Answer:
2 moles!
Explanation:
Hi i hope this helped! I researched it and 2 moles was what came up first.
In which substance are molecules moving the fastest? The options are, a. Solid water (ice) b. Liquid water c. Water vapor (gas)
Answer:
The answer is C
Explanation:
The more space the molecules have the faster they will move, solid doesn't allow movement at all, when it gets to liquid they are free to move around because it's more space, when a gas they can move all around in the air.
How do isotopes of the same atom react chemically? How do isotopes of the same atom compare in size?
Atoms of the same elements differing in the number of neutrons in their nuclei are known as isotopes. Thus, isotopes of an element have the same atomic number but different atomic mass number. Isotopes of an element have similar chemical properties but different physical properties.
PLEASE HELP ME!!!!
TRUE or FALSE: When sperm and egg cells combine in fertilization, the
offspring ends up with the same number of chromosomes as their
parents.
Answer: False
Explanation:
Hope this help
Answer:
True.
Explanation:
Every child will contain the same number of chromosomes as the parents (otherwise they wouldn't be considered the same species). Additionally, animals can only mate with a species containing the same number of chromosomes as themselves. This means if the offspring of the parents had a different number fo chromosomes the offspring would be unable to mate with animals of it's own species.
Choose the group that corresponds to each element.
Alkali Metal
Alkali earth metal
Halogen
Noble gas
The group corresponding to alkali metal, alkali earth metal, halogen, and noble gas is IA,IIA, 17, 18 group respectively.
Alkali metals have one outermost electron in their valence shell. They are kept under oil and are in the group IA of the periodic table.Alkaline earth metals have two outermost electrons in their valence shell. Examples are beryllium, magnesium, etc.Halogens have seven electrons in their outermost shells. They are in the periodic table in group 17 naming fluorine to iodine.Noble gas is the one that has fulfilled electronic configuration and doesn't react with any other compound.This is present in group 18 of periodic table.Learn more about alkali metals at:
brainly.com/question/18153051
#SPJ1
PLEASE HELP ME!!!!!!!
Answer:
The heat capacity of the metal underneath the gold is 0.431 J/g°C
Explanation:
Using the formula as outlined in the image:
Q = m × c × ∆T
Where;
Q = amount of heat energy (J)
m = mass of substance (g)
c = specific heat capacity (J/g°C)
∆T = change in temperature (°C)
According to the information in this question;
Q = 503.9J
m = 23.02g
c = ?
∆T = 74°C - 23.2°C = 50.8°C
Using Q = m × c × ∆T
c = Q ÷ m∆T
c = 503.9 ÷ (23.02 × 50.8)
c = 503.9 ÷ 1169.42
c = 0.431 J/g°C
From the above heat capacity of the metal underneath the gold, it is obvious that the metal is not pure gold (c = 0.129J/g°C)
Congratulations you have worked hard and now you are done with the year! I am so proud of you!
Answer:
lololol
Explanation:
The table below shows some characteristics of three different types of muscles
Answer: Type A are cardiac muscles Type B are skeletal muscles, and Type C are smooth muscles.
Explanation: sub to technoblade :P
4. Are there any solutions that have the measure of -3
? Briefly explain why.
Given the reaction: N2 + O2 = 2NO for which the Keq at 2273 K is 1.2 x 10-4
a. Write the equilibrium constant expression for the reaction.
b. Write the equation that would allow you solve for the concentration of NO.
c. What is the concentration of NO if [NZ] = 0.166M and [02] = 0.145M?
Answer:
(a): The expression of equilibrium constant is [tex]K_{eq}=\frac{[NO]^2}{[N_2][O_2]}[/tex]
(b): The equation to solve the concentration of NO is [tex][NO]=\sqrt{K_{eq}\times [N_2]\times [O_2]}[/tex]
(c): The concentration of NO is 0.0017 M.
Explanation:
The equilibrium constant is defined as the ratio of the concentration of products to the concentration of reactants raised to the power of the stoichiometric coefficient of each. It is represented by the term [tex]K_{eq}[/tex]
(a):
The given chemical equation follows:
[tex]N_2+O_2\rightarrow 2NO[/tex]
The expression for equilbrium constant will be:
[tex]K_{eq}=\frac{[NO]^2}{[N_2][O_2]}[/tex]
(b):
The equation to solve the concentration of NO follows:
[tex][NO]=\sqrt{K_{eq}\times [N_2]\times [O_2]}[/tex] ......(1)
(c):
Given values:
[tex]K_{eq}=1.2\times 10^{-4}[/tex]
[tex][N_2]_{eq}=0.166M[/tex]
[tex][O_2]_{eq}=0.145M[/tex]
Plugging values in equation 1, we get:
[tex][NO]=\sqrt{(1.2\times 10^{-4})\times 0.166\times 0.145}[/tex]
[tex][NO]=\sqrt{2.88\times 10^{-6}}[/tex]
[tex][NO]=0.0017 M[/tex]
Hence, the concentration of NO is 0.0017 M.
