Answer:
B. 17°.
Step-by-step explanation:
To solve the problem, we can use SOH CAH TOA.
SOH = Sine, Opposite divided by Hypotenuse
CAH = Cosine, Adjacent divided by Hypotenuse
TOA = Tangent, Opposite divided by Hypotenuse
In this case, we are given both the opposite and the hypotenuse, so we will use sine to solve it.
sine(N) = 4 / 14
sine(N) = 2 / 7
N = sec(2/7)
N = 16.6015496, which is about B. 17°.
Hope this helps!
What is the next number in the sequence.
1,121,12321, 1234321
The next number in the sequence is _____
Answer:
123454321
Step-by-step explanation:
it's a palendrome, made out of a number of numbers in the sqquence.
Find m^4+(1/m^4) if m-(1/m)=3 Please help with this.
Answer:
m^4+(1/m^4)= 123.4641 or 118.6
Step-by-step explanation:
m-(1/m)=3
m² - 1= 3m
m² -3m -1= 0
m = (3-√13)/2 = -0.3
Or
m =( 3+√13)/2= 3.3
m^4+(1/m^4) for m = -0.3
= (-0.3)^4 + (1/(0.3)^4)
= 0.0081 + 123.456
= 123.4641
m^4+(1/m^4) for m = 3.3
= (3.3)^4 + (1/(3.3)^4)
= 118.5921 + 0.008432
= 118.6
Select the correct answer.
The function RX) = 2x + 3x + 5, when evaluated, gives a value of 19. What is the function's input value?
A. 1
B. -1
C. 2
D. -2
E. -3
Answer:
Correct option: C.
Step-by-step explanation:
(Assuming the correct function is R(x) = 2x^2 + 3x + 5)
To find the input value that gives the value of R(x) = 19, we just need to use this output value (R(x) = 19) in the equation and then find the value of x:
[tex]R(x) = 2x^2 + 3x + 5[/tex]
[tex]19 = 2x^2 + 3x + 5[/tex]
[tex]2x^2 + 3x -14 = 0[/tex]
Solving this quadratic function using the Bhaskara's formula (a = 2, b = 3 and c = -14), we have:
[tex]\Delta = b^2 - 4ac = 9 + 112 = 121[/tex]
[tex]x_1 = (-b + \sqrt{\Delta})/2a = (-3 + 11)/4 = 2[/tex]
[tex]x_2 = (-b - \sqrt{\Delta})/2a = (-3 - 11)/4 = -3.5[/tex]
So looking at the options, the input to the function is x = 2
Correct option: C.
Chocolate chip cookies have a distribution that is approximately normal with a mean of 24.7 chocolate chips per cookie and a standard deviation of 2.1 chocolate chips per cookie. Find Upper P 10 and Upper P 90. How might those values be helpful to the producer of the chocolate chip cookies?
Answer:
P10 = 27.4
P90 = 22.0
It helps the producer to know the higher (P10) and lower estimates (P90) for the amount of chocolate chips per cookie.
Step-by-step explanation:
In P10 and P90 the P stands for "percentile".
In the case of P10, indicates the value X of the random variable for which 10% of the observed values will be above this value X.
In the case of P90, this percentage is 90%.
In this case, we can calculate from the z-values for each of the percentiles in the standard normal distribution.
For P10 we have:
[tex]P(z>z_{P10})=0.1\\\\z_{P10}=1.2816[/tex]
For P90 we have:
[tex]P(z>z_{P90})=0.9\\\\z_{P90}=-1.2816[/tex]
Then, we can convert this values to our normal distribution as:
[tex]P10=\mu+z\cdot\sigma=24.7+1.2816\cdot 2.1=24.7+2.7=27.4 \\\\P90=\mu+z\cdot\sigma=24.7-1.2816\cdot 2.1=24.7-2.7=22.0[/tex]
Is f(x)=x^2-3x+2 even function
Answer:
Step-by-step explanation:
No, it is not an even function. The graph is not symmetric about the y-axis.
Find the surface area of the solid shown or described. If necessary, round to the nearest tenth. A.348m^2 B.484m^2 C.180.7m^2 D.262m^2
Answer: 484m²
Step-by-step explanation: This is a question on solid shape.
The surface area of a cone is the same thing as the perimeter of the cone ie, the materials required to construct the cone.
