Answer:
8 liters of 15% NaCl solution should be mixed with 2 L of a 20% NaCl solution to obtain a 16% NaCl solution
Explanation:
The method employed here is known as alligation technique.
Alligation is a method used to calculate the proportion of any two solutions to be mixed to prepare final solution of required concentration.
Let the number of liters of the 15% NaCl solution be X
A mixture of X liters of 15% NaCl + 2 liters of 20% NaCl gives X + 2 liters of a solution whose concentration is 16%
X * 15% + 2 * 20% = 16% * X + 2
0.15X + 2 * 0.2 = 0.16 X + 0.16 * 2
0.15X + 0.4 = 0.16X + 0.32
0.16X - 0.15X = 0.4 - 0.32
0.01X = 0.08
X = 0.08/0.01
X = 8 liters
Therefore, 8 liters of 15% NaCl solution should be mixed with 2 L of a 20% NaCl solution to obtain a 16% NaCl solution
Calculate the bond energy in the ionic compound Nacl if the bond length is 2.36x10^-10m
This question is incomplete, the complete complete question is;
Coulomb's law for the energy of interaction between two charged ions;
E = Ke × q1q2/r
Coulomb's constant Ke = 2.31 × 10⁻²⁸ J.m.
Calculate the bond energy in the ionic compound NaCl if the bond length is 2.36 × 10⁻¹⁰m
Answer:
the bond energy is -9.788 × 10⁻¹⁹ J
Explanation:
Given the data in the question;
Ke = 2.31 × 10⁻²⁸ J.m which is the same as; Ke = 2.31 × 10⁻²⁸ Nm L/c²
ionic compound NaCl;
q1 = charge on Na in NaCl = Na⁺ = + 1C
q2 = charge on Cl in NaCl = Cl⁻ = - 1C
given that bond length r is 2.36 × 10⁻¹⁰m
E = Ke × q1q2/r
we substitute
E = 2.31 × 10⁻²⁸ × (+1 × -1) / 2.36 × 10⁻¹⁰
E = -2.31 × 10⁻²⁸ / 2.36 × 10⁻¹⁰
E = -9.788 × 10⁻¹⁹ J { The negative sign means Attraction in ions }
Therefore, the bond energy is -9.788 × 10⁻¹⁹ J
Volume is the independent or dependent variable
Answer:
Independent
Explanation:
Independent Variable is the volume of the object. Dependent Variable is the mass of the object. So it
In a chemical reaction, reactants interact to form products. This process is summarized by a chemical equation. In the Balancing Chemical Equations Gizmo, look at the floating molecules below the initial reaction: H2 + O2 ???? H2O. 1. How many atoms are in a hydrogen molecule (H2)? 2. How many atoms are in an oxygen molecule (O2)? 3. How many hydrogen and oxygen atoms are in a water molecule (H2O)? 4. In general, what does a subscript (such as the "2" in H2) tell you about the molecule? 5. A chemical equation is balanced if the number of each type of atom on the left side is equal to the number of each type on the right side. Is this reaction balanced?
Answer:
See answer below
Explanation:
Let's write the equation again:
H₂ + O₂ ---------> H₂O
Now that we have written the equation, let's solve the exercise:
1. In this case, we first need to make a difference between atom and molecule. An atom is just a single element, a molecule it's when you have more than 1 element in a compound.
Knowing this, we have the H₂. In this case we only have one element, Hydrogen. However, as you can see in the expression, we have a number 2 as a subscript. The number 2 means that the hydrogen it's not alone, we do not have one hydrogen, we have two hydrogens, therefore, it becomes a molecule. Now, This molecule, according to the number 2 as subscript, means that the molecule of hydrogen have 2 atoms of hydrogens, and this formed the molecule, therefore, there are 2 atoms of hydrogens in H₂.
2. Following the same explanation of above, but using oxygen, we have the same thing, so, in a molecule of O₂, we have 2 atoms of oxygen.