PbO2 + 4HCl --- PbCl2 + Cl2 + 2H2O who buys electrons and who loses electrons?
Answer: Electrons are taken up by [tex]PbO_2[/tex] and they are lost by [tex]HCl[/tex]
Explanation:
Redox reaction is defined as the reaction in which oxidation and reduction take place simultaneously. It is also called the reaction where the exchange of electrons takes place.
An oxidation reaction is defined as the reaction in which a chemical species loses electrons takes place. In this reaction, the oxidation state of a substance gets increased.
A reduction reaction is defined as the reaction in which a chemical species gains electrons takes place. In this reaction, the oxidation state of a substance gets reduced.
For the given chemical reaction:
[tex]PbO_2+4HCl\rightarrow PbCl_2+Cl_2+2H_2O[/tex]
The half-reactions for this redox rection follows:
Oxidation half-reaction: [tex]2HCl\rightarrow ClO_2 + 2e^-[/tex]
Reduction half-reaction: [tex]PbO_2+2e^-\rightarrow PbCl_2[/tex]
Hence, electrons are taken up by [tex]PbO_2[/tex] and they are lost by [tex]HCl[/tex]
When water and alcohol are mixed, the final volume is less than the total of volume of alcohol plus water added due to .......
Answer:
molecules take up more space
In the following reaction, C5H12(1) + 8 O2 (g) - 6 H2O (g) + 5 CO2 (g), how many
moles of water (H20) are produced by 14.2 moles of O2?
Answer:
10.65 moles
Explanation:
O2:H2O
8:6
14.2:x
x= 10.65 moles
Given 32.0 g of water, if we see a temperature change from 25.0°C to 20.0°C, then how much heat energy (q) is transferred from the water?
(The specific heat of water is 4.184 J/g°C )
Answer:
Q = 669.44 J
Explanation:
Given that,
Mass of water, m = 32 g
The temperature change from 25.0°C to 20.0°C.
We need to find the amount of heat energy transferred. Let it is Q. We know that,
[tex]Q=mc\Delta T[/tex]
Where
c is the specific heat of water
Put all the values,
[tex]Q=32\times 4.184 \times (20-25)\\Q=669.44\ J[/tex]
So, 669.44 J of heat energy is transferred from the water.
how many moles of Carbon are in 3.06 g of Carbon
Answer:
[tex]\boxed {\boxed {\sf 0.255 \ mol \ C }}[/tex]
Explanation:
If we want to convert from grams to moles, the molar mass is used. This is the mass of 1 mole. They are found on the Periodic Table as the atomic masses, but the units are grams per mole (g/mol) instead of atomic mass units (amu).
Look up the molar mass of carbon.
Carbon (C): 12.011 g/molSet up a ratio using the molar mass.
[tex]\frac {12.011 \ g \ C}{ 1 \ mol \ C}[/tex]
Since we are converting 3.06 grams to moles, we multiply by that value.
[tex]3.06 \ g \ C*\frac {12.011 \ g \ C}{ 1 \ mol \ C}[/tex]
Flip the ratio. This way, the ratio is still equivalent, but the units of grams of carbon cancel.
[tex]3.06 \ g \ C* \frac{1 \ mol \ C}{12.011 \ g\ C}[/tex]
[tex]3.06 * \frac{1 \ mol \ C}{12.011 }[/tex]
[tex]\frac {3.06}{12.011 } \ mol \ C[/tex]
[tex]0.25476646 \ mol \ C[/tex]
The original measurement of grams (3.06) has 3 significant figures, so our answer must have the same. For the number we calculated, that is the thousandth place.
0.25476646The 7 in the ten-thousandth place tells us to round the 4 up to a 5.
[tex]0.255 \ mol \ C[/tex]
3.06 grams of carbon is approximately 0.255 moles of carbon.
