Answer:
A. Show that the diagonals form two congruent triangles using the definition of a rhombus and geometric properties. Then, use CPCTC (corresponding parts of congruent triangles are congruent) to show that the opposite interior angles are bisected.
Step-by-step explanation:
Answer choice A is the only one that applies specifically to a rhombus.
The other answer choices are true of triangles and vertical angles in general. They do not relate specifically to the problem at hand.
Erika has 3 pieces of ribbon. Each piece is 25 yards long. She needs to cut pieces that are 22 inches long. What is the greatest number of 22 inch pieces she can cut from the 3 pieces of ribbon
Answer:
She can cut 122 pieces.
Step-by-step explanation:
She has 3 pieces of ribbon that are 25 yds long. In total, she has 75 yds, which is equal to 2700 in. Erika needs 22 in. pieces, so just divide 2700 by 22 to get your number.
2700/22 ≈ 122.72
The route used by a certain motorist in commuting to work contains two intersections with traffic signals. The probability that he must stop at the first signal is 0.36, the analogous probability for the second signal is 0.51, and the probability that he must stop at least one of the two signals is 0.67.What is theprobability that he must stop.
a) At both signals?
b) At the first signal but not at the second one?
c) At exactly on signal?
Answer:
a) P(X∩Y) = 0.2
b) [tex]P_1[/tex] = 0.16
c) P = 0.47
Step-by-step explanation:
Let's call X the event that the motorist must stop at the first signal and Y the event that the motorist must stop at the second signal.
So, P(X) = 0.36, P(Y) = 0.51 and P(X∪Y) = 0.67
Then, the probability P(X∩Y) that the motorist must stop at both signal can be calculated as:
P(X∩Y) = P(X) + P(Y) - P(X∪Y)
P(X∩Y) = 0.36 + 0.51 - 0.67
P(X∩Y) = 0.2
On the other hand, the probability [tex]P_1[/tex] that he must stop at the first signal but not at the second one can be calculated as:
[tex]P_1[/tex] = P(X) - P(X∩Y)
[tex]P_1[/tex] = 0.36 - 0.2 = 0.16
At the same way, the probability [tex]P_2[/tex] that he must stop at the second signal but not at the first one can be calculated as:
[tex]P_2[/tex] = P(Y) - P(X∩Y)
[tex]P_2[/tex] = 0.51 - 0.2 = 0.31
So, the probability that he must stop at exactly one signal is:
[tex]P = P_1+P_2\\P=0.16+0.31\\P=0.47[/tex]
Simplify: |4-5| / 9 × 3³ - 2/5 a.61/10 b.13/5 c.11/10 d.-2/15
━━━━━━━☆☆━━━━━━━
▹ Answer
Answer = b. 13/5
▹ Step-by-Step Explanation
|4 - 5| ÷ 9 × 3³ - 2/5
|-1| ÷ 9 × 3³ - 2/5
1 ÷ 9 × 3³ - 2/5
1/9 × 3³ - 2/5
1/3² × 3³ - 2/5
3 - 2/5
Answer = 13/5
Hope this helps!
- CloutAnswers ❁
Brainliest is greatly appreciated!
━━━━━━━☆☆━━━━━━━
Answer:
[tex] \boxed{\sf b. \ \frac{13}{5}} [/tex]
Step-by-step explanation:
[tex] \sf Simplify \: the \: following: \\ \sf \implies \frac{ |4 - 5| }{9} \times {3}^{3} - \frac{2}{5} \\ \\ \sf 4 - 5 = - 1 : \\ \sf \implies \frac{ | - 1| }{9} \times {3}^{3} - \frac{2}{5} \\ \\ \sf Since \: - 1 \: is \: a \: negative \: constant, \: |-1| = 1: \\ \sf \implies \frac{1}{9} \times {3}^{3} - \frac{2}{5} \\ \\ \sf {3}^{3} = 3 \times {3}^{2} : \\ \sf \implies \frac{ \boxed{ \sf 3 \times {3}^{2}} }{9} - \frac{2}{5} \\ \\ \sf {3}^{2} = 9 : \\ \sf \implies \frac{3 \times 9}{9} - \frac{2}{5} \\ \\ \sf \frac{9}{9} = 1 : \\ \sf \implies 3 - \frac{2}{5} [/tex]
[tex] \sf Put \: 3 - \frac{2}{5} \: over \: the \: common \: denominator \: 5 : \\ \sf \implies 3 \times \frac{5}{5} - \frac{2}{5} \\ \\ \sf \implies \frac{3 \times 5}{5} - \frac{2}{5} \\ \\ \sf 3 \times 5 = 15 : \\ \sf \implies \frac{ \boxed{ \sf 15}}{5} - \frac{2}{5} \\ \\ \sf \implies \frac{15 - 2}{5} \\ \\ \sf 15 - 2 = 13 : \\ \sf \implies \frac{13}{5} [/tex]
PLZZZ I NEED HELP I’ll give 20 POINTS
What is the median of the following data set?