3. The molecule of water is composed of Hydrogen and oxygen. As you can see, in this case we have 2 hydrogen and 1 oxygen, therefore, in 1 molecule of water, there are 1 atom of oxygen and 2 atoms of hydrogen.
4. The subscript, as you may know now, tell us the number of atoms that you have in a molecule or compound. This number also means, in different compounds the oxidation state of the atoms that conform the molecule.
5. No, the equation is not balanced, because we do not have the same number of oxygen on the side of the products. We need to balance that. As the oxygen is unbalanced, we just need to put numbers as coefficients, behind the molecule. This number will multiply the number of atoms of the referred molecule. So, doing this with the water on the products to equal the number of oxygen, we have:
H₂ + O₂ ---------> 2H₂O
But this 2, unbalance at the same time the number of hydrogens. We now have 4 hydrogens in the product, so, to balance this, we put a 2 on the reactants:
2H₂ + O₂ ---------> 2H₂O
Now the reaction is balanced.
Hope this helps
One mole of a metallic oxide reacts with one mole of hydrogen to produce two moles of the pure metal
and one mole of water. 5.00 g of the metallic oxide produces 2.32 g of the metal. What is the metallic
oxide? (Use molar masses)
Answer:
Lithium oxide, Li₂O.
Explanation:
Hello!
In this case, according to the given amounts, it is possible to write down the chemical reaction as shown below:
[tex]M_2O+H_2\rightarrow 2M+H_2O[/tex]
Which means that the metallic oxide has the following formula: M₂O. Next, we can set up the following proportional factors according to the chemical reaction:
Thus, we perform the operations in order to obtain:
[tex]\frac{10X}{(2X+16)}=2.32[/tex]
So we solve for x as shown below:
[tex]10X=2.32(2X+16)\\\\10X=4.64X+37.12\\\\X=\frac{37.12}{10-4.64}\\\\X= 6.93g/mol[/tex]
Whose molar mass corresponds to lithium, and therefore, the metallic oxide is lithium oxide, Li₂O.
Best regards!
Heat will continue to move until the objects or areas have reached the same ______.
Answer: Thermal Equilibrium
Explanation:
Answer:
temperature
Explanation:
I think that's it i'm sorry if i'm wrong
The octane number of gasoline is a measure of octane activity. The octane activity is determined by comparing the engine performance using gasoline and known mixtures of isooctane and n-heptane.
a. True
b. False
Answer:
A. True
Explanation:
The octane number is determined by comparing the characteristics of gasoline to isooctane (2,2,4-trimethylpentane) and heptane. The correct option is option A.
Basically, the higher the octane number, the greater the resistance of the gasoline to knocking.
What is a net ionic equation?
A. An equation that shows all substances as compounds
B. An equation that is balanced on both sides
C. An equation showing only what is involved in the reaction
D. An equation that shows all dissolved compounds as ions
Answer:
I think it will option D hope it helps
whats a Natural Selection?
Answer:
Natural selection is the differential survival and reproduction of individuals due to differences in phenotype. It is a key mechanism of evolution, the change in the heritable traits characteristic of a population over generations.
Explanation:
I hope this helps :) Thank you. Plz mark brainliest.
Potassium nitrate (KNO3) is a water-soluble white powder that
is often used as a plant fertilizer. What is the molar
concentration of a solution made up of 505 grams of
potassium nitrate mixed with 250 mL water? The molar mass
of KNO3 is 101.1 g/mol. Round your answer to 3 sig figs.
The molar concentration, often called molarity, describes how much of a substance (a solute) is present per unit of solvent. By definition, the molar concentration (M) is equal to the number of moles (n) of solute divided by the number of liters (the volume, or V) of the solution.
Here, your solute is potassium nitrate, or KNO3. You're given the mass of KNO3 (505 g), but you need to convert this quantity to moles before you can find the molarity. To go from mass to moles, simply divide the mass of the substance by its molar mass (given to you as 101.1 g/mol).