If the molecule has n-C2 axes perpendicular to its Cn axis, choose True. Otherwise, choose False. Be sure to build a model or draw the structure before selecting your answer. If needed, search for the molecular structure online or in a textbook.XeF4[PdCl4]2−naphthalenefuran, C4H4O
Answer:
XeF4 True
[PdCl4]2− True
naphthalene True
Furan False
C4H4O False
Explanation:
From the given information:
Only XeF4; [PdCl4]2−; naphthalene are true. This is because their molecules contain -nC₂ axis which is perpendicular to the Cn axis. The image attached below shows the structural formula of each compound, there below, we can see that Furan only possesses one C₂ axis but not -nC₂ ⊥ C₂.
What is the [OH-] in a solution if the [H*] = 1.2 x 10-3 M?
We know that [OH⁻] * [H⁺] = 10⁻¹⁴
plugging the value of [H⁺]
[OH⁻] * 1.2 * 10⁻³ = 10⁻¹⁴
[OH⁻] = 10⁻¹⁴ * (10³/1.2)
[OH⁻] = 833.3 * 10⁻¹⁴
[OH⁻] = 8.33 * 10⁻¹²
Which of the following describes a spectrum?
A. A measurement of the energy associated with an electron
transition
B. A piece of glass that causes light to be divided into different
colors
C. A range of wavelengths or frequencies of electromagnetic
radiation
D. A list of the quantum numbers assigned to a particular electron
Answer: The Answer would be C
Explanation: A spectrum is a Range of Wavelengths and Frequencies of Electromagnetic Radition.
The statement that describe spectrum is a range of wavelengths or frequencies of electromagnetic radiation.
What is Spectrum?Spectrum arrangement or electromagnetic radiations base on their wavelength and frequency which can be visible light, ultraviolet, and infrared light. An instrument that is use for visual observation of spectra is called a spectroscope.
Therefore, The statement that describe spectrum is a range of wavelengths or frequencies of electromagnetic
radiation.
Learn more about spectrum from the link below.
https://brainly.com/question/4901067
(1 point) Which compound produces the greatest number of ions when one mole of it is dissolved in water
The question is incomplete, the complete question is;
Which produces the greatest number of ions when one mole dissolves in water? a. NaCl b. NH4Cl c. NH4NO3 d. Na2SO4
Answer:
Na2SO4
Explanation:
If we consider the compounds listed in the options one after the other;
NaCl produces two moles of ions in solution
NH4Cl produces two moles of ions in solution
NH4NO3 produces two moles of ions in solution
Na2SO4 produces three moles of ions in solution
We can see that Na2SO4 produces the greatest number of ions when one mole of the substance is dissolved in water, hence the answer above.
Find the mass of 0oC ice that 10 gof 100oC steam will completely melt. Latent heat of fusion of ice is 80cal/g oCand heat of vaporization of water 540 cal/g oC ?
Answer:
The right approach is "80 g".
Explanation:
Given:
[tex]L_f=80 \ Cal/g[/tex]
[tex]L_v=540 \ Cal/g[/tex]
[tex]S=1 \ Cal/g[/tex]
Now,
The amount of heat cooling will be:
= [tex]mL_v+mS \Delta T[/tex]
= [tex](10\times 540)+10\times 1\times (100-0)[/tex]
= [tex]5400+1000[/tex]
= [tex]6400 \ Cal[/tex]
then,
⇒ [tex]m_{ice} L_f=6400[/tex]
[tex]m_{ice}\times 80=6400[/tex]
[tex]m_{ice}=\frac{6400}{80}[/tex]
[tex]=80 \ g[/tex]
WILL GIVE BRAINLIEST TO FIRST ANSWER
picture ⬆️
Answer: A Molecular Approach, 2/e. Mole ratio. 2 mol C4H10 : 13 mol O2 : 8 mol CO2 : 10 mol H2O. ❖ 2 molecules of C4H10 react ... of aluminum and 73.15 g of sulfur are combined to form aluminum sulfide according to the equation:.
Explanation:
200 grams of iron (III) chloride reacts with ammonium carbonate [(NH4)2CO3] in the following equation.
FeCl3 + (NH4)2CO3 ---------> NH4Cl + Fe2(CO3)3
_ mole(s) of iron (III) carbonate [Fe2CO3)3] is/are produced in the balanced equation.
a
4
b
1
c
3
d
2
Answer:
0.616 moles of Fe₂(CO₃)₃ are produced when 200 g of FeCl₃ react
b. 1.
