Answer:
A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. ... Magnetic fields are produced by moving electric charges and the intrinsic magnetic moments of elementary particles associated with a fundamental quantum property, their spin.
Answer: when an electromagnetic field interacts with a magnet
Explanation:
What is the ratio
amount (mol) Fatoms
amount (mol) Xe atoms
Enter your answer as an integer.
Pls help
Answer:
Empirical formula
Explanation:
The empirical formula of a compound is the simplest whole number ratio of atoms of each element in the compound. It is determined using data from experiments and therefore empirical.
How many grams of sulfur must be burned to give 100.0 g of So2
Answer:
50 g of S are needed
Explanation:
To star this, we begin from the reaction:
S(s) + O₂ (g) → SO₂ (g)
If we burn 1 mol of sulfur with 1 mol of oxygen, we can produce 1 mol of sulfur dioxide. In conclussion, ratio is 1:1.
According to stoichiometry, we can determine the moles of sulfur dioxide produced.
100 g. 1mol / 64.06g = 1.56 moles
This 1.56 moles were orginated by the same amount of S, according to stoichiometry.
Let's convert the moles to mass
1.56 mol . 32.06g / mol = 50 g
The reform reaction between steam and gaseous methane (CH4) produces "synthesis gas," a mixture of carbon monoxide gas and dihydrogen gas. Synthesis gas is one of the most widely used industrial chemicals, and is the major industrial source of hydrogen. Suppose a chemical engineer studying a new catalyst for the reform reaction finds that 924. liters per second of methane are consumed when the reaction is run at 261.°C and 0.96atm. Calculate the rate at which dihydrogen is being produced.
Answer:
The answer is "[tex]= 0.078 \ kg \ H_2[/tex]".
Explanation:
calculating the moles in [tex]CH_4 =\frac{PV}{RT}[/tex]
[tex]=\frac{(0.58 \ atm) \times (923 \ L) }{ (0.0821 \frac{L \cdot atm}{K \cdot mol})(232^{\circ} C +273)}\\\\=\frac{(535.34 \ atm \cdot \ L) }{ (0.0821 \frac{L \cdot atm}{K \cdot mol})(505)K}\\\\=\frac{(535.34 \ atm \cdot \ L) }{ (41.4605 \frac{L \cdot atm}{mol})}\\\\= 12.9 \ mol[/tex]
Eqution:
[tex]CH_4 +H_2O \to 3H_2+ CO \ (g)[/tex]
Calculating the amount of [tex]H_2[/tex] produced:
[tex]= 12.9 \ mol CH_4 \times \frac{3 \ mol \ H_2 }{1 \ mol \ CH_4}\times \frac{2.016 g H_2}{1 \ mol \ H_2}\\\\= 78 \ g \ H_2 \\\\= 0.078 \ kg \ H_2[/tex]
So, the amount of dihydrogen produced = [tex]0.078 \frac{kg}{s}[/tex]
Which of the following metals (M) will form an ionic compound with nitrogen with the general formula M3N2?
Answer:
There are no options provided dude,
But i guess the answer will be a metal with valency 2 for sure as the subscript given for N in 'M3N2' is 2 so the valency of the metal u need to select will be 2 for sure
It can be magnesium or some other if the provided options in real question has Mg then its the answer
If 3.53 g of CuNO, is dissolved in water to make a 0.330 M solution, what is the volume of the solution in milliliters?
Answer:
84.8 mL
Explanation:
From the question given above, the following data were obtained:
Mass of CuNO₃ = 3.53 g
Molarity of CuNO₃ = 0.330 M
Volume of solution =?
Next, we shall determine the number of mole in 3.53 g of CuNO₃. This can be obtained as follow:
Mass of CuNO₃ = 3.53 g
Molar mass of CuNO₃ = 63.5 + 14 + (16×3)
= 63.5 + 14 + 48
= 125.5 g/mol
Mole of CuNO₃ =?
Mole = mass / Molar mass
Mole of CuNO₃ = 3.53 / 125.5
Mole of CuNO₃ = 0.028 moles
Next, we shall determine the volume of the solution. This can be obtained as follow:
Molarity of CuNO₃ = 0.330 M
Mole of CuNO₃ = 0.028 moles
Volume of solution =?