Formula for the surface area of the cone = πrl + πr², ( the circular base )
From.the diagram,
r = 7.1m , l = 14.6m, π = 3.142
Now substitute for those values in.the formula above
SA = πrl + πr²
= 3.142 × 7.1 × 14.6 + 3.142 × 7.1²
= 325.6997 + 158.388
= 484.09
Now to the nearest tenth meter,
SA = 484m²
The arithmetic mean (average) of four numbers is 85. If the largest of these numbers is 97, find the mean of the remaining three numbers. I cannot solve this. Please help on it.
Answer:
81
Step-by-step explanation:
Let's do this systematically:
Four numbers: a, b, c, d
Whose mean is 85: [tex]\frac{a + b + c + d}{4} = 85[/tex]
Whose largest number is 97: [tex]\frac{a + b + c + 97}{4} = 85[/tex]
Lets solve for the other numbers:
a+b+c+97 = 85*4 = 340
340 - 97 = 243
a+b+c = 243
at this point it doesn't matter what the numbers are, they just need to add up to 243.
We can do 243÷3=81, which is our answer
Evaluate the function rule for the given value y=12•3x for x=-2
Answer:
-72
Step-by-step explanation:
We just have to plug in -2 for x so the answer is 12 * 3 * (-2) = -72.
a child rolls a 6-sided die 6 times. what is the probability of the child rolling no more than three twos g
Answer:
Pr(Three 2's) = 1/27
Step-by-step explanation:
Let's assume the die is a fair die, on the first roll of the die, the child has a 1/6 chance of getting any number, including 6.
Second roll, the child has a 1/36 chance of getting any two numbers, including two 6's.
And on the third roll, the child has a 1/36×1/6=1/216 chance of getting any three numbers, including three 6's. And this is due to the fact that the rolls are independent, so the total possible outcomes multiply each roll with each roll's probability. Since each roll's probability is 1/6.
The probability of the child rolling no more than three twos will be =2/6×2/6×2/6
=1/3×1/3×1/3
=1/27
Therefore, the chances of three twos will be 1/27
Mary is 5 feet tall and Alice is 1.6 meters tall. Who is taller? By how many inches?
Answer:
Alice
Step-by-step explanation:
5 feet is approximately 1.5 meters so we can say Alice is taller than Mary by 10cm
Answer:
Mary, by 3 inches.
Step-by-step explanation:
Convert the unit to inches.
5 feet = 60 inches
1.6 meters = 63 inches
63 - 60 = 3
Mary is taller than Alice by 3 inches.
solve and graph the set solution. 9-2x⩽3x+24 The bottom options for what graph
Answer:
A
Step-by-step explanation:
9-2x≤3x+24
-15≤5x
-3≤x
so it's:
[-3,∞)
Which of the following statements must be true about this diagram? Check all that apply.
Answer:
Options (D), (E) and (F) are the correct options.
Step-by-step explanation:
From the figure attached,
1). Angle 4 is the exterior angle of the given triangle having interior angles 1, 2 and 3.
Therefore, by the property of exterior angle,
∠4 = ∠1 + ∠2
2). Since ∠4 = ∠1 + ∠2,
Therefore, ∠4 will be greater than ∠1
Similarly, ∠4 will be greater than ∠2
Therefore, Options (D), (E) and (F) are the correct options.
In a plane, if a line is perpendicular to one of two blank lines, then it is also perpendicular to the other
Answer:
ParallelStep-by-step explanation:
The complete statement would be "if a line is perpendicular to one of two parallel lines, then it is also perpendicular to the other".
The reason for this is because parallel lines have the same slope, that's the condition. On the other hand, parallel lines have opposite and reciprocal slopes.
So, if you think this through, if a line is perpendicular to another, then it's going to be perpendicular to all different lines which are parallel to the first one, because all their slopes are equivalent, and they will fulfill the perpendicularity condition.
Answer:
Parallel line
Step-by-step explanation:
Hope It Helps
The circumference of a circle can be found using the
fortula C=2
Which is an equivalent equation solved for r?
r=CH
r= C(2)
or = 21
Find the first five terms in sequences with the following nth terms. 6n+3
Answer:
33
Step-by-step explanation:
An = 6n+3
so the first five terms in sequences is A5= 6*5 +3 = 33
Show all work and receive brainliest!
Answer:
Lower Quartile: 62
Upper Quartile: 81
Interquartile Range: 19
Step-by-step explanation:
To find the lower quartile, you want to find the median from the minimum to the median.
49, 55, 62, 64, 67
The median of this is 62. Therefore, 62 is the lower quartile.
To find the upper quartile, you want to find the median from the median to the maximum.
