how many 10 uf capacitors can be charged from a new400-mah

Answers

Answer 1

The number of 10 uf capacitors that can be charged from a new 400-mah battery depends on various factors such as the voltage of the battery and the voltage rating of the capacitors.

We need to consider the formula for calculating the charge stored in a capacitor, which is Q=CV, where Q is the charge, C is the capacitance, and V is the voltage. If we assume that the voltage of the battery is 1.5V and the voltage rating of the 10 uf capacitors is also 1.5V, we can calculate the maximum charge stored in one capacitor as follows:

Q = CV = 10 x 10^-6 F x 1.5V = 0.015 Coulombs
N = (mAh x 3600) / (Q x 1000)
where N is the number of capacitors, mAh is the capacity of the battery in milliampere-hours, and 3600 and 1000 are conversion factors. Substituting the values, we get:
N = (400 x 3600) / (0.015 x 1000) = 96,000 / 15 = 6400

To know more about voltage visit:-

https://brainly.com/question/27907645

#SPJ11


Related Questions

The following fluids (air, H, N) at 350K and atmospheric pressure flow at velocity of 5 m/s over a 2 m long flat plate. The order of magnitude of the drag force from lowest to highest is a. air-H-N b. air-N-H Oc. H-N-air Od. H-air-N Oe. N-air-H Of. N-H-air

Answers

The order of magnitude of the drag force from lowest to highest is:

b. air-N-H < Od. H-air-N < a. air-H-N < Oe. N-air-H < Of. N-H-air < c. H-N-air

How did we arrive at this order?

The drag force on a flat plate can be estimated using the formula:

F = 0.5 x rho x v² x Cd x A

where F is the drag force, rho is the density of the fluid, v is the velocity of the fluid, Cd is the drag coefficient, and A is the area of the plate.

Supposing that the plate is 1 m wide (in the direction perpendicular to the flow), the area of the plate is 2 m².

The drag coefficient for a flat plate depends on the Reynolds number of the flow, which is given by:

Re = rho x v x L / mu

where L is the length of the plate and mu is the dynamic viscosity of the fluid.

For air at 350K and atmospheric pressure, the density is approximately 1.16 kg/m³ and the dynamic viscosity is approximately 2.97e-5 Pa x s. Using these values, we can calculate the Reynolds number for air:

Re = 1.16 x 5 x 2 / 2.97e-5 = 390,582

The drag coefficient for a flat plate at this Reynolds number is approximately 0.664. Applying this value and the other values calculated, estimate the drag force on the plate:

F_air = 0.5 x 1.16 x 5² x 0.664 x 2 = 19.4 N

For hydrogen at 350K and atmospheric pressure, the density is approximately 0.084 kg/m³ and the dynamic viscosity is approximately 8.46e-6 Pa x s. Using these values, calculate the Reynolds number for hydrogen:

Re = 0.084 x 5 x 2 / 8.46e-6 = 99,409

The drag coefficient for a flat plate at this Reynolds number is approximately 1.24. Using this value and the other values we have calculated, estimate the drag force on the plate:

F_H = 0.5 x 0.084 x 5² x 1.24 x 2 = 4.2 N

For nitrogen at 350K and atmospheric pressure, the density is approximately 1.02 kg/m³ and the dynamic viscosity is approximately 1.86e-5 Pa x s. Using these values, we can calculate the Reynolds number for nitrogen:

Re = 1.02 x 5 x 2 / 1.86e-5 = 548,387

The drag coefficient for a flat plate at this Reynolds number is approximately 0.696. Using this value and the other values we have calculated, estimate the drag force on the plate:

F_N = 0.5 x 1.02 x 5² x 0.696 x 2 = 18.0 N

Therefore, the order of magnitude of the drag force from lowest to highest is:

b. air-N-H < Od. H-air-N < a. air-H-N < Oe. N-air-H < Of. N-H-air < c. H-N-air

learn more about drag force: https://brainly.com/question/27817330

#SPJ4

Exercise 8.9.3: Characterizing the strings in a recursively defined set. i About The recursive definition given below defines a set of strings over the alphabet (a, b): • Base case: ES and a ES • Recursive rule: if x ES then, XbES (Rule 1) oxba e S (Rule 2) This problem asks you to prove that the set Sis exactly the set of strings over {a, b} which do not contain two or more consecutive a's. In other words, you will prove that x e Sif and only if x does not contain two consecutive a's. The two directions of the "if and only if" are proven separately. (a) Use structural induction to prove that if a string x e S, then x does not have two or more consecutive a's. (b) Use strong induction on the length of a string x to show that if x does not have two or more consecutive a's, then x E S. Specifically, prove the following statement parameterized by n: For any n 2 0, let x be a string of length n over the alphabet (a, b) that does not have two or more consecutive a's, then xe S.

Answers

The problem presents a recursively defined set of strings and asks to prove that S contains strings without consecutive a's.

What is the problem presented in Exercise 8.9.3

The problem presents a recursively defined set of strings over the alphabet {a, b}, and asks to prove that the set S contains exactly the strings that do not have two or more consecutive a's.

To prove this, the problem suggests using two separate directions of an "if and only if" statement.

The first direction is proven using structural induction, which shows that if a string x belongs to S, then x does not contain consecutive a's. The second direction is proven using strong induction on the length of the string x,

which shows that if x does not contain consecutive a's, then x belongs to S.This is done by proving a parameterized statement that applies to all strings of length n that do not contain consecutive a's.

Learn more about problem

brainly.com/question/30142700

#SPJ11

are {sint, tant} linearly independent in c[0,1 ]

Answers

To determine if {sint, tant} are linearly independent in C[0,1], we need to check if there exists non-zero constants a and b such that:
a * sint + b * tant = 0
If we can only find a = 0 and b = 0 to satisfy this equation, then {sint, tant} are linearly independent.

Step 1: Write down the equation
a * sint + b * tant = 0
Step 2: Differentiate the equation with respect to t
a * cost + b * (tant^2 + 1) = 0
Now, we need to find if there exist non-zero constants a and b that satisfy both equations simultaneously in the interval [0, 1].
Since sint and tant are continuous functions in [0, 1] and do not share any common zeros, there are no non-zero constants a and b that will satisfy both equations in this interval.
Therefore, {sint, tant} are linearly independent in C[0,1].

we need to check if there exists non-zero constants a and b such that:
a * sint + b * tant = 0
If we can only find a = 0 and b = 0 to satisfy this equation, then {sint, tant} are linearly independent.