(6,3, 9, 1,7)
03
06
08
09
Answer:
6
Step-by-step explanation:
Arrange the data from smallest to largest
1,3,6,7,9
The median is the middle number
1,3 ,6, 7, 9
The middle number is 6
Hurry!! Determine the intervals for which the function shown below is decreasing.
Answer:
everywhere except between 2 and 5
(between -inf and 2 and between 5 and inf)
Step-by-step explanation:
A production facility employs 20 workers on the day shift, 15 workers on the swing shift, and 10 workers on the graveyard shift. A quality control consultant is to select 7 of these workers for in-depth interviews. Suppose the selection is made in such a way that any particular group of 7 workers has the same chance of being selected as does any other group (drawing 7 slips without replacement from among 45).
1. How many selections result in all 7 workers coming from the day shift?
2. What is the probability that all 7 selected workers will be from the day shift?
3. What is the probability that all 7 selected workers will be from the same shift?
4. What is the probability that at least two different shifts will be represented among the selected workers?
5. What is the probability that at least one of the shifts will be un-represented in that sample of workers?
Answer:
1. 77520
2. [tex]P_1[/tex] = 0.0017
3. [tex]P_2[/tex] = 0.0019
4. [tex]P_3[/tex] = 0.9981
5. [tex]P_4[/tex] = 0.2036
Step-by-step explanation:
The number of ways or combinations in which we can select x elements from a group of n can be calculated as:
[tex]nCx = \frac{n!}{x!(n-x)!}[/tex]
So, there are 77520 selections that result in all 7 workers coming from the day shift. It is calculated as:
[tex]20C7 = \frac{20!}{7!(20-7)!}=77520[/tex]
At the same way, the total number of selections of 7 workers from the 45 is 45C7, so the probability that all 7 selected workers will be from the day shift is:
[tex]P_1=\frac{20C7}{45C7} =0.0017[/tex]
The probability that all 7 selected workers will be from the same shift is calculated as:
[tex]P_2=\frac{20C7+15C7+10C7}{45C7} =0.0019[/tex]
Because the consultant can select all workers from the day shift (20C7) or can select all workers from the swing shift (15C7) or can select all workers from the graveyard shift (10C7).
On the other hand, the probability that at least two different shifts will be represented among the selected workers is the complement of the probability that all 7 selected workers will be from the same shift. So it is calculated as:
[tex]P_3 = 1- P_2=1 - 0.0019 = 0.9981[/tex]
Finally, the probability that at least one of the shifts will be un-represented in that sample of workers is:
[tex]P_4=\frac{25C7+30C7+35C7}{45C7} =0.2036[/tex]
Where 25C7 is the number of ways to select all 7 workers from swing or graveyard shift, 30C7 is the number of ways to select all 7 workers from day or graveyard shift and 35C7 is the number of ways to selects all 7 workers from day shift and swing shift.
Simplify. Remove all perfect squares from inside the square root. \sqrt{30b^5}= 30b 5
Answer:
The answer is b=0 or b=9.085603
The equation is solved and the perfect squares are removed from the square root and A = b²√( 30b )
What is an Equation?
Equations are mathematical statements with two algebraic expressions flanking the equals (=) sign on either side.
It demonstrates the equality of the relationship between the expressions printed on the left and right sides.
Coefficients, variables, operators, constants, terms, expressions, and the equal to sign are some of the components of an equation. The "=" sign and terms on both sides must always be present when writing an equation.
Given data ,
Let the equation be represented as A
Now , the value of A is
Substituting the values in the equation , we get
A = √( 30b⁵ )
On simplifying the equation , we get
We can simplify the given expression by breaking down the number inside the square root into its prime factors:
30b⁵ = 2 x 3 x 5 x b⁵
Since we are looking to remove all perfect squares, we can remove the factors of 2 and 3, which are the only perfect squares present in the prime factorization of 30. This leaves us with:
30b⁵ = 2 x 3 x 5 x b⁵
= 2 x 3 x 5 x b⁴ x b
= 30b⁴ x b
Therefore, we can simplify the original expression as:
√(30b⁵) = √(30b⁴ x b) = √(30b⁴) x √b
A = b²√30 x √b
Hence , the expression √(30b⁵) simplifies to A = b²√30 x √b
To learn more about equations click :
https://brainly.com/question/19297665
#SPJ2
What is the circumference of the circle below? (Round your answer to the nearest tenth.)