[tex]505 \text{ g KNO}_\text{3} \div 101.1 \text{ g KNO}_3/\text{mol KNO}_{3} = 4.995 \text{ mol KNO}_3[/tex]
Now that we have the moles of solute, we divide by the liters of solution. We're given the volume of solution in milliliters, so to convert to liters, simply divide by 1000 (1 L = 1000 mL, so 1 mL = 1/1000 mL). Our volume of solution is thus 0.250 L.
Finally, we can calculate the molar concentration of the KNO3 solution:
[tex]4.995 \text{ mol KNO}_{3 }\div 0.250 \text{ L} = 19.98 \text{ }\frac{\text{moles}}{\text{liters}}\text{ of KNO}_3[/tex]
But, we're told to round our answer to three sig figs. Thus, our rounded and final answer would be 20.0 moles/liters of KNO3.
2. Describe briefly of some ways these organisms might interact with
each other. (5 points)
An unknown solid is added to water in a calorimeter. The temperature of the water increases. What does this say about the reaction? A) The reaction is exothermic. B) The reaction is endothermic. C) The reaction has absorbed heat from the solution. D) The reaction has released heat to the solution. E) Both A and D are correct.
Answer:
Option A is correct.
Option D is correct.
E is the correct answer
Explanation:
This a theoretical calorimetry problem that can be solved by thermodynamic concepts.
Our system is the unknown solid. If the temperature of water has increased, we can think, that the heat from the metal was absorbed by water, which is our surrounding. If in the analysis of the situation we use a calorimeter, knowing that it is an isolated system, which does not allow the entry or exit of heat, we can conclude that the heat released is equal to the heat absorbed.
In conclusion, the thermodynamic system is constituted by the chemical reaction. In this case, the surrounding is made up of water and the calorimeter itself.
If the reaction is exothermic, the heat released by the reaction will be absorbed by the surrounding . Then, the final temperature will be higher than the initial temperature. If the reaction is endothermic, the heat absorbed by the reaction will be released by the environment. So, the final temperature will be lower than the initial temperature.What key assumption of Bohr’s model would a Solar S y stem model of the atom violate? What was the theoretical basis for this assumption?
Answer:
See explanation
Explanation:
The solar system consists of the sun at the core surrounded by all the planets in their proper order. Similarly, the Bohr model of the atom upholds Rutherford's planetary model in which the atom was said to have a positive core surrounded by electrons moving in orbits just as the planets orbit round the sun.
The difference between the two models is that electrons are able to move from one energy level to another. This assumption violates the principles of the solar system because the position of the planets are fixed in their orbits.
The theoretical basis behind this assumption is that each spectral line is produced by the transition of electrons from one energy level to another.
God Has Given wing To Birds
Answer:
and birds can fly without wings es hora de vomer
If one DNA strand reads CCGTAATGCAT, what will be the sequence of the complementary
strand?
Si una hebra de ADN lee CCGTAATGCAT, ¿cuál será la secuencia de la hebra
complementaria?
Write your answer here:
Escriba su respuesta aquí:
a) CCGTAATGCAT
b) GGCATTACGTA
c) CCGATTAGCTA
d) GGCTAATCGAT
If one DNA strand reads CCGTAATGCAT, the sequence of the complementary strand will be - b) GGCATTACGTA
Complementary base pairingThe nucleic acid sequence of bases can form a double-stranded structure by matching base pairs.Adenine matches with thymine (uracil in RNA) and vice versaGuanine matches with cytosine and vice versaFor example, the complementary sequence to C-A-T-G (where each letter stands for one of the bases in DNA) is G-T-A-C.So, DNA strand - C-C-G-T-A-A-T-G-C-A-T
Complementary DNA strand - G-G-C-A-T-T-A-C-G-T-A
Thus, If one DNA strand reads CCGTAATGCAT, the sequence of the complementary strand will be - b) GGCATTACGTA
Learn more:
https://brainly.com/question/3372278
What type of energy does a bouncing ball have ?