Learn more about linearly independent at

https://brainly.com/question/30720942

#SPJ11

Consider a 7 layer laminate. The 2 outer-most plies (one on top, one on bottom) are 4mm thick fiberglass. The other plies are 2mm thick graphite plies. if the middle layer had a fiber orientation angle of 25 , how would you denote it in the laminate prescription using symmetric shorthand notation.

Answers

The symmetric shorthand notation for the given laminate is: (25/0) [0/90/90/0/90/90/0]s.

What is the difference between supervised and unsupervised learning in machine learning, and what are some examples of each?

In symmetric shorthand notation, the orientation angle of a ply is denoted as a pair of numbers in parentheses.

Where the first number represents the angle in degrees and the second number indicates whether the ply is on the top (+) or bottom (-) of the laminate.

For the given laminate, the orientation angle of the middle layer is 25 degrees.

Since this layer is not on the top or bottom of the laminate, we can denote it as (25/0).

Here, 25 represents the orientation angle and 0 indicates that the ply is in the middle of the laminate.

So the laminate prescription for the given 7 layer laminate with 4mm thick fiberglass plies on the outermost layers and 2mm thick graphite plies for the other layers with a middle layer having a fiber orientation angle of 25 degrees using symmetric shorthand notation is:

(25/0) [0/90/90/0/90/90/0]s

Learn more about symmetric shorthand

brainly.com/question/31649687

#SPJ11

1. Download the spreadsheet TED Talk Activity 4.xlsx. 2. On the ted_main sheet, insert two new columns to the right of the publish date with a title of "film year" and "publish year." 3. Using the "=YEAR()" formula, extract the year from the film and publish dates. 4. Make sure the new columns are formatted as a number with no decimal places. 5. Select all the data that includes the following fields: Film Year, Publish Year, \# Comments, \# Views (million), Length (minutes), Speaker and Title. Using this highlighted data, insert a pivot table on a new sheet in the workbook. 6. Place "Film Year" in the Row data area, and views, comments, and length in the values area. Set the field settings to the following: a. Average number of views b. Sum of number of comments c. Average length 7. Provide answers to the questions asked below. Please see MS Video: Create and Format Pivot Tables and Pivot Charts. What was the total number of comments for all the years? a. 10.78b. 64660c. 14.76d. 66560

Answers

A spreadsheet is a digital tool used for organizing and analyzing data in rows and columns. It can perform mathematical calculations, create graphs and charts, and automate tasks with formulas and functions.

To complete this task, you need to follow the following steps:

1. Go to the website where you can download the spreadsheet TED Talk Activity 4.xlsx.
2. Download the spreadsheet and open it in Excel.
3. Go to the ted_main sheet and insert two new columns to the right of the publish date with the titles "film year" and "publish year."
4. Using the "=YEAR()" formula, extract the year from the film and publish dates in the respective columns.
5. Make sure the new columns are formatted as numbers with no decimal places.
6. Select all the data that includes the following fields: Film Year, Publish Year, # Comments, # Views (million), Length (minutes), Speaker, and Title.
7. Using this highlighted data, insert a pivot table on a new sheet in the workbook.
8. Place "Film Year" in the Row data area and views, comments, and length in the values area.
9. Set the field settings to the following: a. Average number of views b. Sum of the number of comments c. Average length.
10. To answer the question "What was the total number of comments for all the years?", you need to look at the pivot table and find the value in the "Sum of # Comments" column. The answer is d. 66560.
To answer your question, follow these steps:

1. Open the TED Talk Activity 4.xlsx spreadsheet.
2. In the ted_main sheet, insert two new columns to the right of the publish date, naming them "film year" and "publish year."
3. Use the "=YEAR()" formula to extract the year from the film and publish dates and input them in the respective columns.
4. Format the new columns as numbers with no decimal places.
5. Select the data for Film Year, Publish Year, # Comments, # Views (million), Length (minutes), Speaker, and Title. With this highlighted data, insert a pivot table on a new sheet in the workbook.
6. In the pivot table, place "Film Year" in the Row data area, and views, comments, and length in the values area. Set the field settings as follows:
  a. Average number of views
  b. Sum of the number of comments
  c. Average length
7. Examine the pivot table to find the total number of comments for all the years.

Based on the provided answer choices, the correct option is:
d. 66560

To know more about  analyzing data visit:

https://brainly.com/question/30453013

#SPJ11

Given the following data declarations and code (within main), what is printed to the console window? (Do not include "quotations" or "Press any key to continue", simply write anything printed with WriteString) .data yes no BYTE BYTE "Yes", "No",0 .code MOV EAX, 10 CMP EAX, 11 JE _printYes MOV EDX, OFFSET no JMP _finished _printYes: MOV EDX, OFFSET yes _finished: CALL WriteString

Answers

The program will print "Yes" to the console window. This is because the code compares the value in EAX to 11 and if they are equal, it jumps to the label _printYes.

In this case, EAX contains 10 which is not equal to 11 so it continues to the next line which moves the offset of the string "No" into EDX. The program then jumps to the label _finished and calls the WriteString function with the address in EDX as the parameter. Since EDX contains the offset of the string "Yes", the function will print "Yes" to the console window.

Here's a step-by-step explanation:
1. .data declares two BYTE variables: yes and no, with values "Yes" and "No" respectively.
2. In the .code section, MOV EAX, 10 assigns the value 10 to the EAX register.
3. CMP EAX, 11 compares the value in EAX (10) with 11.
4. JE _printYes checks if the values are equal. If they were, it would jump to _printYes. Since 10 is not equal to 11, the code continues to the next line.
5. MOV EDX, OFFSET no assigns the memory address of the "No" string to the EDX register.
6. JMP _finished jumps to the _finished label, skipping the _printYes section.
7. _finished: CALL WriteString calls the WriteString function with the address of the "No" string in the EDX register.
So, the output is "No".

To know more about code visit:-

https://brainly.com/question/31261966

#SPJ11

what is the difference between public and private IP addressesa) public IP addresses are unique and can be accessed from anywhere on the internet while private IP addresses are used only within a local networkb) public IP addresses are shorter and easier to remember than private IP addressesc) public IP addresses are always assigned dynamically while private IP addresses can be assigned dymanically or staticallyd) public IP addresses are assigned by internet service providers (ISPs) while private IP addresses are assigned by routers

Answers

The difference between public and private IP addresses is quite extensive, and it requires a long answer to explain. Public IP addresses are unique and can be accessed from anywhere on the internet, while private IP addresses are used only within a local network.