Answer:
Its 69.1 cm
Step-by-step explanation:
To find circumstance of any circle main formula is 2*pie*r .
Here pie is equal to 3.14 approx and r =11 cm
so
2*3.14*11 = 69.08 cm
This little difference is just because of pie's approximately value used
In triangle ABC, the right angle is at vertex C, a = 714 cm and the measure of angle A is 78° . To the nearest cm, what is the length of side c?
Answer:
c = 730cm
Step-by-step explanation:
The first thing we would do is to draw the diagram using th given information.
Find attached the diagram.
a = 714 cm
the measure of angle A = 78°
To determine c, we would apply sine rule. This is because we know the opposite and we are to determine the hypotenuse
sin78 = opposite/hypotenuse
sin 78 = 714/c
c = 714/sin 78 = 714/0.9781
c= 729.99
c≅ 730 cm ( nearest cm)
find the average rate of change if the function f(x)=x^2+4x from x1=2 to x2=3
Replace x with 2 and solve:
2^2 + 4(2) = 4 + 8 = 12
Replace x with 3 and solve:
3^2 + 4(3) = 9 + 12 = 21
The difference between the two answers is : 21 -12 = 9
The difference between the two inputs is 3-2 = 1
The rate of change is the change in the answers I’ve the change in the inputs:
Rate of change = 9/1 = 9
Brainliest to whoever gets this correct This word problem has too much information. Which fact is not needed to solve the problem? Tanisha tried to sell all her old CDs at a garage sale. She priced them at $2 each. She put 80 CDs in the garage sale, but she sold only 35 of them. How many did she have left? A. All of the information is needed. B. Tanisha sold the CDs for $2 each. C. Tanisha put 80 CDs in the sale. D. Tanisha sold 35 of the CDs.
Answer:
B. Tanisha sold the CDs for $2 each.
Step-by-step explanation:
In an aquarium, there are 7 large fish and 6 small fish. Half of the small fish are red.
One fish is selected at random. Find the probability that it is a small, red fish.
Write your answer as a fraction in simplest form.
Answer:
3/13
Step-by-step explanation:
There are a total of 13 fish (6+ 7 = 13). There are 3 small, red fish. (1/2 · 6 = 3). Put the number of small, red fish over the total number of fish because the small, red fish is being selected from the entire tank of fish. 3/13 cannot be simplified any further.
PLEASE HELP SOLVE THIS!!!!!
Answer:
20) -43
21) 25
22)-9
Step-by-step explanation:
20) -6 (-6 + 49)/6 = -43
21) 10 - (-10 - (-1 + 6)) = 25
22) 1 - 10/2 - 5 = -9
Step-by-step explanation:
22Let's calculate the expression khowing that m= 1 and n = 5
m-[tex]\frac{m+m}{2}[/tex] -nm- [tex]\frac{2m}{2}[/tex]-n m-m-n0-n0-5-520Let's calculate the expression khowing that n= -7 and p= - 6
[tex]\frac{p(p+n^{2}) }{6}[/tex] [tex]\frac{-6(-6+(-7)^{2}) }{6}[/tex][tex]\frac{-6(-6+49)}{2}[/tex] [tex]\frac{-6*43}{6}[/tex] -1*43-4321Let's calculate the expression khowing that n = -6 and m = -1 and p = -10
mp-(p-(m-n))mp-(p-m+n)mp-p+m-n(-1)*(-10)-(-10)+(-1)-(-6)10+10-1+620-1+619+625Pls help see the picture posted
How many meters are in 18,200 milliliter
Answer:
18.2 :)
Have a great day!!!
A rectangle measures 18 cm x 3 cm what is its area
Answer:
Six
Step-by-step explanation:
The answer could be shown in multiple forms, but if I'm correct, the answer to this problem would be six.