Answer:
Kinetic
Explanation:
When the ball is falling towards the table, it has kinetic energy. This elastic potential energy is why the ball is able to bounce, or rebound. After the ball rebounds, the elastic potential energy is transformed into kinetic energy, but it will never possess as much kinetic energy as during its original fall.
Answer:
Explanation:
It has kinetic energy.
Hope it helped you.
what is a row of elements across the periodic table called
Answer:
a period
Explanation:
Answer: The row of elements across the periodic table is called "periods".
Explanation:
In the Periodic Table, there are seven rows of elements, which is called periods.
can someone help me?
Answer:
no, and next time take it right
Explanation:
How many molecules of glucose are in 1.15 mol of glucose, C6H1206?
Answer: There are [tex]6.926\times 10^{23}[/tex] molecules of glucose.
Explanation:
According to avogadro's law, 1 mole of every substance occupies 22.4 L at STP and contains avogadro's number [tex]6.023\times 10^{23}[/tex] of particles.
To calculate the molecules, we use the equation:
[tex]\text{Number of moles}=\frac{\text{Given molecules}}{\text {Avogadro's number}}[/tex]
[tex]1.15=\frac{x}{6.023\times 10^{23}}[/tex]
[tex]x=1.15\times 6.023\times 10^{23}=6.926\times 10^{23}[/tex]
Thus there are [tex]6.926\times 10^{23}[/tex] molecules of glucose.
Iron is a metal. The structure of iron is described as a lattice of positive ions in a sea of
electrons. Which of the following statements about iron are correct?
1 iron conducts electricity because the electrons are free to move
2 iron has a high melting point due to the strong covalent bonds
3 iron is an alloy
4 iron is malleable because the layers of atoms can slide over one another
A. 1 only
B. 1 and 3
C. 1 and 4
D. 2, 3 and 4
Answer: 1and 4
Explanation: iron is an element not an alloy. An ionic lattice is not bonded covalently.
what does GCAT help us remember?
Limiting factors for an Antelope include:
O A. Lions
O B. Water
O C. Grass
O D. All of the above
Answer:
D all the above
Explanation:
Answer:
Answer:- Lions..
Explanation:
Hope you have got your answer..
Happy Learning!..
Please like, follow and thank me..
A solution contains a mixture of pentane and hexane at room temperature. The solution has a vapor pressure of 263 torr. Pure pentane and hexane have vapor pressures of 425 torr and 151 torr, respectively, at room temperature.
Required:
What is the mole fraction of hexane?
Answer:
Xb = 0.59
Explanation:
Let's analyze the given data.
We have a total vapor pressure of 263 Torr for the mix of the two gases. And the individual vapour pressures for each gas is given, and it's 425 Torr for pentane and 151 Torr for hexane.
We are asked to determine the mole fraction of hexane. For practical purposes, we will label pentane as "a" while hexane would be "b". So, let's write the equations that we need to calculate this.
We know that the total pressure of a solution would be:
P = Pa + Pb (1)
And we also know that these individual pressures are:
Pa = Xa * Pa° (2)
Pb = Xb * Pb° (3)
Where Pa° and Pb° are the vapour pressures of each gases.
The mole fractions (Xa and Xb), can be expressed, one in function of the other:
Xa + Xb = 1 -----> Xa = 1 - Xb (4)
Now that we know this, we can replace (4) in (2), and then, (2) and (3) can be replaced in (1):
Pa = (1 - Xb)Pa°
P = (1 - Xb)Pa° + XbPb° (5)
Replacing the given data, we have:
263 = (1 - Xb)*425 + 151Xb
Now solving for Xb, which is the mole fraction of hexane:
263 = 425 - 425Xb + 151Xb
263 - 425 = (-425 + 151)Xb
-162 = -274Xb
Xb = -162 / -274
Xb = 0.59Hope this helps
The ______ are new substances taht are created following a chemical reaction?