Another difference between public and private IP addresses is their length and ease of memorization. Public IP addresses are usually shorter and easier to remember than private IP addresses, which can be quite lengthy and complicated.

Additionally, public IP addresses are always assigned dynamically, which means that they can change over time. This is because internet service providers (ISPs) assign public IP addresses to devices on their network dynamically, based on availability and need. Private IP addresses, on the other hand, can be assigned dynamically or statically. Dynamic addressing means that the router assigns IP addresses to devices as they connect to the network, while static addressing means that the IP address is manually assigned to a device and remains the same until it is changed.

To know more about IP address visit:-

https://brainly.com/question/16011753

#SPJ11

The uniform crate has a mass of 30 kg and rests on the cart having an inclined surface. Part A Determine the smallest acceleration that will cause the crate either to tip or slip relative to the cart. What is the magnitude of this acceleration? The coefficient of static friction between the crate and the cart is μ' = 0.6. Express your answer with the appropriate units Units Value a= 0.6 m 1 m 15

Answers

To determine the smallest acceleration that will cause the crate either to tip or slip relative to the cart, we need to consider the forces acting on the crate. The force of gravity is pulling the crate downwards, while the normal force of the inclined surface is perpendicular to the surface.

The force of static friction is parallel to the surface and prevents the crate from slipping. The minimum acceleration required for the crate to tip or slip can be calculated using the formula a = g * μ', where g is the acceleration due to gravity (9.8 m/s^2) and μ' is the coefficient of static friction (0.6). Substituting these values, we get a minimum acceleration of 5.88 m/s^2. Therefore, the smallest acceleration that will cause the crate either to tip or slip relative to the cart is 5.88 m/s^2.


The uniform crate has a mass of 30 kg and rests on a cart with an inclined surface. To determine the smallest acceleration that will cause the crate to either tip or slip relative to the cart, you must consider the static friction between the crate and the cart, which has a coefficient μ' = 0.6. The force of static friction (Fs) is given by Fs = μ' * Fn, where Fn is the normal force. In this case, Fn = m * g * cos(θ), and the tipping condition occurs when the gravitational force (m * g * sin(θ)) equals the static friction force. Solving for the smallest acceleration (a), you get a = (μ' * g * cos(θ)) / sin(θ) = (0.6 * 9.81 * cos(θ)) / sin(θ). The magnitude of this acceleration will depend on the angle θ and has units of m/s².

To know more about Uniform crate visit-

https://brainly.com/question/30207029

#SPJ11

Create a recursive function in a file called count_gold.py Let's search a grid and count up all of the gold that we find. Not all of the gold is always accessible from the starting location. Here's an example of a map: * GI G8 62 G1 G6 * * 69 G2 * G3 G3 G7 G3 If you call create_map with a seed value of 234 and 8 and 8 for rows and columns then you will get the same map. You will start at the position [0,0] represented in green. You must search through all of the positions using a recursive algorithm which searches in all four directions (no diagonal movement is allowed). If you visit a position, you should add up the amount of gold at that position. You must mark positions as visited and not return to them otherwise you'll find yourself with a Recursion Error caused by the infinite recursion. You could use a visited list instead to track positions where you have been instead of replacing the positions. Sample code for pathfinding is on the github under the recursion folder.

Answers

The recursive function count_gold(grid, row, col, visited) searches a grid in all four directions, counts the amount of gold found at each position, and avoids infinite recursion by marking visited positions.

Here's an example of a recursive function called count_gold that searches a grid and counts all the gold it finds:

def count_gold(grid, row, col, visited):

   if row < 0 or row >= len(grid) or col < 0 or col >= len(grid[0]):

       return 0    

   if visited[row][col] or grid[row][col] == "*":

       return 0    

   visited[row][col] = True

   gold_count = 0    

   if grid[row][col].startswith("G"):

       gold_count += int(grid[row][col][1:])    

   gold_count += count_gold(grid, row - 1, col, visited)  # Up

   gold_count += count_gold(grid, row + 1, col, visited)  # Down

   gold_count += count_gold(grid, row, col - 1, visited)  # Left

   gold_count += count_gold(grid, row, col + 1, visited)  # Right    

   return gold_count

To use this function, you would need to create a grid and a visited list, and then call the count_gold function with the appropriate parameters. Here's an example:

def create_map(seed, rows, columns):

   # Generate the grid based on the seed value    

   return grid

grid = create_map(234, 8, 8)

visited = [[False for _ in range(len(grid[0]))] for _ in range(len(grid))]

gold_amount = count_gold(grid, 0, 0, visited)

print("Total gold found:", gold_amount)

Make sure to replace the create_map function with your own implementation to generate the grid based on the given seed value.

To know more about recursive function,

https://brainly.com/question/14962341

#SPJ11

Select the statement that best describes the a mainframe computer.-It enabled users to organize information through word processing and database programs from their desktop.-It enabled people to connect to a central server and share data with friends, business partners, and collaborators.-It could run programs and store data on a single silicon chip, which increased computing speeds and efficiency-It enabled corporations and universities to store enormous amounts of data, sometimes on devices which occupied an entire room.

Answers

The statement that best describes a mainframe computer is: "It enabled corporations and universities to store enormous amounts of data, sometimes on devices which occupied an entire room."

A mainframe computer is a type of computer that is designed to handle large amounts of data and perform complex calculations. It is typically used by large organizations such as corporations and universities to manage their data and processing needs. Mainframe computers are known for their high processing power, reliability, and security features. They are capable of handling multiple tasks and users simultaneously, making them ideal for large-scale operations.

Mainframes are typically housed in data centers and are accessed by users through terminals or other devices connected to the central server. Overall, mainframe computers are a critical component of many large organizations and play a vital role in managing and processing data.

To know more about corporations visit:-

https://brainly.com/question/13444403

#SPJ11

An endless belt of 8m pitch length is to drive a 750 mm diameter pulley the belt is 10 mm thick and the motor pulley is 300 mm in diameter calculate the correct centre distance if an amount of 15 mm is to be added to obtain some initial belt tension what is the speed ratio

Answers

To calculate the correct center distance and speed ratio, we can use the formula for the pitch diameter of a pulley.the correct center distance is 1105 mm, and the speed ratio is approximately 2.40625.

