0.80 M NaOH +0.75 M NH3 v. 1.5 M CH3COOH +0.75 M HCI

Answers

Solution iii (0.65 M CH3NH2 +0.50 M CH3NH3NO3) is a buffer because it contains a weak base (CH3NH2) and its conjugate acid (CH3NH3NO3).

A buffer solution resists changes in pH when small amounts of an acid or base are added. It typically consists of a weak acid and its conjugate base or a weak base and its conjugate acid.

In solution iii, CH3NH2 is a weak base, and CH3NH3NO3 is its conjugate acid. When a small amount of acid is added, it reacts with the weak base to form its conjugate acid, which is already present in the solution. Similarly, when a small amount of base is added, it reacts with the conjugate acid to form the weak base, which is already present in the solution. As a result, the pH of the solution remains relatively constant, making it a buffer solution.

None of the other solutions listed have a weak acid-base pair, so they cannot act as buffer solutions.

Learn more about acid-base here:

https://brainly.com/question/23687757

#SPJ11

Other Questions
What is the required return on assets? Multiple Choice 1. 3.12 percent. 16.5 percent. 33.33 percent. 10.85 percent the temperatures at midday on march 1st in five cities are shown in the bar chart below. What is the difference in temperature between rome and munich? which nims management characteristic involves using standardized names and definitions Shareholders inject capital into a company. Which answer best describes how this transaction would be reflected in the balance sheet? Select one: a. Cash increases and common stock increases b. Cash increases and liabilities increase c. Capital account increases d. No change in the overall level of assets PHP is whitespace insensitive. It doesn't matter how many whitespace characters you have in a row. One whitespace character is the same as many such characters. True False Given an example of a predicate P(n) about positive integers n, such that P(n) istrue for every positive integer from 1 to one billion, but which is never-the-less nottrue for all positive integers. (Hints: (1) There is a really simple choice possible forthe predicate P(n), (2) Make sure you write down a predicate with variable n!) What are monopolistic competition and oligopoly? Order the industries based on increasing market power and ability to set prices, starting with the highest. Describe the likely weather changes that occur with the advance and passage of a warm front. Describe the changes assocaited with the advance and passage of a cold front. You own a small Roman farm in the 100s b. C write a letter to a friend describing the changes you have witnessed in agriculture and and the Roman government. To maximize its profit, a monopoly should choose a price where demand is:a .elastic.b. inelastic.c .unitary elastic.d. vertical. Please answer true or false for each question 1. Adams and Jefferson were close friends during the election campaign of 1800.2. Jefferson and Burr were members of the same political party.3. As a result of the election of 1800, a constitutional amendment changed the wayelectors vote in presidential elections. _____ The individual generally responsible for the direct-material price variance is the:A. sales manager.B. production supervisor.C. purchasing manager.D. finance manager.E. head of the human resources department. what atomic terms are possible for the electron configuration np1nd1? which term is likely to lie lowest in energy? The pressure of a 75. 0 L sample of gas is 942 kPa at 293K. If the temperature drops to 283K and the volume expands to 110. 0 L, what will the pressure of the gas be? The heart rates (in beats per minute) of 41 randomly selected finishers of the Chicago Marathon, five minutes after they completed the race, had sample mean x = 132 and sample variance s2 = 105. Assuming that the heart rates of all finishers of the Chicago Marathon five minutes after completing the race are normally distributed, obtain a 95% confidence interval for their mean. If research indicates that a new intervention for a chronic health condition may offer more benefits than an established intervention, it would be unethical to allow a patient who has been educated about both options to continue using the established intervention.Group of answer choicesTrueFalse wind damage occurs to your car costing $1,600 to repair. if you have a $110 deductible for collision and full coverage for comprehensive, what portion of the claim will the insurance company pay? Different breeds of dogs can have dramatic phenotype differences, but because they are all from the same species these different breeds would all have the same genotype as each other.a. Trueb. False which qtable will you compare your qcalculated to? 0.76 0.64 0.56 can the questionable value be discarded based on your q-test results? The electric potential at a certain point in space is 12 V. What is the electric potential energy of a -3.0 micro coulomb charge placed at that point?