What is the mass of 4.67 mol of Sulfuric Acid (H2SO4)
458 g H₂SO₄
General Formulas and Concepts:Math
Pre-Algebra
Order of Operations: BPEMDAS
Brackets Parenthesis Exponents Multiplication Division Addition Subtraction Left to RightChemistry
Atomic Structure
Reading a Periodic TableStoichiometry
Using Dimensional AnalysisExplanation:Step 1: Define
4.67 mol H₂SO₄
Step 2: Identify Conversions
[PT] Molar Mass of H - 1.01 g/mol
[PT] Molar Mass of S - 32.07 g/mol
[PT] Molar Mass of O - 16.00 g/mol
Molar Mass of H₂SO₄ - 2(1.01) + 32.07 + 4(16.00) = 98.09 g/mol
Step 3: Convert
Set up: [tex]\displaystyle 4.67 \ mol \ H_2SO_4(\frac{98.09 \ g \ H_2SO_4}{1 \ mol \ H_2SO_4})[/tex]Multiply/Divide: [tex]\displaystyle 458.08 \ g \ H_2SO_4[/tex]Step 4: Check
Follow sig fig rules and round. We are given 3 sig figs.
458.08 g H₂SO₄ ≈ 458 g H₂SO₄
What type of tide would this arrangement of earth-moon-sun create?*
O full moon tide
O neap tide
O new moon tide
Ospring tide
HURRY!!!
Answer:
neap tide
Explanation:
There are two different types of tides, which are the spring tide and the neap tide.
Neap tides are weak tides which occur when the gravitational forces of the sun and the moon are at right angles to each other with respect to the earth. Since the sun and moon are at right angles, it causes a difference between the low and high tide.
The spring tide are strong tides which occur when the moon, sun and earth are in straight line. The spring tide occur during full moon and new moon.
Answer:
Neap Tides
The result is a neap tide. The same effect happens during third quarter. These occur during first and last quarter moons. The gravitational pull is not as strong.
Explanation:
the first answer is correct
One mole of a metallic oxide reacts with one mole of hydrogen to produce two moles of the pure metal
and one mole of water. 5.00 g of the metallic oxide produces 2.32 g of the metal. What is the metallic
oxide? (Use molar masses)
Answer:
Formulas
3.2 Determining Empirical and Molecular Formulas
Learning Objectives
By the end of this section, you will be able to:
Compute the percent composition of a compound
Determine the empirical formula of a compound
Determine the molecular formula of a compound
The previous section discussed the relationship between the bulk mass of a substance and the number of atoms or molecules it contains (moles). Given the chemical formula of the substance, one may determine the amount of the substance (moles) from its mass, and vice versa. But what if the chemical formula of a substance is unknown? In this section, these same principles will be applied to derive the chemical formulas of unknown substances from experimental mass measurements.
Percent Composition
The elemental makeup of a compound defines its chemical identity, and chemical formulas are the most succinct way of representing this elemental makeup. When a compound’s formula is unknown, measuring the mass of each of its constituent elements is often the first step in the process of determining the formula experimentally. The results of these measurements permit the calculation of the compound’s percent composition, defined as the percentage by mass of each element in the compound. For example, consider a gaseous compound composed solely of carbon and hydrogen. The percent composition of this compound could be represented as follows:
%H=mass Hmass compound×100%
%C=mass Cmass compound×100%
If analysis of a 10.0-g sample of this gas showed it to contain 2.5 g H and 7.5 g C, the percent composition would be calculated to be 25% H and 75% C:
%H=2.5g H10.0g compound×100%=25%
%C=7.5g C10.0g compound×100%=75%
EXAMPLE 3.9
Calculation of Percent Composition
Analysis of a 12.04-g sample of a liquid compound composed of carbon, hydrogen, and nitrogen showed it to contain 7.34 g C, 1.85 g H, and 2.85 g N. What is the percent composition of this compound?