First, let's calculate the pitch diameter of the 750 mm diameter pulley:Pitch Diameter = Diameter + (2 x Belt Thickness) = 750 mm + (2 x 10 mm) = 770 mmNext, let's calculate the pitch diameter of the motor pulley:Pitch Diameter = Diameter + (2 x Belt Thickness) = 300 mm + (2 x 10 mm) = 320 mmThe center distance is the sum of the pitch diameters of the two pulleys, plus the added tension amount:Center Distance = Pitch Diameter of Pulley 1 + Pitch Diameter of Pulley 2 + Added TensionCenter Distance = 770 mm + 320 mm + 15 mm = 1105 mmTo calculate the speed ratio, we can divide the pitch diameter of the driver pulley by the pitch diameter of the driven pulley:Speed Ratio = Pitch Diameter of Driver Pulley / Pitch Diameter of Driven PulleySpeed Ratio = 770 mm / 320 mm = 2.40625

To know more about pitch click the link below:

brainly.com/question/12911670

#SPJ11

Identify whether each of the following is a method call or a function call. my_list.append() [Choose ] print(my_list) [Choose]
name.lower() [Choose ] abs(num) [Choose] "python".stripo [Choose]

Answers

Method call, Function call, Method call, Function call, Method call.

- my_list.append() is a method call, as it is calling the "append" method on the object "my_list".
- print(my_list) is a function call, as it is calling the built-in "print" function and passing "my_list" as an argument.
- name.lower() is a method call, as it is calling the "lower" method on the object "name".
- abs(num) is a function call, as it is calling the built-in "abs" function and passing "num" as an argument.
- "python".strip() is a method call, as it is calling the "strip" method on the string "python".
Hi! I'm happy to help you identify whether each of the given expressions is a method call or a function call:

1. my_list.append(): Method call (it is called on an instance of a list)
2. print(my_list): Function call (print is a built-in function in Python)
3. name.lower(): Method call (lower() is a string method)
4. abs(num): Function call (abs is a built-in function in Python)
5. "python".strip(): Method call (strip() is a string method)

To know more about Function call visit:-

https://brainly.com/question/31798439

#SPJ11

in part 1 of this lab, you changed the audit policy to record both successful and unsuccessful login attempts. what drawbacks do you foresee when auditing is enabled for both success and failure?

Answers

Enabling auditing for both successful and unsuccessful login attempts can lead to increased log volume.

How can enabling auditing for both successful and unsuccessful login attempts potentially ?

Another potential drawback is that auditing successful logins may reveal sensitive information, such as the identities of users who have access to sensitive systems or data.

This could lead to increased risk if an attacker gains access to the audit logs and uses this information to target specific users or systems.

Moreover, auditing both successful and unsuccessful login attempts can also generate a lot of false-positive events, which can make it difficult to differentiate between actual security threats and harmless events.

This can lead to alert fatigue and make it challenging to identify real threats in a timely manner.

Overall, while auditing both successful and unsuccessful login attempts can provide a comprehensive view of system activity and improve security monitoring.

It is important to balance the benefits of auditing with the potential drawbacks, such as increased storage requirements, potential exposure of sensitive information, and increased false-positive events.

Learn more about Auditing

brainly.com/question/29979411

#SPJ11

a structural steel bar with a 4.0 in. × 0.890 in. rectangular cross section is subjected to a tensile axial load of 55 kips. determine the maximum normal and shear stresses in the bar.

Answers

maximum shear stress in the bar is 7.72 ksi (kips per square inch).

To determine the maximum normal and shear stresses in the structural steel bar, we need to use the formulae:
Normal stress = P / A
Shear stress = V / A
where P is the axial load, A is the cross-sectional area of the bar, and V is the shear force acting on the bar.
First, we can calculate the area of the rectangular cross-section:
A = 4.0 in. × 0.890 in. = 3.56 in²
Next, we need to calculate the shear force acting on the bar. For a tensile axial load, there will be no shear force unless the load is applied off-center. Assuming the load is applied at the center of the bar, we can calculate the shear force using the formula:
V = P / 2
V = 55 kips / 2 = 27.5 kips
Now we can calculate the maximum normal stress:
Normal stress = P / A
Normal stress = 55 kips / 3.56 in²
Normal stress = 15.45 ksi (kips per square inch)
Therefore, the maximum normal stress in the bar is 15.45 ksi.
Finally, we can calculate the maximum shear stress:
Shear stress = V / A
Shear stress = 27.5 kips / 3.56 in²
Shear stress = 7.72 ksi
To know more about shear visit:

brainly.com/question/19633082

#SPJ11

what type of elements do we typically use to model laminated composite materials? what are the characteristics of the element (normal stress components and shear stress components)?

Answers

To model laminated composite materials, we typically use shell elements, such as the first-order shear deformation theory (FSDT) or the classical laminate theory (CLT) elements.

1. First-Order Shear Deformation Theory (FSDT) elements: These elements account for the effects of shear deformation in the laminates. They are suitable for modeling moderately thick composites and provide a more accurate representation of the stress distribution. FSDT elements have both normal stress components (σx, σy, and σz) and shear stress components (τxy, τyz, and τxz).

2. Classical Laminate Theory (CLT) elements: These elements are based on the assumption that the laminate is thin and that the strains are constant through the thickness. CLT elements consider only normal stress components (σx, σy, and σz) and disregard the shear stress components (τxy, τyz, and τxz).

To model laminated composite materials, we generally use shell elements like FSDT or CLT. FSDT elements account for both normal and shear stress components, while CLT elements only consider normal stress components.

To know more about elements , visit;

https://brainly.in/question/24485528

#SPJ11

Perform the following operations involving eight-bit 2's complement numbers and indicate whether arithmetic overflow occurs. Check your answers by converting to decimal sign- and-magnitude representation. Correct any overflows encountered in problem 2 through sign extension and performing the addition again. Remember: Only in addition of two positive (two negative) numbers there could be an overflow. Remember: No overflow can happen if you add a positive number with a negative number.

Answers

To properly answer the question, I would need the specific operations and numbers involved in each problem. Please provide the operations and numbers you would like me to perform, and I will assist you in determining whether arithmetic overflow occurs and help you check the results in sign-and-magnitude representation.

learn more about eight-bit 2's complement numbers

https://brainly.com/question/30615444?referrer=searchResults

#SPJ11

Consider an ideal MOS capacitor fabricated on a P-type silicon with a doping of Na=5x1016cm 3 with an oxide thickness of 2 nm and an N+ poly-gate.(a) What is the flat-band voltage, Vfb, of this capacitor?(b) Calculate the maximum depletion region width, Wdmax (c) Find the threshold voltage, Vt, of this device.(d) If the gate is changed to P* poly, what would the threshold voltage be now?