Explanation:
The balanced reaction is:
2FeCl₃ + 3(NH₄)₂CO₃ → 6NH₄Cl + Fe₂(CO₃)₃First we convert 200 grams of FeCl₃ into moles, using its molar mass:
200 g ÷ 162.2 g/mol = 1.23 mol FeCl₃Then we convert 1.23 moles of FeCl₃ into moles of Fe₂(CO₃)₃, using the stoichiometric coefficients of the balanced reaction:
1.23 mol FeCl₃ * [tex]\frac{1molFe_2(CO_3)_3}{2molFeCl_3}[/tex] = 0.616 mol Fe₂(CO₃)₃The closest answer would be option b. 1.
Explanation:
[tex]FeCl₃ + (NH₄)₂CO₃ → NH₄Cl + Fe₂(CO₃)₃[/tex]
first balance the chemical equation
[tex]2FeCl₃ + 3(NH₄)₂CO₃ → 6NH₄Cl + Fe₂(CO₃)₃[/tex]
2 mole. 3 mole. 6mole. 1mole
2*162g of FeCl₃ produce 236 g of Fe₂(CO₃)₃
200g of of FeCl₃
produce 236/(2*162)*20=145.68 g of Fe₂(CO₃)₃
1 mole of Fe₂(CO₃)₃=236g
145.68g of Fe₂(CO₃)=1/236*145.68=}0.61mole
closest answer is b 1
b.1mole(s) of iron (III) carbonate [Fe2CO3)3] is/are produced in the balanced equation
Write a conclusion statement that addresses the following questions: • Explain what the color change indicated about the changes in the concentrations of Co(H2O)62+ and CoCl42– in each trial. • Do your data support or fail to support your hypothesis (include examples)? • How do you think the investigation can be explored further?
When the concentration of the HCl is varied, the color of the solution is changed as the equilibrium position moves to the left or right.
What is equilibrium?The term equilibrium in a chemical reaction connotes that the forward and the revers reactions proceed at the same rate. Let us note that Co(H2O)6^2+ is pink in color while CoCl4^2– is blue in color.
As such, when the concentration of the HCl is varied, the color of the solution is changed as the equilibrium position moves to the left or right.
Learn more anout equilibrium: https://brainly.com/question/365923
In a different titration, a 0.7529 g sample of a mixture of solid C6H5COOH and solid NaCl is dissolved in water and titrated with 0.150 M NaOH. The equivalence point is reached when 24.78 mL of the base solution is added. Calculate each of the following.
a. The mass, in grams, of benzoic acid in the solid sample
b. The mass percentage of benzoic acid in the solid sample
Answer:
a. 0.4539g benozic acid
b. 60.29% of benzoic acid in the solid sample
Explanation:
The benzoic acid reacts with NaOH as follows:
C6H5COOH + NaOH → C6H5COONa + H2O
Where 1 mole of the acid reacts per mole of NaOH
The NaCl doesn't react with NaOH
To solve this question we must find the moles of NaOH added = Moles of benzoic acid. With the moles of the acid and its molar mass (C6H5COOH = 122.12g/mol) we can find the mass of the acid and its mass percentage:
a. Moles NaOH = Moles Benzoic acid:
24.78mL = 0.02478L * (0.150mol / L) = 0.003717 moles Benozic acid
Mass benzoic acid:
0.003717 moles Benozic acid * (122.12g / mol) = 0.4539g benozic acid
b. Mass percentage is:
0.4539g / 0.7529g * 100 = 60.29% of benzoic acid in the solid sample
Pick the correct statement about the pure water. Group of answer choices Pure water contains no ions. Pure water contains equal amounts of hydroxide [OH-] and hydronium [H3O ] ions. Pure water contains larger amounts of hydroxide [OH-] than hydronium [H3O ] ions. Pure water is an electrolyte. Pure water contains smaller amounts of hydroxide [OH-] than hydronium [H3O ] ions.
Answer:
Pure water contains no ions. TRUE
Pure water contains equal amounts of hydroxide [OH-] and hydronium [H3O+ ] ions. TRUE
Explanation:
This is the equilibrium for pure water:
2H₂O ⇄ H₃O⁺ + OH⁻ Kw
We see that pure water has no Ions. Pure water can not conduct electricity.
Generally ionized water comes from the water tap.
Another feature of pure water is pH.