Molarity = mole /Volume
0.330 = 0.028 / Volume
Cross multiply
0.330 × Volume = 0.028
Divide both side by 0.330
Volume = 0.028 / 0.330
Volume = 0.0848 L
Finally, we shall convert 0.0848 L to millilitres (mL). This can be obtained as follow:
1 L = 1000 mL
Therefore,
0.0848 L = 0.0848 L × 1000 mL / 1 L
0.0848 L = 84.8 mL
Therefore, the volume of the solution is 84.8 mL.
There are four conditions an atom needs to meet to participate in hydrogen bonding. It needs to be_______ enough not to bump into other atoms when approaching the 1s orbital of the hydrogen, it needs to carry at least one________ atom, it needs to be_________enough to create a delta on the connected hydrogen, and it needs to have at least one________.
Answer:
The conditions are
1) Small enough
2) Electronegative atom
3) highly electronegative
4) lone pair of electrons
The correct statement therefore is
It needs to be small enough not to bump into other atoms when approaching the 1s orbital of the hydrogen, it needs to carry at least one electronegative atom, it needs to be highly electronegative enough to create a delta on the connected hydrogen, and it needs to have at least one lone pair of electrons.
Explanation:
Hydrogen bonding is a type of intermolecular bond that occurs between the partial positive charge (delta) on a hydrogen atom bonded to a small highly electronegative element (like nitrogen, oxygen or fluorine) and the free electrons on another electronegative element of another molecule.
The hydrogen atom with the partial positive charge (delta) is known as the hydrogen bond donor, while the electronegative element, carrying lone electrons is called the hydrogen bond acceptor.
Let's take a deeper look at these terms:
1) Hydrogen bond donor
Using water (H₂O) as an example, the high electronegativity of the oxygen atom covalently bonded to the hydrogen atom draws the lone electron in the 1s orbital of the hydrogen atom, creating a partial positive charge (d⁺) on the hydrogen atom. This is what happens within one water molecule
2) Hydrogen bond acceptor
When two or more molecules of water interact, the partial positive charge (d⁺) on the hydrogen atom of one molecule, is attracted to the valence or free electrons on the oxygen atom of a nearby molecule of water thus creating a dipole-dipole intermolecular bond known as a hydrogen bond.
For the hydrogen bond to be effective, the electronegative atom bonded to the hydrogen acting as the hydrogen bond donor in the first water molecule needs to be small enough so as not to disrupt the 1s orbital of the hydrogen atom. The smaller the size of the electronegative atom, the stronger the partial negative charge created on the hydrogen atom.
The valence or free pair of electrons on the electronegative (oxygen) atom of the second molecule of water (hydrogen bond acceptor) is what attracts the partial positive charge on the hydrogen atom to create the hydrogen bond
I need help with this!
Answer:
2.68 cm^3
Explanation:
Density= Mass/Volume
so...
8.96 g/cm^3 = 24.01 g/ V
and then u solve so it would be 2.68 cm ^3
((:
please help. im freaking out rn. i have like 40 missing assignments please
Answer:
I'm pretty sure its the one that says very little at the beginning but if I get it wrong I'm sorry
Can someone help me with this
Answer:
wow!
5. C
6. B
7. B
8. A
Explanation:
What is the mass of 2.14 mol CaCl2?
Answer:
237.5 grams CaCl2
Explanation:
Use the periodic table to calculate the mass of CaCl2
40.078+(35.45*2)=110.97800
Convert: 2.14 mol CaCl2 * 110.98g CaCl2/1 mol CaCl2 = 237.4972 g
Glycerol (C3H8O3), also called glycerine, is widely used in the food and pharmaceutical industries. Glycerol is polar and dissolves readily in water and polar organic solvents like ethanol. Calculate the mole fraction of the solvent in a solution that contains 2.51 g glycerol dissolved in 21.10 mL ethanol (CH3CH2OH; density
Answer: The mole fraction of the solvent in a solution that contains 2.51 g glycerol dissolved in 21.10 mL ethanol is 0.93
Explanation:
Given : Volume of ethanol (solvent) = 21.10 ml
density of ethanol (solvent)= 0.789 g/ml
Mass of ethanol (solvent) = [tex]0.789g/ml\times 21.10ml=16.6g[/tex]
Mass of glycerol (solute) = 2.51 g
Mole fraction of a component is the ratio of moles of that component to the total moles present.