Answers

Threshold voltage is 0.022 V.threshold voltage has decreased, indicating that a lower gate voltage is required to turn on the transistor.

The given MOS capacitor is an n-channel MOS capacitor. The flat-band voltage, Vfb, is given by:

Vfb = Φms + Vbi + (Qf/2Cox)

where Φms is the work function difference between the metal and the semiconductor, Vbi is the built-in potential, Qf is the fixed charge density in the oxide, and Cox is the oxide capacitance per unit area.

(a) Since the gate is N+ poly, the work function difference Φms = Φm - Φs = 4.1 - 4.05 = 0.05 eV. The built-in potential is given by:

Vbi = (kT/q) ln(Na/ni) = (0.0259 V) ln(5x10^16/1.45x10^10) ≈ 0.705 V

The oxide capacitance per unit area can be calculated using the formula:

Cox = εox/tox

where εox is the permittivity of silicon dioxide and tox is the thickness of the oxide.

Cox = (3.9)(8.85x10^-14)/(2x10^-7) ≈ 1.707x10^-8 F/cm^2

Qf is not given, so we assume it to be zero. Therefore, the flat-band voltage is:

Vfb = 0.05 - 0.705 = -0.655 V

(b) The maximum depletion region width, Wdmax, occurs at the edge of the depletion region and is given by:

Wdmax = sqrt(2εsi(Vbi - Vap)/qNa)

where εsi is the permittivity of silicon, Vap is the applied voltage, and qNa is the net doping concentration.

Since the capacitor is unbiased (Vap = 0), Wdmax is simply:

Wdmax = sqrt(2εsiVbi/qNa) ≈ 0.114 μm

(c) The threshold voltage, Vt, is given by:

Vt = Vfb + 2φF

where φF is the Fermi potential, which is given by:

φF = kT/q ln(Na/ni)

φF ≈ 0.486 V

Therefore, the threshold voltage is:

Vt = -0.655 + 2(0.486) ≈ 0.317 V

(d) If the gate is changed to P* poly, the work function difference Φms is now -0.95 eV, since the work function of P* poly is lower than that of N+ poly. Therefore, the threshold voltage becomes:

Vt = -0.95 + 2(0.486) ≈ 0.022 V

Note that the threshold voltage has decreased, indicating that a lower gate voltage is required to turn on the transistor.

Learn more about Threshold voltage here:

https://brainly.com/question/31043419

#SPJ11

For Part B, implement a simplification of the following expression using the rules explained in class (using gates, not transistors): out_0 (in_0)(in_1)(in_2) + (in_0) (in_1)(in_2) + (in_0)(in_1)(in_2) + (in_0) (in_1)(in_2) +(in_0) (in_1)(in_2)

Answers

The simplification of the given expression can be achieved by implementing Boolean algebra rules and using logic gates instead of transistors. The given expression is:
out_0 = (in_0)(in_1)(in_2) + (in_0)(in_1)(in_2) + (in_0)(in_1)(in_2) + (in_0)(in_1)(in_2) + (in_0)(in_1)(in_2)

First, we observe that all terms are the same, which means we can reduce the expression to a single term:
out_0 = (in_0)(in_1)(in_2)
Now, let's represent the simplified expression using logic gates. We can use an AND gate for each pair of inputs and then another AND gate for the output of the first set of AND gates:
1. Connect in_0 and in_1 to an AND gate (AND1).
2. Connect in_2 to the output of AND1 using another AND gate (AND2).
3. The output of AND2 will be out_0.

In conclusion, the simplified expression can be represented by two AND gates connected in series. This simplification reduces redundancy and complexity in the circuit, making it more efficient and easier to understand.

To know more about logic gates visit:

brainly.com/question/13014505

#SPJ11

For each of the following functions indicate the class Θ(g(n)) the function belongs to. (Use the simplest g(n) possible in your answers.) Prove your assertions. a. (n2+1)10 c. 2n lg(n +2)2(n 2)2lg e. [log2n] d. 2"+1+3-1

Answers

a. The function (n^2 + 1)^10 belongs to the class Θ(n^20), because (n^2 + 1)^10 ≤ (n^2)^10 = n^20 for all n ≥ 1, and (n^2 + 1)^10 ≥ (n^2)^10/2 = (n^20)/2 for all n ≥ 2.

b. The function 2^n lg(n + 2)^2/(n^2 lg(n))^2 belongs to the class Θ(2^n), because 2^n lg(n + 2)^2/(n^2 lg(n))^2 ≥ 2^n for all n ≥ 1, and 2^n lg(n + 2)^2/(n^2 lg(n))^2 ≤ 2^(n+2) for all n ≥ 2.

c. The function [log2n] belongs to the class Θ(log n), because [log2n] ≤ log2n ≤ [log2n] + 1 for all n ≥ 1.

d. The function 2^(n+1) + 3^(n-1) belongs to the class Θ(3^n), because 2^(n+1) + 3^(n-1) ≤ 3(3^n)/2 for all n ≥ 1, and 2^(n+1) + 3^(n-1) ≥ 3^n for all n ≥ 3.


For each of the following functions, I will indicate the class Θ(g(n)) the function belongs to and provide a brief proof for each:

a. (n^2+1)^10
The function belongs to Θ(n^20). This is because the highest power of n is the dominating factor, and other terms become insignificant as n grows larger.

b. 2n lg((n+2)^2)(n^2)2lg
Assuming "lg" stands for logarithm base 2, this function belongs to Θ(n^3*log(n)). Here, the main factors are n from 2n and n^2 from (n^2)2lg, multiplied by the logarithmic term lg((n+2)^2), which simplifies to 2*log(n+2) ≈ 2*log(n).

c. [log2n]
This function belongs to Θ(log(n)), since the brackets indicate the integer part of the logarithm, which only marginally affects the growth of the function.

d. 2^(n+1)+3^(n-1)
The function belongs to Θ(3^n), as the exponential term 3^(n-1) dominates the growth of the function compared to 2^(n+1).


To know about function visit:

https://brainly.com/question/12431044

#SPJ11

the r.r. moore high speed rotating beam machine subjects the specimen to what kind of loading?

Answers

The r.r. moore high speed rotating beam machine subjects the specimen to dynamic torsional loading.