In this problem, y = c1ex + c2e−x is a two-parameter family of solutions of the second-order DE y'' − y = 0. Find a solution of the second-order IVP consisting of this differential equation and the given initial conditions. y(−1) = 9, y'(−1) = −9
Answer:
[tex]y(x)=\frac{9}{e^{1} } e^{-x} =3.310914971e^{-x}[/tex]
Step-by-step explanation:
This problem is very simple, since they give the solution for the differential equation from the start. So basically, you need to evaluate the initial conditions into the solution, and the derivative of the solution in order to find the value of the constants [tex]c_1[/tex] and [tex]c_2[/tex].
So, first of all, let's find the derivative of [tex]y(x)[/tex]:
[tex]y'(x)=c_1 e^{x} -c_2e^{-x}[/tex]
Now, let's evaluate the first initial condition:
[tex]y(-1)=c_1e^{-1} +c_2e^{-(-1)} =9\\\\c_1e^{-1} +c_2e^{1}=9\hspace{10}(1)[/tex]
Now, the second initial condition:
[tex]y'(-1)=c_1 e^{-1} -c_2e^{-(-1)}=-9\\\\c_1 e^{-1} -c_2e^{1}=-9\hspace{10}(2)[/tex]
Combining (1) and (2) we have a 2x2 System of Equations. Let's use elimination method in order to solve it:
[tex](1)+(2):\\\\c_1e^{-1} +c_2e^{1} +c_1e^{-1} -c_2e^{1}=9-9\\\\2c_1e^{-1} =0\\\\Hence\\\\c_1=0[/tex]
Replacing [tex]c_1[/tex] into (1)
[tex](0)e^{-1} +c_2e^{1}=9\\\\c_2e^{1}=9\\\\Hence\\\\c_2=\frac{9}{e^{1} } =3.310914971[/tex]
Therefore the solution of the second-order IVP is:
[tex]y(x)=\frac{9}{e^{1} } e^{-x} =3.310914971e^{-x}[/tex]
pls pls help me help me help me
Answer:
2
Step-by-step explanation:
Answer:
I hope it will help you....
Which of the following cannot have a Discrete probability distribution? a. The number of customers arriving at a gas station in Christmas day b. The number of bacteria found in a cubic yard of soil. c. The number of telephone calls received by a switchboard in a specified time period. d. The length of a movie
Answer:
d. The length of a movie
Step-by-step explanation:
A discrete random variable is a variable which only takes on integer values.
A discrete distribution is used to describe the probability of the occurrence of each value of a discrete random variable.
From the given options, the length of a movie is not a discrete variable as it can have decimal values.
It therefore cannot have a Discrete probability distribution.
The correct option is D.
11- In
how many ways 3 mathematics books, 4 history books ,3
chemisidy books and a biology books can be arranged
on an Shelf so thet all books of the same subjects are
together!
Answer: 20,736
Step-by-step explanation:
Math and History and Chemistry and Biology and Subjects
3! x 4! x 3! x 1! x 4! = 20,736
Use the standard normal table to find P(z ≥ 1.06). Round to the nearest percent.
Answer:
14%
Step-by-step explanation:
On edge 2020
Which of the following points is NOT a solution of the inequality y ≥ Ixl + 3?
A. (-3, 0)
B. (-3, 6)
C. (0, 4)
Hey there!
To solve this, we need to plug each of our answer options into the inequality and see if it is true. Which ever one doesn't make the inequality true when plugged in is the answer.
OPTION A
(x,y)=(-3,0)
We plug our values into the inequality.
0≥ I-3I+3
You may have noticed the bars surrounding the negative three.. If you didn't know, this is called absolute value. Absolute value is how far the number is from 0 on the number line. -7 is 7 away from 0 on a number line, so the absolute value of -7 is 7. The absolute value of 7 is 7. The absolute value of 0 is 0. Absolute value is signified by these bars. Le'ts finish evaluating.
0≥6
As you can see, zero is not greater than or equal to six. So, option A is false.
Since A is not a solution, we already know that that is the answer, so we don't even need to check B and C. But, we can still evaluate them if you want.
OPTION B
6≥I-3I+3
6≥6
This is true.
OPTION C
4≥I0I+3
4≥3
This is also true.
Therefore, the answer is A. (-3,0)
Have a wonderful day!
Use the function below to find f(4).
f(x)=1/3x4^x
A. 8/3
B.256/3
C.64/3
D.16/3
Answer:
F(4)=1/3*4^4
F(4)=256/3
Step-by-step explanation:
4^4=256
(1/3)*(256)=
256/3
Simply replace X with 4
Answer:
F(4)=1/3*4^4
F(4)=256/3
Step-by-step explanation:
4^4=256
(1/3)*(256)=
256/3
76% is between which of the following two numbers?