Solution
To calculate percent composition, divide the experimentally derived mass of each element by the overall mass of the compound, and then convert to a percentage:
%C=7.34g C12.04g compound×100%=61.0%%H=1.85g H12.04g compound×100%=15.4%%N=2.85g N12.04g compound×100%=23.7%
The analysis results indicate that the compound is 61.0% C, 15.4% H, and 23.7% N by mass.
Check Your Learning
A 24.81-g sample of a gaseous compound containing only carbon, oxygen, and chlorine is determined to contain 3.01 g C, 4.00 g O, and 17.81 g Cl. What is this compound’s percent composition?
ANSWER:
12.1% C, 16.1% O, 71.8% Cl
Determining Percent Composition from Molecular or Empirical Formulas
Percent composition is also useful for evaluating the relative abundance of a given element in different compounds of known formulas. As one example, consider the common nitrogen-containing fertilizers ammonia (NH3), ammonium nitrate (NH4NO3), and urea (CH4N2O). The element nitrogen is the active ingredient for agricultural purposes, so the mass percentage of nitrogen in the compound is a practical and economic concern for consumers choosing among these fertilizers. For these sorts of applications, the percent composition of a compound is easily derived from its formula mass and the atomic masses of its constituent elements. A molecule of NH3 contains one N atom weighing 14.01 amu and three H atoms weighing a total of (3 × 1.008 amu) = 3.024 amu. The formula mass of ammonia is therefore (14.01 amu + 3.024 amu) = 17.03 amu, and its percent composition is:
%N=14.01amu N17.03amuNH3×100%=82.27%%H=3.024amu H17.03amuNH3×100%=17.76%
This same approach may be taken considering a pair of molecules, a dozen molecules, or a mole of molecules, etc. The latter amount is most convenient and would simply involve the use of molar masses instead of atomic and formula masses, as demonstrated Example 3.10. As long as the molecular or empirical formula of the compound in question is known, the percent composition may be derived from the atomic or molar masses of the
Hydrocarbons are compounds that are composed of only carbon and hydrogen atoms. A hydrocarbon has a density of 2.59 g/L at STP. What is the molar mass of this hydrocarbon? Be sure to include units with your answer.
Answer:
58.0 g/mol
Explanation:
At STP, one mole occupies 22.4 liters. One mole of the hydrocarbon would have a mass of ...
(2.59 g/L)(22.4 L/mol) ≈ 58.0 g/mol
Answer:
58.0 g/molthe molar mass of this given hydrocarbonThe rate constant (k) for a reaction was measured as a function of temperature. A plot of ln k versus 1>T (in K) is linear and has a slope of -1.01 * 104 K. Calculate the activation energy for the reaction.
Answer:
8.397J/mol is the activation energy for the reaction
Explanation:
The graphical form of Arrhenius equation is:
ln k = -Ea/R*(1/T)+lnA
Where k is activation energy
Ea is activation energy
R is gas constant (8.314J/molK)
T is absolute temperature
And A is the pre-exponential factor.
The slope of the plot is -Ea/R:
-Ea/R = -1.01x10⁴K
-Ea/8.314J/molK = -1.01x10⁴K
Ea = -1.01x10⁴K*8.314J/molK
Ea = 8.397J/mol is the activation energy for the reaction
The act of changing something but not being able to change it back
There are
molecules of carbon dioxide (CO2) in 102.5 grams.
Answer:
1.403x10²⁴ molecules
Explanation:
In order to calculate how many molecules of CO₂ are there in 102.5 g of the compound, we first convert grams to moles using its molar mass:
102.5 g ÷ 44 g/mol = 2.330 mol CO₂Now we convert moles into molecules using Avogadro's number:
2.330 mol * 6.023x10²³ molecules/mol = 1.403x10²⁴ molecules