Definetely pH of pure water is : 7
As pH = 7, [H₃O⁺] = 1×10⁻⁷
Then, [OH⁻] = 1×10⁻⁷
This is reazonable because Kw is 1×10⁻¹⁴ and Kw = [H₃O⁺] . [OH⁻]
In conclussion:
Pure water contains no ions. TRUE
Pure water contains equal amounts of hydroxide [OH-] and hydronium [H3O+ ] ions. TRUE
Pure water contains larger amounts of hydroxide [OH-] than hydronium [H3O+] ions. FALSE
Pure water is an electrolyte. FALSE
Pure water contains smaller amounts of hydroxide [OH-] than hydronium [H3O ] ions. FALSE
1.State two uses of water at home.
2. State two uses of water in industries.
3. What is water conservation?
4. What are some methods of water conservation?
Helppppp!!!!!!
Answer:
1. Washing dishes and cooking
2. Water is used as a solvent in the manufacture of beverages and it is also largely used in agriculture.
3. Water conservation is the action of using water wisely and not wasting it.
4. i) Wash dishes in a tub of water instead of under a running tap.
ii) Use a pail of water to wash the car instead of spraying water from a hose.
iii) Make sure that there are no leaking or broken taps and pipes.
Answer:
Washing dishes and cooking
2. Water is used as a solvent in the manufacture of beverages and it is also largely used in agriculture.
3. Water conservation is the action of using water wisely and not wasting it.
4. i) Wash dishes in a tub of water instead of under a running tap.
ii) Use a pail of water to wash the car instead of spraying water from a hose.
iii) Make sure that there are no leaking or broken taps and pipes.
Explanation:
If atoms are electrically neutral then how do they form bonds?
Answer:
The nucleus contains neutrons and protons; protons carry the positive charge. The shells contain electrons which carry the negative charge. So, how can the atom be changed. ... Covalent bonds are electrically neutral because they are not formed due to the transfer of electrons but sharing of electrons.Explanation:
Hope it helps ^-^
#CarryOnLearning
Answer:
When an atom has an equal number of electrons and protons, it has an equal number of negative electric charges (the electrons) and positive electric charges (the protons). The total electric charge of the atom is therefore zero and the atom is said to be neutral. ... Chemically, we say that the atoms have formed bonds
Hydration of alkynes gives good yields of single compounds only with symmetrical or terminal alkynes. Draw the major organic product(s) formed when 3-methylcyclodecyne undergoes hydration in the presence of HgSO4 and H2SO4.
Answer:
Following are the solution to the given choice:
Explanation:
Hex-2-yne is just not alkyne symmetric, therefore two things respectively hexan-3-one and hexan-2-one are to be given.
The attached file it displayed the response along with the mechanism, please find the.
A chemist must dilute of aqueous silver perchlorate solution until the concentration falls to . He'll do this by adding distilled water to the solution until it reaches a certain final volume. Calculate this final volume, in liters. Round your answer to significant digits
The given question is incomplete, the complete question is:
A chemist must dilute 54.1 mL of 20.2 M aqueous silver perchlorate (AgC102) solution until the concentration falls to 3.00 M. He'll do this by adding distilled water to the solution until it reaches a certain final volume. Calculate this final volume, in liters. Round your answer to 3 significant digits.
Answer:
The correct answer is 0.364 L.
Explanation:
A solution is made less concentrated by diluting it with a solvent. There is no change in the number of moles when more solvent is added to the solution. In case, if the solution is diluted from V1 to V2, a change is noticed in the molarity of the solution based on the given equation,
M1V1 = M2V2
In the given case, the V1 or the volume of the original solution is 54.1 ml, M1 or the molarity of the original solution is 20.2 M.
The M2 or the molarity of the diluted solution is 3.00 M, there is a need to find the V2 or the volume of the diluted solution.
Now by putting the values in the equation we get,
= 20.2M * 54.1 ml = 3.0 M * V2
V2 = 364.27 ml
It is known that 1000 ml is equivalent to 1L, therefore, 1 ml = 0.001 L
Now, the value of V2 will be,
= 364.27 * 0.001 L = 0.36427 L or 0.364 L
Now we need to find the amount of NF3 that can be formed by the complete reactions of each of the reactants. If all of the N2 was used up in the reaction, how many moles of NF3 would be produced
The question is incomplete, the complete question is:
Nitrogen and fluorine react to form nitrogen fluoride according to the chemical equation:
[tex]N_2(g)+3F_2(g)\rightarrow 2NF_3(g)[/tex]
A sample contains 19.3 g of [tex]N_2[/tex] is reacted with 19.3 g of [tex]F_2[/tex]. Now we need to find the amount of [tex]NF_3[/tex] that can be formed by the complete reactions of each of the reactants.