moles of ethanol =[tex]\frac{\text {given mass}}{\text {molar mass}}=\frac{16.6g}{46g/mol}=0.36mol[/tex]
moles of glycerol =[tex]\frac{\text {given mass}}{\text {molar mass}}=\frac{2.51g}{92g/mol}=0.027mol[/tex]
mole fraction of ethanol (solvent) = [tex]\frac{\text {moles of ethanol}}{\text {moles of ethanol + moles of glycerol}}=\frac{0.36}{0.36+0.027}=0.93[/tex]
The mole fraction of the solvent in a solution that contains 2.51 g glycerol dissolved in 21.10 mL ethanol is 0.93
What is the molecular formula of the molecule that has an empirical formula of C2H40 and a molar mass of 176.21 g/mol?
Type your answer using the following format:
CuCl2 for CuCl2.
Answer:
C8H16O4
Explanation:
C2H4O= 24+4+16
44
n=molar mass/empirical formula
n=176.21/44
=4
Therefore
Molar Formula= (C2H4O)4=C8H16O4
Name each of the following organic molecules. 
Please explain to me!!!
Answer:
nice handwrtting
Explanation:
A crane lifts a 5,800-N block from the ground to 20 m above the ground in 80 seconds. How much Power
did the crane use?
Answer:
1450 W
Explanation:
5800n x 20m =1450w
80s
If two reactant molecules collide with each other what two reasons might they not combine ?
Gizmo Warm-up In a chemical reaction, reactants interact to form products. This process is summarized by a chemical equation. In the Balancing Chemical Equations Gizmo, look at the floating molecules below the initial reaction: H2 O2 ---> H2O. How many atoms are in a hydrogen molecule (H2)
Answer:
There are two atoms in one hydrogen molecule.
Explanation:
Hello!
In this case, when going over chemical reactions, we need to realize about the amount of atoms of each element; thus, according to the given chemical reaction by which water is formed:
[tex]H_2+O_2\rightarrow H_2O[/tex]
It is seen there are two hydrogen atoms in the hydrogen molecule, two in oxygen and two hydrogen atoms and one oxygen atom in water; however, these reactions must be balanced according to the law of conservation of mass:
[tex]2H_2+O_2\rightarrow 2H_2O[/tex]
Which means we have two hydrogen molecules with two atoms each, one oxygen molecule with two atoms and two water molecules with two hydrogen atoms and one oxygen atom each.
Best regards!
For the reaction 2Fe+o2 -->Feo how many grams of iron(ll) oxide are produced from 479.6 grams of iron in an excess of oxygen (Fe=56gmol, O=16g mol)
Mass of iron(ll) oxide= 616.608 g
Further explanationGiven
Reaction
2Fe+O2 -->2FeO
479.6 grams of iron
Required
mass of iron(ll) oxide
Solution
mol of iron :
= mass : Ar Fe
= 479.6 g : 56 g/mol
= 8.564
From the equation, mol FeO :
= 2/2 x mol Fe
= 2/2 x 8.564
= 8.564 moles
Mass of iron(ll) oxide :
= mol x MW
= 8.564 x 72 g/mol
= 616.608 g
18. What is one of the three things that cause the surface currents of the oceans?
A.differences in salinity
B.temperature differences
C. density differences
D. Coriolis effect
Answer:
b. temperature difference
Consider the following reaction where K. = 9.52 10 2 at 350 K.
CH,(g) + CC14(2)—2CH2Cl2(g)
A reaction mixture was found to contain 2.21*10-2 moles of CH4(E), 3.8710-2 moles of CC1,(g) and 1.06-10-2 moles of CH,C12(2), in
a 1.00 liter container
Is the reaction at equilibrium?
If not, what direction must it run in order to reach equilibrium?
The reaction quotient, Qc equals
The reaction
A. must run in the forward direction to reach equilibrium
B. must run in the reverse direction to reach equilibrium
C. is at equilibrium
Answer:
The correct answer is A :))
I need help with this!!!