76, 79, 81, 82, 83
The median of this is 81. Therefore, 81 is the upper quartile.
To find the interquartile range, you subtract the upper and lower quartile.
81-62=19
The difference is 19. Therefore, the interquartile range is 19.
What percent of this grid is unshaded?
The grid has 10 columns and 10 rows making 100 equal sized squares 5 rows are
unshaded. The sixth row has 6 squares unshaded.
Answer:
56% shaded
Step-by-step explanation:
if there are 100 boxes, then every box it 1%
5 rows (50%) + 6 extra boxes (6%) = 56%
4x-39> -43 and8x+31<23
Answer:
SOLUTION SET={x/x>-1} and SOLUTION SET={x/x<-1}
Step-by-step explanation:
1)4x-39>-43
evaluating the inequality
adding 39 on both sides
4x-39+39>-43+39
4x>-4
dividing 4 on both sides
4x/4>-4/4
x>-1
SOLUTION SET={x/x>-1}
2)8x+31<23
evaluating the inequality
subtracting 31 on both sides
8x+31-31<23-31
8x<-8
dividing 8 on both sides
8x/8<-8/8
x<-1
SOLUTION SET={x/x<-1}
i hope this will help you :)
Answer: There are no solutions
Step-by-step explanation:Khan Academy
What is the value of x to the power of 2 to the power of 4 when x = 8 and y =2
Answer:
x is 64 and y is 16 but if you can't comprehend thats 64/16 = 4
Step-by-step explanation:the power is the number multiplied by it self so 8 to the power if 2 is 8 x 8 and 2 to the power of four is 2 x 2 x 2 x 2= 16
Simplify the expression.
(7-6)(-1)
-7 +0
-7-
7-6
7+ c
Answer:
7+c or 6
Step-by-step explanation:
Answer:
-89+c
Step-by-step explanation:
I'm assuming
"(7-6)(-1)
-7 +0
-7-
7-6
7+ c"
Is the whole equation.
(7-6)(-1) -7+0 -7- 7-6 7+c=
(1)(-1)-7+0-7-7-67+c=
-1-7+0-7-7-67+c=
-8+0-7-7-67+c=
-8-7-7-67+c=
-15-7-67+c=
-22-67+c=
-89+c
What is the constant of proportionality in the equation Y = x/9?
Answer:
1/9
Step-by-step explanation:
Separate the fraction (1/9) from the variable x:
y = (1/9)x.
1/9 is the constant of proportionality.
Identify the axis of symmetry of the given quadratic
y= -3x^2 - 12
Answer:
[tex]\frac{d}{dy}(-3x^{2} -12) = -6x[/tex]
0 = -6x
0 = x
[tex]-3(0)^{2} -12 = -12[/tex]
(0,-12)
Step-by-step explanation:
What does csc x cot x (1-cos^2 x) equal
Answer:
Step-by-step explanation:
Graph the system of linear equations.
-{ y = 4x+ 5 and y = 2x + 2.
Answer:
work shown and pictured
Find all values of k for which the function y=sin(kt) satisfies the differential equation y′′+16y=0. Separate your answers by commas. isn't the answer just ±4?
Answer: k = 4, k = -4 and k = 0.
Step-by-step explanation:
If we have y = sin(kt)
then:
y' = k*cos(kt)
y'' = -k^2*son(x).
then, if we have the relation:
y'' - y = 0
we can replace it by the things we derivated previously and get:
-k^2*sin(kt) + 16*sin(kt) = 0
we can divide by sin in both sides (for t ≠0 and k ≠0 because we can not divide by zero)
-k^2 + 16 = 0
the solutions are k = 4 and k = -4.
Now, we have another solution, but it is a trivial one that actually does not give any information, but for the diff equation:
-k^2*sin(kt) + 16*sin(kt) = 0
if we take k = 0, we have:
-0 + 0 = 0.
So the solutions are k = 4, k = -4 and k = 0.
Suppose you take a 30-question, multiple-choice test, in which each question contains 4 choices: A, B, C, and D. If you randomly guess on all 30 questions, what is the probability you pass the exam (correctly guess on 60% or more of the questions)? Assume none of the questions have more than one correct answer (hint: this assumption of only 1 correct choice out of 4 makes the distribution of X, the number of correct guesses, binomial). What is the expected number of correct guesses, from problem #19? What is the standard deviation, ? (Remember that X is a binomial random variable!) What would be considered an unusual number of correct guesses on the test mention in problem number 19 using ?