If all of the [tex]N_2[/tex] was used up in the reaction, how many moles of [tex]NF_3[/tex] would be produced?
Answer: 1.378 moles of [tex]NF_3[/tex] are produced in the reaction.
Explanation:
The number of moles is defined as the ratio of the mass of a substance to its molar mass.
[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex] ......(1)
Limiting reagent is defined as the reagent which is completely consumed in the reaction and limits the formation of the product.
Excess reagent is defined as the reagent which is left behind after the completion of the reaction.
In the given chemical reaction, [tex]N_2[/tex] is considered as a limiting reagent because it limits the formation of the product and it was completely consumed in the reaction.
We are given:
Mass of [tex]N_2[/tex] = 19.3 g
Molar mass of [tex]N_2[/tex] = 28.02 g/mol
Putting values in equation 1:
[tex]\text{Moles of }N_2=\frac{19.3g}{28.02g/mol}=0.689mol[/tex]
For the given chemical reaction:
[tex]N_2(g)+3F_2(g)\rightarrow 2NF_3(g)[/tex]
By the stoichiometry of the reaction:
1 mole of [tex]N_2[/tex] produces 2 moles of [tex]NF_3[/tex]
So, 0.689 moles of [tex]N_2[/tex] will produce = [tex]\frac{2}{1}\times 0.689=1.378mol[/tex] of [tex]NF_3[/tex]
Hence, 1.378 moles of [tex]NF_3[/tex] are produced in the reaction.
Climate models show that human climate forcing is causing the loss of mountain and tidewater glaciers. Briefly explain why glaciers are an important aspect of human survival.
Answer:
A glacier is a large mass of snow and ice that has accumulated over many years and is present year-round. In the United States, glaciers can be found in the Rocky Mountains, the Sierra Nevada, the Cascades, and throughout Alaska. A glacier flows naturally like a river, only much more slowly. At higher elevations, glaciers accumulate snow, which eventually becomes compressed into ice. At lower elevations, the “river” of ice naturally loses mass because of melting and ice breaking off and floating away (iceberg calving) if the glacier ends in a lake or the ocean. When melting and calving are exactly balanced by new snow accumulation, a glacier is in equilibrium and its mass will neither increase nor decrease.
In many areas, glaciers provide communities and ecosystems with a reliable source of streamflow and drinking water, particularly in times of extended drought and late in the summer, when seasonal snowpack has melted away. Freshwater runoff from glaciers also influences ocean ecosystems. Glaciers are important as an indicator of climate change because physical changes in glaciers whether they are growing or shrinking, advancing or receding provide visible evidence of changes in temperature and precipitation. If glaciers lose more ice than they can accumulate through new snowfall, they ultimately add more water to the oceans, leading to a rise in sea level (see the Sea Level indicator). The same kinds of changes occur on a much larger scale within the giant ice sheets that cover Greenland and Antarctica, potentially leading to even bigger implications for sea level. Small glaciers tend to respond more quickly to climate change than the giant ice sheets. Altogether, the world’s small glaciers are adding roughly the same amount of water to the oceans per year as the ice sheets of Greenland and Antarctica combined. During the last two decades, they added more water overall to the oceans than the ice sheets did.
Explanation:
please give this answer as brainliest answer
Because they offer a variety of essential functions, including as controlling river flows and water supply, safeguarding coastal areas from floods, and preserving biodiversity, glaciers are a crucial component of human survival.
What is the source of the freshwater ?First, many people throughout the world rely heavily on glaciers as a supply of freshwater. When glaciers melt, they release water that has been stored and is subsequently utilised for agriculture, drinking water, and other things.
In dry areas with limited access to other freshwater sources, this water is very crucial. As a natural reservoir, glaciers may also hold a lot of water during the winter and release it gradually throughout the summer. This helps to control river flows and avoid flooding.
Second, glaciers contribute significantly to the global climate.system of climate. Large volumes of carbon dioxide and other greenhouse gases are released as glaciers melt, which can contribute to global warming. Glaciers may also reflect sunlight, which aids in cooling the surroundings around them.
High-altitude places, where glaciers can help regulate temperatures and avert catastrophic weather occurrences, are particularly crucial for this cooling impact. Last but not least, glaciers are crucial for the preservation of biodiversity. Numerous types of plants, animals, and microorganisms find a special niche in glaciers. These species may be disrupted by glacier melting, which might result in the extinction of entire ecosystems. The environment and the communities who rely on it may be significantly impacted by this.
Learn more about Climate models at:
https://brainly.com/question/31171080
#SPJ2