Answer:
0.73g/cm^3
Explanation:
d=m/v
d=11/15
d=0.73
A molten sample of 1.00kg of iron with a specific heat of 0.385J/g.K at 1000.K is immersed in a sample of water. If the water absorbs 270 kJ of heat what is the final temperature of the iron?
I need all the process.
Answer:
298. 7 K.
Explanation:
Hello!
In this case, since equation we use to compute the heat in a cooling or heating process is:
[tex]Q=mC(T_f-T_i)[/tex]
Whereas we are given the heat, mass, specific heat and initial temperature. Thus, we infer that we need to solve for the final temperature just as shown below:
[tex]T_f=T_i+\frac{Q}{mC}\\\\T_f=1000 K+\frac{-270000J}{1000g*0.385\frac{J}{g*K} } \\\\T_f=298.7 K[/tex]
It is important to notice that the iron release heat as water absorbs it, that is why it is taken negative.
Best regards!
5) The stability of an atom is determined by
Re 1) P+n
2)P-n
3) P/N
4) N/P
Answer:
the answer p+n
Explanation:
Please answer, this is due in 30 minutes
Answer:
0.591 g of magnesium phosphate is the theoretical yield.
Magnesium nitrate is the limiting reactant.
Explanation:
Hello!
In this case, since the balanced reaction turns out:
[tex]3Mg(NO_3)_2+2Na_3PO_4\rightarrow Mg_3(PO_4)_2+6NaNO_3[/tex]
Next, we compute the grams of magnesium phosphate yielded by each reactant, considering the present mole ratios and molar masses:
[tex]m_{Mg_3(PO_4)_2}^{by\ Mg(NO_3)_2}=1.00gMg(NO_3)_2*\frac{1molMg(NO_3)_2}{148.31gMg(NO_3)_2}*\frac{1molMg_3(PO_4)_2}{3molMg(NO_3)_2} *\frac{262.86gMg_3(PO_4)_2}{1molMg_3(PO_4)_2} \\\\m_{Mg_3(PO_4)_2}^{by\ Mg(NO_3)_2}= 0.591gMg_3(PO_4)_2\\\\m_{Mg_3(PO_4)_2}^{by\ Na_3PO_4}=1.00gNa_3PO_4*\frac{1molNa_3PO_4}{163.94gNa_3PO_4}*\frac{1molMg_3(PO_4)_2}{2molNa_3PO_4} *\frac{262.86gMg_3(PO_4)_2}{1molMg_3(PO_4)_2} \\\\m_{Mg_3(PO_4)_2}^{by\ Na_3PO_4} = 0.802gMg_3(PO_4)_2[/tex]
Thus, we infer that the correct theoretical yielded mass is 0.591 g as magnesium nitrate is the limiting reactant for which it produces the fewest grams of product.
However, is not possible to compute the percent yield since no actual yield is given, and must be provided or indicated by the problem or an experiment and it not here, nevertheless, you may compute the percent yield by dividing the actual yield by the theoretical and then multiplying by 100:
[tex]Y=\frac{actual}{0.591g}*100\%[/tex]
Best regards!
number of balance electrons of a non ionized oxygen atom
Menthol is a crystalline substance with a peppermint taste and odor. When 0.533 g of menthol is dissolved in 25.0 g of cyclohexane, the freezing point of the solution is lowered by 2.84 ∘C. Look up the freezing point and f constant for cyclohexane in the Colligative Constants table. Calculate the molar mass of menthol.
Answer: The molar mass of menthol is 156.15 g/mol
Explanation:
Depression in freezing point is given by:
[tex]\Delta T_f=K_f\times m[/tex]
[tex]\Delta T_f=T_f^0-T_f=2.84^0C[/tex] = Depression in freezing point
[tex]K_f[/tex] = freezing point constant = [tex]20.8^0C/m[/tex]
m= molality
[tex]\Delta T_f=K_f\times \frac{\text{mass of solute}}{\text{molar mass of solute}\times \text{weight of solvent in kg}}[/tex]
Weight of solvent (cyclohexane)= 25.0 g = 0.025 kg
Molar mass of solute (menthol) = ?