The r.r. moore high speed rotating beam machine is a device used for fatigue testing of materials. It applies a dynamic torsional loading on the specimen, which means the material is twisted back and forth at high speeds. This type of loading is known to cause fatigue failure in materials, which is why it is used for testing their durability. The machine consists of a beam that is driven by a motor, and the specimen is attached to the beam at both ends. As the beam rotates, the specimen is subjected to a twisting motion, which can be adjusted for speed and load. The machine is useful for determining the fatigue strength of materials and can be used in a variety of industries, including aerospace, automotive, and manufacturing.

To learn more problems on the rotating beam: https://brainly.com/question/14777515

#SPJ11

Currently, your Scheme interpreter is able to bind symbols to user-defined procedures in the following manner:scm> (define f (lambda (x) (* x 2)))fHowever, we'd like to be able to use the shorthand form of defining named procedures:scm> (define (f x) (* x 2))fModify the do_define_form function so that it correctly handles the shorthand procedure definition form above. Make sure that it can handle multi-expression bodies.

Answers

The do_define_form function is responsible for handling the define form in Scheme interpreter, which is used to bind symbols to values or procedures. Currently, it only supports the lambda form of defining procedures, where the procedure is defined using the lambda keyword and then bound to a symbol using the define keyword.

To modify the do_define_form function to handle the shorthand procedure definition form, we need to make a few changes. First, we need to check whether the value being defined is a procedure or not. If it is a procedure, then we need to use the shorthand form to define it. We can do this by checking whether the value being defined is a list or not. If it is a list, then we can assume that it is a procedure and use the shorthand form to define it.Next, we need to handle multi-expression bodies. In the lambda form of defining procedures, we use the begin keyword to specify a sequence of expressions that make up the body of the procedure. In the shorthand form, we can use a similar approach. We can check whether the body of the procedure is a list or not. If it is a list, then we can assume that it contains multiple expressions and use the begin keyword to group them together.Overall, the modifications to the do_define_form function would involve adding a check for whether the value being defined is a procedure or not, and then handling the shorthand form of defining procedures with multi-expression bodies.With these changes, the Scheme interpreter would be able to handle the shorthand form of defining named procedures.

For such more question on lambda

https://brainly.com/question/15728222

#SPJ11

a balanced load is supplied by a 3-phase generator at a line voltage of 208 v (rms). if the complex power extracted by the load is (8 j4) kva, determine z and the magnitude of the line current.

Answers

The impedance (Z) of the load is approximately 960 - j480 Ω, and the magnitude of the line current is approximately 173 A.

To determine the impedance (Z) and magnitude of the line current in a balanced load supplied by a 3-phase generator with a line voltage of 208 V (rms) and a complex power extracted by the load of (8 + j4) kVA, we'll first calculate the total complex power (S) and then find the line current (I) and impedance (Z).

1. Calculate the total complex power (S):
S = 3 * (8 + j4) kVA = (24 + j12) kVA

2. Convert line voltage to phase voltage (Vp):
Vp = V_line / √3 = 208 V / √3 ≈ 120 V

3. Calculate the phase current (Ip):
Ip = S / (3 * Vp) = (24 + j12) kVA / (3 * 120 V) ≈ (0.1 + j0.05) kA

4. Calculate the magnitude of the line current (I):
I = Ip * √3 ≈ (0.1 + j0.05) kA * √3 ≈ 0.173 kA = 173 A

5. Calculate the impedance (Z):
Z = Vp / Ip ≈ 120 V / (0.1 + j0.05) kA ≈ 960 - j480 Ω

Thus, the impedance (Z) of the load is approximately 960 - j480 Ω, and the magnitude of the line current is approximately 173 A.

To know more about magnitude visit

https://brainly.com/question/31784448

#SPJ11

1. Let's look at a simple example of the maximal margin classifier by hand. a) We are given n = 7 observations in p = 2 dimensions. For each observation, there is an associated class label. b) Sketch the optimal separating hyperplane, and provide the equation for this hyperplane in the form Bo + B1X1 + B2X2 =0. c) Describe the classification rule for the maximal margin classifier. d) What would be the result of classifying a new observation with Xı = 3.1 and X2 = 2.7? e) On your sketch, indicate the margin for the maximal margin hyperplane.

Answers

a) Since the data points are not provided, I will assume we have 7 observations with 2 dimensions that are linearly separable. To find the optimal separating hyperplane, we would plot the points on a 2-dimensional plane and identify a line that separates the two classes while maximizing the margin between them.
b) Let's assume that the equation for this hyperplane is: B0 + B1X1 + B2X2 = 0. Please note that without the actual data points, we cannot provide the specific coefficients (B0, B1, and B2) for the hyperplane equation.
c) The classification rule for the maximal margin classifier is as follows: If B0 + B1X1 + B2X2 > 0, then the observation belongs to Class 1; if B0 + B1X1 + B2X2 < 0, then the observation belongs to Class 2.
d) Given the new observation with X1 = 3.1 and X2 = 2.7, we would substitute these values into the hyperplane equation: B0 + B1(3.1) + B2(2.7). If the result is greater than 0, the observation is classified as Class 1, and if the result is less than 0, it is classified as Class 2.
e) To indicate the margin for the maximal margin hyperplane on your sketch, you would draw two parallel lines equidistant from the optimal separating hyperplane. These lines should touch the nearest data points from each class. The distance between these two parallel lines represents the margin.

To know more about data visit:

https://brainly.com/question/10980404

#SPJ11

Enemy drones are arriving over the course of n minutes; in the i-the minute, Xi drones arrive. Based on remote sensing data, you know the sequence 21, 22, ...,In in advance. You are in charge of a laser gun, which can destroy some of the drones as they arrive. The power of laser gun depends on how long it has been allowed to charge up. More precisely, there is a function f so that if j minutes have passed since the laser gun was last used, then it is capable of destroying up to f(j) drones. So, if the layer gun is being used in the k-th minute and it has been j minutes since it was previously used, then it destroys min{Xk, f(j)} drones in the k-th minute. After this use, it will be completely drained. We assume that the laser gun starts off completely drained, so if it used for the first time in the j-th minute, then it is capable of destroying up to f(j) drones. Your goal is to choose the points in time at which the laser gun is going to be activated so as to destroy as many as drones as possible. Give an efficient algorithm that takes the data on drone arrivals x1, ..., In, and the recharging function f, and returns the maximum number of drones that can be destroyed by a sequence of laser gun activations. Analyze the running time of your algorithm.

Answers

The running time of algorithm is O(n^2) since we have nested loops iterating over i and j. The space complexity is O(n) to store the dp array.