Answer:
(a) The probability you pass the exam is 0.0000501.
(b) The expected number of correct guesses is 7.5.
(c) The standard deviation is 2.372.
Step-by-step explanation:
We are given that you take a 30-question, multiple-choice test, in which each question contains 4 choices: A, B, C, and D. And you randomly guess on all 30 questions.
Since there is an assumption of only 1 correct choice out of 4 which means the above situation can be represented through binomial distribution;
[tex]P(X =x) = \binom{n}{r}\times p^{r}\times (1-p)^{n-r} ; x = 0,1,2,3,......[/tex]
where, n = number of trials (samples) taken = 30
r = number of success = at least 60%
p = probbaility of success which in our question is the probability
of a correct answer, i.e; p = [tex]\frac{1}{4}[/tex] = 0.25
Let X = Number of questions that are correct
So, X ~ Binom(n = 30 , p = 0.25)
(a) The probability you pass the exam is given by = P(X [tex]\geq[/tex] 18)
Because 60% of 30 = 18
P(X [tex]\geq[/tex] 18) = P(X = 18) + P(X = 19) +...........+ P(X = 29) + P(X = 30)
= [tex]\binom{30}{18}\times 0.25^{18}\times (1-0.25)^{30-18} + \binom{30}{19}\times 0.25^{19}\times (1-0.25)^{30-19} +.......+ \binom{30}{29}\times 0.25^{29}\times (1-0.25)^{30-29} + \binom{30}{30}\times 0.25^{30}\times (1-0.25)^{30-30}[/tex]
= 0.0000501
(b) The expected number of correct guesses is given by;
Mean of the binomial distribution, E(X) = [tex]n \times p[/tex]
= [tex]30 \times 0.25[/tex] = 7.5
(c) The standard deviation of the binomial distribution is given by;
S.D.(X) = [tex]\sqrt{n \times p \times (1-p)}[/tex]
= [tex]\sqrt{30 \times 0.25 \times (1-0.25)}[/tex]
= [tex]\sqrt{5.625}[/tex] = 2.372
(matching type) given f(x)= x+4 and g(x) = 2x + 1 match the expression to its simplication operation
choose
x+4 / 2x+1
Answer 1
Choose...
f of g
f/g
f - g
f∙g
g/f
f + g
2x+1 / x+4
Answer 2
Choose...
f of g
f/g
f - g
f∙g
g/f
f + g
3x + 5
Answer 3
Choose...
f of g
f/g
f - g
f∙g
g/f
f + g
2x + 5
Answer 4
Choose...
f of g
f/g
f - g
f∙g
g/f
f + g
-x + 3
Answer 5
Choose...
f of g
f/g
f - g
f∙g
g/f
f + g
2x2 + 9x + 12
pa help po
Answer:
1) [tex]h(x) = \frac{f(x)}{g(x)}[/tex], 2) [tex]h(x) = \frac{g(x)}{f(x)}[/tex], 3) [tex]h(x) = f(x) + g(x)[/tex], 4) [tex]h (x) = f [g (x)][/tex], 5) [tex]h(x) = f(x) - g(x)[/tex]
Step-by-step explanation:
1) Let be [tex]f(x) = x + 4[/tex] and [tex]g(x) = 2\cdot x + 1[/tex], if [tex]h (x) = \frac{x+4}{2\cdot x + 1}[/tex], then:
[tex]h(x) = \frac{f(x)}{g(x)}[/tex]
2) Let be [tex]f(x) = x + 4[/tex] and [tex]g(x) = 2\cdot x + 1[/tex], if [tex]h(x) = \frac{2\cdot x + 1}{x+4}[/tex], then:
[tex]h(x) = \frac{g(x)}{f(x)}[/tex]
3) Let be [tex]f(x) = x + 4[/tex] and [tex]g(x) = 2\cdot x + 1[/tex], if [tex]h(x) = 3\cdot x + 5[/tex], then:
[tex]h(x) = 3\cdot x + 5[/tex]
[tex]h (x) = (1 + 2)\cdot x + (4+1)[/tex]
[tex]h(x) = x + 2\cdot x + 4 +1[/tex]
[tex]h(x) = (x+4) + (2\cdot x + 1)[/tex]
[tex]h(x) = f(x) + g(x)[/tex]
4) Let be [tex]f(x) = x + 4[/tex] and [tex]g(x) = 2\cdot x + 1[/tex], if [tex]h(x) = 2\cdot x + 5[/tex], then:
[tex]h(x) = 2\cdot x + 5[/tex]
[tex]h(x) = 2\cdot x + 1 + 4[/tex]
[tex]h(x) = (2\cdot x +1)+4[/tex]
[tex]h (x) = f [g (x)][/tex]
5) Let be [tex]f(x) = x + 4[/tex] and [tex]g(x) = 2\cdot x + 1[/tex], if [tex]h(x) = -x + 3[/tex], then:
[tex]h(x) = -x + 3[/tex]
[tex]h(x) = (1 - 2)\cdot x + 4 - 1[/tex]
[tex]h(x) = x - 2\cdot x + 4 - 1[/tex]
[tex]h(x) = x + 4 - (2\cdot x + 1)[/tex]
[tex]h(x) = f(x) - g(x)[/tex]
The U.S. Department of Agriculture guarantees dairy producers that they will receive at least $1.00 per pound of butter they supply to the market. Below is the current monthly demand and supply schedule for wholesale butter (in millions of pounds per month). Wholesale Butter Market
Price (dollars per pound) Quantity of Butter Demanded Quantity of Butter Supplied