Mass of solute (menthol) = 0.533 g
[tex]2.84^0C=20.8\times \frac{0.533}{xg/mol\times 0.025}[/tex]
[tex]x=156.15g/mol[/tex]
The molar mass of menthol is 156.15 g/mol
Write the equilibrium expression of each chemical equation.
2H2S(g) 2H2(g) + S2(g)
Answer:
[H2]2[S2][H2S]2Kc=[H2]2[S2][H2S]2
Explanation:
2H2S(g)⇋2H2(g)+S2(g)2H2S(g)⇋2H2(g)+S2(g)
The equilibrium constant expression in terms of concentrations is:
Kc=[H2]2[S2][H2S]2Kc=[H2]2[S2][H2S]2.
The equilibrium expression for the given reaction can be written in terms of equilibrium constant which is the ratio of power of molar concentration of the product to the product of power of molar concentration of the reactants.
What is equilibrium?Equilibrium is a state for a reversible reaction where, the rate of forward reaction is equal to the rate of backward reaction. The rate of a reaction is the rate of decrease in the concentration of reactants or the rate of increase in the concentration of the products.
The given reaction at equilibrium state is written as:
[tex]\rm 2H_{2}S (g)\leftrightharpoons 2H_{2} (g)+ S_{2}(g)[/tex]
The equilibrium constant Kb is ratio of power of molar concentration of the product to the product of power of molar concentration of the reactants.
[tex]Kb = \rm \frac{[H_{2}S]^{2}}{[H_{2}]^{2} [S_{2}]}[/tex]
The rate of the reaction will be r = Kb [H₂]² [S₂].
To find more on equilibrium constant, refer here:
https://brainly.com/question/15118952
#SPJ2
Two colorless chemicals combine inside a glow
stick. When the chemicals combine, they produce
brightly colored light. The glow stick's temperature
does not change.
emission of heat
emission of light
color change
formation of gas
Answer:
Option B & Option C
Explanation:
correct on edge! :D
When chemicals combine chemical change takes place which is accompanied by emission of heat and light.
What is a chemical change?Chemical changes are defined as changes which occur when a substance combines with another substance to form a new substance.Alternatively, when a substance breaks down or decomposes to give new substances it is also considered to be a chemical change.
There are several characteristics of chemical changes like change in color, change in state , change in odor and change in composition . During chemical change there is also formation of precipitate an insoluble mass of substance or even evolution of gases.
There are three types of chemical changes:
1) inorganic changes
2)organic changes
3) biochemical changes
During chemical changes atoms are rearranged and changes are accompanied by an energy change as new substances are formed.
Learn more about chemical change,here:
https://brainly.com/question/23693316
#SPJ5
Vitamin C is a covalent compound with the molecular
formula C6H8O6. The recommended daily dietary
allowance of vitamin C for children aged 4-8 years is
0.000142mol. What is the mass of this allowance in grams?
The mass allowance of Vitamin C for children aged 4-8 years is equal to 0.025 grams.
What is a mole?A mole can be defined as a standard unit that can be utilized to evaluate the number of entities such as atoms, molecules, ions, or other particular particles in a particular amount of the substance.
The number of elementary entities present in one mole of any chemical substance was found to be equal to 6.023 × 10²³ which is also known as the Avogadro number.
Given, the number of moles of vitamin C = 0.000142 moles
Given, the molecular formula of Vitamin C is C₆H₈O₆.
The mass of one mole of C₆H₈O₆ = 176 g
One mole of Vitamin C has mass = 176 g
0.000142 mol of Vitamin C has mass = 0.000142×176 = 0.025 g
Therefore, the mass of 0.000142 mol of Vitamin C is 0.025 g.
Learn more about the mole, here:
brainly.com/question/26416088
#SPJ2
Decide whether the element is a metal or nonmetal, if you can.
Element is a hard silvery-gray solid. Wires are fastened to each side of a 2 cm slab of it, and an ordinary household 9 V battery is hooked up so that it can feed electricity through the slab to an LED. But the LED stays dark
Answer:
The element is a nonmetal
Explanation:
Elements are broadly classified into metals and non metals. Metals conduct electricity while non metals do not conduct electricity.
If we look at this scenario described in the question, we can easily decipher that the element is a nonmetal because the LED stays dark. The LED should have been lit if electricity was passed through the element in question.
Hence, the element is a non metal.