Hey there!
You haven't provided any answer options but here's how you would solve a problem like this.
To find the number in between two numbers, you add it up and divide it by two!
So, what's between 1 and 3? Well you do 1+3 is 4 then divide by 2 you get 2!
100 and 580? You add them to get 680 then divide by two you get 340!
In between 0.57 and 0.69? Adding gives you 1.26 and then divide by two and we have 0.63!
And with percents, let's do 45% and 67%. You add you get 112% and then divide by two you have 56%!
So, with your answer options just add them up and divide by two and see which one gives you 76%!
I hope that this helps!
which term is the rate at which work is done
Answer:
The answer is power.Hope this helps you
Which sentence in this excerpt from Common Sense by Thomas Paine supports the claim that the American colonies could thrive independently from Britain? I have heard it asserted by some, that as America hath flourished under her former connection with Great Britain that the same connection is necessary towards her future happiness, and will always have the same effect. Nothing can be more fallacious than this kind of argument. We may as well assert that because a child has thrived upon milk that it is never to have meat, or that the first twenty years of our lives is to become a precedent for the next twenty. But even this is admitting more than is true, for I answer roundly, that America would have flourished as much, and probably much more, had no European power had any thing to do with her. The commerce, by which she hath enriched herself, are the necessaries of life, and will always have a market while eating is the custom of Europe.
Answer:
A
Step-by-step explanation:
Answer:
"But even this is admitting more than is true, for I answer roundly, that America would have flourished as much, and probably much more, had no European power had any thing to do with her."
Step-by-step explanation:
Checked 2021
Find the critical value z Subscript alpha divided by 2 that corresponds to the given confidence level. 80%
Answer:
[tex] Conf= 0.80[/tex]
With the confidence level we can find the significance level:
[tex]\alpha =1-0.8=0.2[/tex]
And the value for [tex]\alpha/2=0.1[/tex]. Then we can use the normal standard distribution and we can find a quantile who accumulates 0.1 of the area on each tail and we got:
[tex] z_{\alpha/2}= \pm 1.28[/tex]
Step-by-step explanation:
For this problem we have the confidence level given
[tex] Conf= 0.80[/tex]
With the confidence level we can find the significance level:
[tex]\alpha =1-0.8=0.2[/tex]
And the value for [tex]\alpha/2=0.1[/tex]. Then we can use the normal standard distribution and we can find a quantile who accumulates 0.1 of the area on each tail and we got:
[tex] z_{\alpha/2}= \pm 1.28[/tex]
Simplfy the following expressions:
Answer:
1st one = d y^27
2nd one = b 2x^9
Step-by-step explanation:
1st one: since the power is being raised to the power of 3 you multiply the numbers
2nd one: the powers aren't being raised so you add the powers together.
12x^13y^10/6X^4y^10
then dividing for exponents is subtracting them so
2x^9 since y gets canceled out
if it takes four men to dig a land in 6 days.how many days will it take 6 men to build that same land.
Answer:
4 daysSolution,
____________________________
Men ------------------------------ Days
4 ------------------------> 66 ------------------------> X (suppose)_____________________________
In case of indirect proportion,
4/6= 6/X
or, 6*X= 6*4 ( cross multiplication)
or, 6x= 24
or, 6x/6= 24/6 ( dividing both sides by 6)
x= 4 days
Hope this helps...
Good luck on your assignment..
Answer:
[tex]\boxed{4 days}[/tex]
Step-by-step explanation:
M1 = 4
D1 = 6
M2 = 6
D2 = x (we've to find this)
Since, it is an inverse proportion (more man takes less days for the work to complete and vice versa), so we'll write it in the form of
M1 : M2 = D2 : D1
4 : 6 = x : 6
Product of Means = Product of Extremes
=> 6x = 4*6
=> 6x = 24
Dividing both sides by 6
=> x = 4 days
Question 3 of 10
2 Points
If h(x) =(fºg)(x) and h(x) = 3(x + 2), find one possibility for f (x) and g(x).
Answer:
[tex]\boxed{\sf \ \ \ \text{one possibility is } f(x)=3x \ and \ g(x)=x+2 \ \ \ }[/tex]
Step-by-step explanation:
hello
h(x)=f(g(x))=3(x+2)
if we have f(x)=3x and g(x)=x+2 then
f(g(x))=f(x+2)=3(x+2)
hope this helps