(millions of pounds) (millions of pounds)
$0.80 107 63 0
.90 104 71
1.00 101 79
1.10 98 87
1.20 95 95
1.30 92 103
1.40 89 111
1.50 86 119
1.60 83 127
1.70 80 135
1.80 77 143
a. In the butter market, the monthly equilibrium quantity is million pounds and the equilibrium price is $ per pound.
b. What is the monthly surplus created in the wholesale butter market due to the price support (price floor) program? 22 million pounds 79 million pounds Zero 11 million pounds Suppose that a decrease in the cost of feeding cows shifts the supply schedule to the right by 40 million pounds at every price.
Answer:
a. In the butter market, the monthly equilibrium quantity is 95 million pounds and the equilibrium price is $1.2 per pound.
b. The correct option is zero.
c. See the attached excel file for the new supply schedule.
d. The monthly surplus created by the price support program is 18 million pounds given the new supply of butter.
Step-by-step explanation:
Note: This question is not complete. A complete question is therefore provided in the attached Microsoft word file.
a. In the butter market, the monthly equilibrium quantity is million pounds and the equilibrium price is $ per pound.
At equilibrium, quantity demanded must be equal with the quantity supplied.
In this question, equilibrium occurs at the price of $1.20 per pound and quantity of 95 million pounds.
Therefore, in the butter market, the monthly equilibrium quantity is 95 million pounds and the equilibrium price is $1.2 per pound.
b. What is the monthly surplus created in the wholesale butter market due to the price support (price floor) program?
Price floor refers to a government price control on the lowest price that can be charged for a commodity.
It should be noted that for a price floor to be binding, it has to be fixed above the equilibrium price.
Since the price floor of $1 per pound is lower than the equilibrium price of $1.2 per pound, the price floor will therefore not be binding. As a result, the market will still be at the equilibrium point and the monthly surplus created in the wholesale butter market due to the price support (price floor) program will be zero.
Therefore, the correct option is zero.
c. Fill in the new supply schedule given the change in the cost of feeding cows.
Since a decrease in the cost of feeding cows shifts the supply schedule to the right by 40 million pounds at every price, this implies that there will be an increase in supply by 40 million at each price.
Note: Find attached the excel file for the new supply schedule.
d. Given the new supply of butter, what is the monthly surplus of butter created by the price support program?
Since the price floor has been fixed at $1 per pound by the price support program, we can observe that the quantity demanded is 101 million pounds and quantity supplied is 119 million pounds at this price floor of $1. The surplus created is then the difference between the quantity demanded and quantity supplied as follows:
Surplus created = Quantity supplied - Quantity demanded = 119 - 101 = 18 million pounds
Therefore, the monthly surplus created by the price support program is 18 million pounds given the new supply of butter.
how do you get the answer after you have an equation?
Assume that the random variable X is normally distributed, with mean 60 and standard deviation 16. Compute the probability P(X < 80). Group of answer choices
Answer:
P(X < 80) = 0.89435.
Step-by-step explanation:
When the distribution is normal, we use the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question, we have that:
[tex]\mu = 60, \sigma = 16[/tex]
P(X < 80)
This is the pvalue of Z when X = 80. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{80 - 60}{16}[/tex]
[tex]Z = 1.25[/tex]
[tex]Z = 1.25[/tex] has a pvalue of 0.89435.
So
P(X < 80) = 0.89435.