To solve this problem, we can use dynamic programming to determine the maximum number of drones that can be destroyed by a sequence of laser gun activations. Let's outline the algorithm:

Initialize an array dp of size n+1 to store the maximum number of destroyed drones at each minute.

Initialize dp[0] = 0, as there are no drones at the 0-th minute.

For each minute i from 1 to n:

a) Initialize a variable maxDestroyed to 0, which will store the maximum number of drones destroyed at minute i.

b) For each j from 1 to i, calculate the number of drones destroyed in the j-th minute based on the recharging function f:

Calculate the time difference since the last laser gun usage as i - j.

Calculate the number of drones destroyed in the j-th minute as min(Xj, f(i - j)).

Update maxDestroyed to the maximum value between maxDestroyed and the number of drones destroyed in the j-th minute plus dp[i - j].

c) Set dp[i] = maxDestroyed.

Return dp[n], which represents the maximum number of drones destroyed by a sequence of laser gun activations.

By using this algorithm, we can efficiently determine the maximum number of drones that can be destroyed by strategically activating the laser gun based on the recharging function and the sequence of drone arrivals.

To know more about algorithm,

https://brainly.com/question/29971423

#SPJ11

Provide the required function call to the local function to complete the SineDegrees function. (Matlab)
function x = SineDegrees( y ) x = sin ( );
end
function rad = DegsToRads( angle )
rad = ( pi/180 ) * angle;
end

Answers

The required function call to the local function to complete the Sine Degrees function is DegsToRads(y).

The SineDegrees function takes an angle in degrees (y) as input and returns the sine of that angle in radians (x). The function currently has an empty argument in the sin function call, which means it is missing the input value for the angle in radians. To fix this, we need to convert the angle in degrees to radians first using the DegsToRads function and then pass it as an argument to the sin function call.

To complete the Sine Degrees function, we need to modify it to include the conversion from degrees to radians. This can be done by calling the DegsToRads function and passing the input angle (y) as an argument. The output of the DegsToRads function (rad) is the angle in radians, which we can then pass as an argument to the sin function call.  The modified SineDegrees function would look like this: function x = SineDegrees( y ) rad = DegsToRads(y); % convert angle from degrees to radians  x = sin(rad); % calculate the sine of the angle in radians
end Now, when we call the SineDegrees function with an angle in degrees as input, it will return the sine of that angle in radians. For example, if we call SineDegrees(45), it will first convert 45 degrees to radians (0.7854) using the DegsToRads function and then calculate the sine of 0.7854 radians (which is approximately 0.7071) using the sin function. The output of the SineDegrees function would be 0.7071.

To know more about Degree function visit:

https://brainly.com/question/9235715

#SPJ11

A scale model of the flow over a dam is tested in a laboratory and used to determine the flow rate over the actual dam. Which of the following are the appropriate dimensionless P-groups to determine the water velocity and discharge for the actual dam? P-Po Pressure coefficient Drag coefficient PV21 PLV Reynolds number 11 PLV2 Weber number V Froude number

Answers

The appropriate dimensionless P-groups to determine the water velocity and discharge for the actual dam are Reynolds number (Re) and Froude number (Fr). Options C and D are answer.

Reynolds number (Re) is a dimensionless quantity that relates the inertial forces to the viscous forces in fluid flow. It is calculated by dividing the product of velocity, characteristic length, and density by the dynamic viscosity of the fluid. It helps in determining the flow regime and whether the flow is laminar or turbulent.

Froude number (Fr) is another dimensionless quantity that compares the inertia forces to the gravitational forces in open channel flow. It is calculated by dividing the velocity by the square root of the product of gravity and the characteristic length. It helps in understanding the behavior of the flow, such as whether it is subcritical (smooth flow) or supercritical (rapid flow).

Therefore, the appropriate dimensionless P-groups to determine the water velocity and discharge for the actual dam are Reynolds number (Re) and Froude number (Fr).

Option C: PLV Reynolds number 11 and D: V Froude number is the correct answer.

You can learn more about Reynolds number (Re) at

https://brainly.com/question/14468759

#SPJ11

4.11 Compute the natural frequencies and mode shapes of the following system: 14 Jxce) + 10 (42 ]x(t) = 0 Calculate the response of the system to the initial conditions: Xo = [1 2]" and vo = [V20 -2720)

Answers

To compute the natural frequencies and mode shapes of the given system, we first need to find the characteristic equation. From the given equation, we can write the characteristic equation as:
14λ^2 + 10λ + 40 = 0
Solving this equation, we get the roots as λ1 = -1.13 and λ2 = -0.85. These are the natural frequencies of the system.
To find the mode shapes, we need to substitute each natural frequency in the original equation and solve for the corresponding eigenvectors. The mode shapes turn out to be:
φ1 = [-0.76, 0.65] and φ2 = [-0.65, -0.76]
Next, we can use the initial conditions to calculate the response of the system. Using the formula for the forced response of a second-order system, we get:
x(t) = -0.126e^(-0.85t) + 0.383e^(-1.13t) - 0.292cos(2.06t) - 0.065sin(2.06t)
Similarly, the velocity can be calculated as:
v(t) = 0.108e^(-0.85t) - 0.334e^(-1.13t) - 0.584sin(2.06t) - 0.623cos(2.06t)
Therefore, the response of the system to the given initial conditions is given by x(t) and v(t) as shown above.

To know more about equation visit:

https://brainly.com/question/29657983

#SPJ11

Create a view called "Flight_Rating_V" that includes the following Employee First and Last Name, Earned rating date, Earned rating name for all employees who earned their rating between Jan 1, 2005 and Jan 15, 2015. Your answer should include both the SQL statement for view created along with the contents of the view (You get the contents of the view by Select * from Flight_Rating_V).

Answers

To create a view called "Flight_Rating_V" that includes the following Employee First and Last Name, Earned rating date, Earned rating name for all employees who earned their rating between Jan 1, 2005 and Jan 15, 2015, the following SQL statement can be used:



CREATE VIEW Flight_Rating_V AS
SELECT Employee.First_Name, Employee.Last_Name, Earned_Rating.Earned_Rating_Date, Earned_Rating.Earned_Rating_Name
FROM Employee
INNER JOIN Earned_Rating ON Employee.Employee_ID = Earned_Rating.Employee_ID
WHERE Earned_Rating.Earned_Rating_Date BETWEEN '2005-01-01' AND '2015-01-15';

The above SQL statement creates a view called "Flight_Rating_V" that joins the "Employee" table with the "Earned_Rating" table on the "Employee_ID" column. The view selects only those records where the "Earned_Rating_Date" falls between Jan 1, 2005, and Jan 15, 2015.

To see the contents of the view, the following SQL statement can be used:

SELECT * FROM Flight_Rating_V;

This will display all the records that fall within the specified date range for all employees who earned their rating. The contents of the view will include the Employee First and Last Name, Earned rating date, and Earned rating name.

For such more question on column

https://brainly.com/question/25740584

#SPJ11

the ____ operates like an electric check valve; it permits the current to flow through it in only one direction. a) Transistor. b) Diode. c) triode.

Answers

The diode operates like an electric check valve, allowing the current to flow through it in only one direction. A diode is a semiconductor device with two terminals, known as the anode and cathode. It has a p-type semiconductor material on one side and an n-type on the other side.

The p-side is positively charged and the n-side is negatively charged. When a voltage is applied across the diode in the forward bias direction, the positive voltage applied to the anode attracts electrons from the n-side and allows them to flow to the p-side, creating a current flow. However, when the voltage is applied in the reverse bias direction, the negative voltage applied to the anode repels electrons from the p-side, making it difficult for the current to flow in that direction.

This property of the diode makes it useful in many electronic circuits such as rectifiers, voltage regulators, and signal limiters. Diodes can also be used in conjunction with other electronic components, such as capacitors and resistors, to create more complex circuits that perform a wide range of functions.

Transistors and triodes are also electronic components but do not function as one-way valves for current flow.

Hi! Your question is: "The ____ operates like an electric check valve; it permits the current to flow through it in only one direction." The correct term to fill in the blank is b) Diode.

Your answer: The diode operates like an electric check valve; it permits the current to flow through it in only one direction.

To know more about diode visit:

https://brainly.com/question/13800609

#SPJ11

A rectangular coil of area 100 cm carrying a current of 10A lies on a plane 2x-y+z=5 such that magnetic moment of the coil is directed away from the origin. This coil is surrounded by a uniform magnetic field âu+za, Wb/m². Calculate the torque of the coil. (50 points]

Answers

The torque acting on the coil is 0.1(âu + za) N.m.

To calculate the torque acting on the rectangular coil, we need to find the magnetic moment and the magnetic field vector.
Step 1: Convert area to m².
Area = 100 cm² = 0.01 m²
Step 2: Calculate the magnetic moment (M).
M = Current × Area
M = 10 A × 0.01 m²
M = 0.1 A.m²
Step 3: Determine the magnetic field vector (B).
B = âu + za
Step 4: Calculate the dot product (M⋅B) of the magnetic moment and the magnetic field vector.
M⋅B = (0.1) (âu + za)
Step 5: Find the angle (θ) between the magnetic moment and the magnetic field vector. Since the magnetic moment is directed away from the origin, θ = 90°.
Step 6: Calculate the torque (τ) acting on the coil.
τ = M × B × sin(θ)
τ = (0.1) (âu + za) × sin(90°)
τ = 0.1(âu + za)
The torque acting on the coil is 0.1(âu + za) N.m.

To know more about magnetic field visit:

https://brainly.com/question/14848188

#SPJ11

Other Questions
Why is important to do research to locate appropriate work or study and funding opportunities from various sources,before making the final decision Identify and discuss three stressors that matriculants experienced in 2021 due to load shedding Design an algorithm for computing for any positive integer n. Besides assignment and comparison, you may only use the four basic arithmetical operations (+, -, , ). Write the algorithm as pseudocode. What is the time complexity of the algorithm? Is it possible to design the algorithm so that it uses O(log n) multiplications (or even fewer)? suppose 0.1 g of x and 1.0 ml of water were mixed and heated to 80 c. would all of substance x dissolve? You are given the following best-response functions for duopoly firms playing a Bertrand price-setting game: p_1 = 25 + 0.5 m_1 + 0.25p_2, and p_2 = 25 +0.5m_2 + 0.25p_1, where m_1 and m_2 are the marginal costs for firm 1 and firm 2 respectively. Let m_1 = m_2 = $10. Solve for the Bertrand equilibrium prices. Firm 1 $ (round answers to the nearest penny) Firm 2 $ (round answers to the nearest penny) Let m_1 = $30 and m_2 = $10. Solve for the Bertrand equilibrium prices. Firm 1 $ (round answers to the nearest penny) Firm 2 $ (round answers to the nearest penny) Consider the following code segment. int[][] values = {{1, 2, 3}, {4,5,6}}; int x = 0; for (int j = 0; j < values.length; j++) { for (int k = 0; k Chlorine has a vapor pressure of 10 atm.at 35.6 C . In a mixture of chlorine and carbon tetrachloride, the vapor pressure of chlorine is 9.3 atm at 35.6 C What is the activity of chlorine in the mixture? (strang 5.1.15) use row operations to simply and compute these determinants: (a) 101 201 301 102 202 302 103 203 303 (b) 1 t t2 t 1 t t 2 t 1 a standardized test statistic is given for a hypothesis test involving proportions (using the standard normal distribution). HELP IM JUST LEARNING THIS TODAY Consider the one-sided (right side) confidence interval expressions for a mean of a normal population. What value of a would result in a 85% CI? Consider the reaction A products. Will the half life of this reaction increase, decrease, or stay the same over time if the reaction is the following order?0 order, first order, second order 5. A piece of machinery has initial cost of $40.000 and results in an increase in annual maintenance costs of $2000. If the machine saves the company $10,000 per year, in how many years will the machine pay for itself if annual compounding is considered? (i=8%) A. 4 years B. 5 years C. 6 years D. 7 years E. 8 years many cells store lipids in droplets of varying sizes. these droplets A polygon will be dilated on a coordinate grid to create a smaller polygon. The polygon is dilated using the origin as the center of dilation. Which rule could represent this dilation?F. (x,y)(x7,y7)G. (x,y)(0. 9x,0. 9y)H. (x,y)(0. 5x,0. 5y)J. (x,y)(54x,54y) In FGH, f = 960 inches, g = 380 inches and h=820 inches. Find the measure of F to the nearest degree. answer is 100 What is the length of the arc shown in red? does the point (10,3) lie on the circle that passes through the point (2,9) with center (3,2)? If you put 90 ml of concentrate in a glass how much water should be added Consider the following time series data. time value 7.6 6.2 5.4 5.4 10 7.6 Calculate the trailing moving average of span 5 for time periods 5 through 10. t-5: t=6: t=7: t=8: t=9: t=10: