Answer:
i think is e or b
Step-by-step explanation:
[tex]7(b-2)[/tex] Can be interpreted as letter E.
The school band is going to a competition. Five members play the flute. There are three times as many members who play the trumpet. There are eight fewer trombone players than trumpeters, and eleven more drummers than trombone players. There are twice as many members that play the clarinet as members that play the flute. There are four fewer tuba players than there are trombone player, but three more members play the French horn than play the trombone. The band director, his assistant and six parent volunteers are also going. How many seats are needed on the bus?
Answer:
76
Step-by-step explanation:
Flute players- 5
Trumpet player- 3 times flute players -15
Trombone players- 8 fewer than trumpet-7
Drummers- 11 more than trombone-18
Clarinet- 2 times flute- 10
Tuba-4 fewer than trombone-3
French horn- 3 more than trombone- 10
Band director- 1
Assistant-1
Volunteers- 6
5+15+7+18+10+3+10+1+1+6=76
When 21 volts are applied the arlent is a amperes. What is the current when 47 volts are applied round to decimal
Answer:
Since it is directly related, then the current is one third of the voltage.
57 / 3 = 19 amperes
Step-by-step explanation:
how do i round 17.875 to the nearest tenth
Answer:
17.9
Step-by-step explanation:
The tenth place is the digit 8. After the tenth place is 7, which is higher or equal to 5. Therefore, we must add +1 to the tenth place followed by zeros.
Given
f(x) = 2x2 + 1
and
g(x) = 3x - 5
find the following.
f-g
Answer:
The answer is
2x² - 3x + 6Step-by-step explanation:
f(x) = 2x² + 1
g(x) = 3x - 5
To find f - g(x) subtract g(x) from f(x)
That's
f-g(x) = 2x² + 1 - (3x - 5)
= 2x² + 1 - 3x + 5
= 2x² - 3x + 6
Hope this helps you
Which of the following p values will lead us to reject the null hypothesis if the level of significance equals .05?
a. 0.100
b. 0.051
c. 0.150
d. 0.015
Answer:
So then our significance level is [tex]\alpha=0.05[/tex] and we need to remember these two conditions:
1) If the p value [tex]p_v <\alpha[/tex] we have enough evidence to reject the null hypothesis at the significance level given
2) If the p value [tex]p_v \geq \alpha[/tex] we have enough evidence to FAIL reject the null hypothesis at the significance level given
And baed on the options we see that the only possibility would be:
d. 0.015
Step-by-step explanation:
We want to know for which value we would REJECT the null hypothesis.
So then our significance level is [tex]\alpha=0.05[/tex] and we need to remember these two conditions:
1) If the p value [tex]p_v <\alpha[/tex] we have enough evidence to reject the null hypothesis at the significance level given
2) If the p value [tex]p_v \geq \alpha[/tex] we have enough evidence to FAIL reject the null hypothesis at the significance level given
And baed on the options we see that the only possibility would be:
d. 0.015
evaluate -x+4 when x = -2
Answer:
6Step-by-step explanation:
f(x)=-x+4
f(-2)=-(-2)+4
f(-2)=+2+4
f(-2)=6
Answer:
6
Step-by-step explanation:
-(-2)+4=___
+(+2)+4=6
Find the area of the parallelogram with vertices A(−1,3,3), B(0,5,7), C(1,2,6), and D(2,4,10).
Answer:
Step-by-step explanation:
The diagonal of the parallelogram ABCD divides it into 2 equal triangles. Considering triangle ABC, it means that the area of the parallelogram would be
2 × area of triangle ABC
Writing the vertices of triangle ABC,
A(−1,3,3), B(0,5,7), C(1,2,6)
We would determine the length of each side of the triangle.
AB = √(0 - - 1)² + (5 - 3)² + (7 - 3)^2
AB = √(1 + 4 + 16) = √21
BC = √(1 - 0)² + (2 - 5)² + (6 - 7)²
BC = √(1 + 9 + 1) = √11
AC = √(1 - - 1)² + (2 - 3)² + (6 - 3)²)
AC = √(4 + 1 + 9) = √14
We would apply the heron's formula for determining the area of a triangle
Area = √s(s - a)(s - b)(s - c)
Where
s = (a + b + c)/2
a = AB, b = BC, c = AC
s = (√21 + √11 + √14)/2 = 5.82
s - a = 5.82 - √21 = 1.24
s - b = 5.82 - √11 = 2.5
s - c = 5.82 - √14 = 2.08
Area = √(5.82 × 1.24 × 2.5 × 2.08) = 6.126
Therefore, area of parallelogram ABCD is
6.126 × 2 = 12.252
I NEED HELP PLEASE THANKS!
Jenny is sitting on a sled on the side of a hill inclined at 15°. What force is required to keep the sled from sliding down the hill if the combined weight of Jenny and the sled is 90 pounds? (Show work)
Answer:
23.29 lbs
Step-by-step explanation:
The force on Jenny due to gravity can be resolved into components perpendicular to the hillside and down the slope. The down-slope force is ...
(90 lbs)sin(15°) ≈ 23.29 lbs
In order to keep Jenny in position, that force must be balanced by an up-slope force of the same magnitude.
A heavy rope, 30 ft long, weighs 0.4 lb/ft and hangs over the edge of a building 80 ft high. Approximate the required work by a Riemann sum, then express the work as an integral and evaluate it.How much work W is done in pulling half the rope to the top of the building
Answer:
180 fb*lb
45 ft*lb
Step-by-step explanation:
We have that the work is equal to:
W = F * d
but when the force is constant and in this case, it is changing.
therefore it would be:
[tex]W = \int\limits^b_ a {F(x)} \, dx[/tex]
Where a = 0 and b = 30.
F (x) = 0.4 * x
Therefore, we replace and we would be left with:
[tex]W = \int\limits^b_a {0.4*x} \, dx[/tex]
We integrate and we have:
W = 0.4 / 2 * x ^ 2
W = 0.2 * (x ^ 2) from 0 to 30, we replace:
W = 0.2 * (30 ^ 2) - 0.2 * (0 ^ 2)
W = 180 ft * lb
Now in the second part it is the same, but the integral would be from 0 to 15.
we replace:
W = 0.2 * (15 ^ 2) - 0.2 * (0 ^ 2)
W = 45 ft * lb
Following are the calculation to the given value:
Given:
[tex]length= 30 \ ft\\\\mass= 0.4 \ \frac{lb}{ft}\\\\edge= 80 \ ft \\\\[/tex]
To find:
work=?
Solution:
Using formula:
[tex]\to W=fd[/tex]
[tex]\to W=\int^{30}_{0} 0.4 \ x\ dx\\\\[/tex]
[tex]= [0.4 \ \frac{x^2}{2}]^{30}_{0} \\\\= [\frac{4}{10} \times \frac{x^2}{2}]^{30}_{0} \\\\= [\frac{2}{10} \times x^2]^{30}_{0} \\\\= [\frac{1}{5} \times x^2]^{30}_{0} \\\\= [\frac{x^2}{5}]^{30}_{0} \\\\= [\frac{30^2}{5}- 0] \\\\= [\frac{900}{5}] \\\\=180[/tex]
Therefore, the final answer is "[tex]180\ \frac{ lb}{ft}[/tex]".
Learn more:
brainly.com/question/15333493
The function f(x) = -x2 + 40x - 336 models the daily profit, in dollars, a shop makes for selling donut
combos, where x is the number of combos sold and f(x) is the amount of profit.
Part A: Determine the vertex. What does this calculation mean in the context of the problem? Show
the work that leads to the answer. (5 points)
Part B: Determine the x-intercepts. What do these values mean in the context of the problem? Show
the work that leads to the answer. (5 points)
(10 points)
Answer:
This question should be worth atleast 20 points
Step-by-step explanation:
a. For the vertex, input the funtion into the calculator, and see where the turning piont is, that is the vertex.
b. Solve using this vormula.
x= (-b ±[tex]\sqrt{b^2 - 4ac}[/tex])/2a
you will get two asnwrs, both are correct.
if p(A)=0.30,p(B)=0.40and p(AB) =0.20,then p(A/B) is
Answer:
p(A|B) = 2/3Step-by-step explanation:
Given p(A)=0.30,p(B)=0.40and p(A∩B) =0.20,then p(A/B) is expressed as shown:
p(A|B) = p(A∩B)/p(A)
p(A|B) means B is independent and A depends on B.
In your problem P(A)=0.65, P(A∩B) =0.1
Substituting the given values,
p(A|B) = 0.2/0.30
p(A|B) = 2/10 * 10/3
p(A|B) = 2/3
What is the simplified fractional equivalent of the terminating decimal 0.48
Answer:
12/25
Step-by-step explanation:
Stuck Right now, Help would be appreciated :)
Answer:
C. c = (xv - x) / (v - 1).
Step-by-step explanation:
v = (x + c) / (x - c)
(x - c) * v = x + c
vx - vc = x + c
-vc - c = x - vx
vc + c = -x + vx
c(v + 1) = -x + vx
c = (-x + vx) / (v + 1)
c = (-x + xv) / (v + 1)
c = (xv - x) / (v + 1)
So, the answer should be C. c = (xv - x) / (v + 1).
Hope this helps!
Which absolute value function, when graphed, will be
wider than the graph of the parent function, f(x) = |x|?
f(x) = |x| + 3
f(x) = |x-6|
f(x) = 1/3 |x|
f(x) = 9|x|
Answer: f(x) = (1/3)*IxI
Step-by-step explanation:
Ok, this is a problem of transformations.
First, if we have f(x), then:
f(x - a) is a translation of a units in the x-axis
f(x) + a is a translation of a units in the y-axis.
a*f(x) is a dilation/contraction.
if a is greater than 1, then the graph will be steeper (less wide)
if a is smaller than 1, then the graph will be wider.
Looking at the options, the correct option is:
f(x) = (1/3)*IxI
where we can see that a = (1/3)
Answer:
C
Step-by-step explanation:
pls help help me pls
Answer:
b
Step-by-step explanation:15 x 5 = 75 and 20 x 4 = 80 making 155 and 15 x 3 = 45 and 20 x 2 = 40 making 85
Please someone help!!!
Answer:
Step-by-step explanation:
A, B and C must be real numbers, and A and B are not both zero (which would cause division by zero in the calculation of the slope).
What is the approximate length of minor arc LM? Round
to the nearest tenth of a centimeter.
12.4 centimeters
15.7 centimeters
31.4 centimeters
36.7 centimeters
Answer:
Length of the arc LM = 15.7 cm
Step-by-step explanation:
To determine the length of the arc LM we have to find the circumference of the the big circle then divide by the ratio of the angle or go straight to use the radians as the angle and look for the length.
Radius= 30cm
π= 3.142
Value of the angle is in radians
360° = 2π
π = 180
π/6 = 180/6
π/6= 30
Value of the angle is 30°
Length of the arc = 2πr * 30/360
Length of the arc = 2πr/12
Length of the arc = πr/6
Length of the arc = 30π/6
Length of the arc =5π
Length of the arc = 5*3.142
Length of the arc = 15.71
Approximately Length of the arc
= 15.7cm
Answer:
B. 15.7cm
Step-by-step explanation:
evaluate -x+4 when x = -2
Answer:
6
Step-by-step explanation:
=> -x+4
Given that x = -2
=> -(-2)+4
=> 2+4
=> 6
Answer:
6
Step-by-step explanation:
You just have to input -2 into the statement and then solve
= -(-2) + 4
= 2+ 4
= 6
Which of the following relations is a function?
A{(1, 3), (2, 3), (4,3), (9. 3)}
B{(1, 2), (1, 3), (1.4), (1,5)}
C{(5, 4), (-6, 5), (4, 5), (4, 0)}
D{(6,-1), (1, 4), (2, 3), (6, 1)}
You are planning to evaluate the mean of a single continuous variable from a study with a sample of n =10 using the t statistic. What are the degrees of freedom for the sample?
a. 11
b. 9
c. 10
d. 8
Answer:
[tex] t=\frac{\bar X -\mu}{\frac{s}{\sqrt{n}}}[/tex]
And for this case the degrees of freedom are given by:
[tex] df= n-1 = 10-1=9[/tex]
And the best option would be:
b. 9
Step-by-step explanation:
For this case our parameter of interest is the true mean [tex]\mu[/tex] and we have a sampel size of n =10.
We are going to use a t test and then the t statistic given by:
[tex] t=\frac{\bar X -\mu}{\frac{s}{\sqrt{n}}}[/tex]
And for this case the degrees of freedom are given by:
[tex] df= n-1 = 10-1=9[/tex]
And the best option would be:
b. 9
Four different digits from 1 to 9 are required to open a safe.
1. The sum of the digits is 20.
2. The first digit is greater than the third.
3. The second and fourth digits differ by at least 5.
4. Exactly two digits are squares.
5. The first and fourth digits add up to a prime number.
6. The fourth digit is the lowest.
Can you find the four-digit combination?
Answer: 5942
Step-by-step explanation:
Clue 4 states exactly two of the digits = 1, 4, or 9
Clue 1 leaves us with the following combinations:
1, 9, 2, 8
1, 9, 3, 7 eliminate by clue 5
4, 9, 2, 5
1, 4, 7, 8
Clue 5 directs us to the following order for 1,9,2,8
2 __ __ 1 --> 2981 or 2891 eliminate by clue 2
9 __ __ 8 --> 9128 or 9218 eliminate by clue 6
9 __ __ 2 --> 9182 or 9812 eliminate by clue 6
Clue 5 directs us to the following order for 4,9,2,5
5 __ __ 2 --> 5492 or 5942 eliminate 5492 by clue 2
9 __ __ 2 --> 9452 or 9542 eliminate by clue 3
Clue 5 directs us to the following order for 1,4,7,8
4 __ __ 1 --> 4781 or 4871 eliminate by clue 2
The only combination not eliminated is 5-9-4-2, which satisfies all six clues.
1) 5 + 9 + 4 + 2 = 20
2) 5 > 4
3) 9 - 2 > 5
4) 4 & 9 but not 1 are included
5) 5 + 2 = 7, which is a prime number
6) 2 < 5, 9, 4
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 117.7-cm and a standard deviation of 2.2-cm. For shipment, 29 steel rods are bundled together. Find the probability that the average length of a randomly selected bundle of steel rods is greater than 118.5-cm.
Answer:
Required probability is 0.9748
Step-by-step explanation:
given data
mean [tex]\mu[/tex] = 117.7-cm
standard deviation [tex]\sigma[/tex] = 2.2-cm
sample size n = 29
solution
we consider here random variable which represents here length of rod= x
so get here first z that is express as
[tex]Z = \dfrac{x-\mu}{\dfrac{\sigma}{\sqrt{n}}}[/tex]
put here value with x value 118.5-cm
[tex]Z = \dfrac{118.5-117.7}{\dfrac{2.2}{\sqrt{29}}}[/tex]
Z = 1.9582
p value is 0.9748
so required probability is 0.9748
Quadrilateral W X Y Z is shown. Diagonals are drawn from point W to point Y and from point Z to point X and intersect at point C. The lengths of W C and C Y are congruent. Which best explains if quadrilateral WXYZ can be a parallelogram? WXYZ is a parallelogram because diagonal XZ is bisected. WXYZ is not necessarily a parallelogram because it is unknown if CZ = CY. WXYZ is a parallelogram because ZC + CX = ZX. WXYZ is not necessarily a parallelogram because it is unknown if WC = CY.
Answer: The answer is D
Step-by-step explanation:
Edge 2021
The true statement is (d) WXYZ is not necessarily a parallelogram because it is unknown if WC = CY.
What are quadrilaterals?Quadrilaterals are shapes with four sides
What are parallelograms?Parallelograms are quadrilaterals that have equal and parallel opposite sides
The quadrilateral is given as:
WXYZ
Also, we have:
WC = CY
The given parameters are not enough to determine if the quadrilateral is a parallelogram or not
Hence, the true statement is (d) WXYZ is not necessarily a parallelogram because it is unknown if WC = CY.
Read more about quadrilaterals and parallelograms at:
https://brainly.com/question/1190071
Find the length of a side of a square whose diago- nal is 16 cm long. Round your answer to the nearest tenth.
Answer:
11.3 cm
Step-by-step explanation:
(see attached for reference)
using the Pythagorean theorem
hypotenuse ² = length ² + length ²
16² = L² + L²
16² = 2L² (express 2 = (√2)²
16² = (√2)²L²
16² = (√2L)²
16 = √2L
L = 16 /√2
L = 11.3 cm
11.3
use Pythagoras theorem give each side is "a"
a^2+a^2=16^2
2*a^2=256
a^2=256/2=128
a=sqrt(128)=11.3 sqrt=square root
how many US dollars is 12,986.64 Swiss francs
Answer:13,732.07 usd
Step-by-step explanation: Just search it up "12,986.64 Swiss francs to usd"
Suppose that you collect data for 15 samples of 30 units each, and find that on average, 2.5 percent of the products are defective. What are the UCL and LCL for this process? (Leave no cells blank - be certain to enter "0" wherever required. Do not round intermediate calculations. Round up negative LCL values to zero. Round your answers to 3 decimal places.)
Answer:
The UCL is [tex]UCL = 0.054[/tex]
The LCL is [tex]LCL \approx 0[/tex]
Step-by-step explanation:
From the question we are told that
The quantity of each sample is n = 30
The average of defective products is [tex]p = 0.025[/tex]
Now the upper control limit [UCL] is mathematically represented as
[tex]UCL = p + 3 \sqrt{\frac{p(1-p)}{n} }[/tex]
substituting values
[tex]UCL = 0.025 + 3 \sqrt{\frac{0.025 (1-0.025)}{30} }[/tex]
[tex]UCL = 0.054[/tex]
The upper control limit (LCL) is mathematically represented as
[tex]LCL = p - 3 \sqrt{\frac{p(1-p)}{n} }[/tex]
substituting values
[tex]LCL = 0.025 - 3 \sqrt{\frac{0.025 (1-0.025)}{30} }[/tex]
[tex]LCL = -0.004[/tex]
[tex]LCL \approx 0[/tex]
Suppose the displayed ask is $20.05 for 100 shares and the displayed bid is $20 for 150 shares. What happens if another dealer places a limit order to buy 50 shares for $20.02?
Answer:
There will be no transaction
Step-by-step explanation:
Given:
Displayed ask price = $20.05 for 100 shares
Displayed bid price = $20 for 150 shares
Explain:
If a limit order to buy = 50 shares for $20.02
Computation:
Displayed bid will be not accepted because, displayed bid price is for 150 shares not 100 shares
Limited order will be also not accepted.
So, there will be no transaction.
Eagle Outfitters is a chain of stores specializing in outdoor apparel and camping gear. They are considering a promotion that involves mailing discount coupons to all their credit card customers. This promotion will be considered a success if more than 10% of those receiving the coupons use them. Before going national with the promotion, coupons were sent to a sample of 100 credit card customers.
a. Develop hypotheses that can be used to test whether the population proportion of those
who will use the coupons is sufficient to go national.
b. The file Eagle contains the sample data. Develop a point estimate of the population
proportion.
c. Use αα= .05 to conduct your hypothesis test. Should Eagle go national with the
promotion?
Answer:
a) Alternative hypothesis: the use of the coupons is isgnificantly higher than 10%.
Null hypothesis: the use of the coupons is not significantly higher than 10%.
The null and alternative hypothesis can be written as:
[tex]H_0: \pi=0.1\\\\H_a:\pi>0.1[/tex]
b) Point estimate p=0.13
c) At a significance level of 0.05, there is not enough evidence to support the claim that the proportion of coupons use is significantly higher than 10%.
Eagle should not go national with the promotion as there is no evidence it has been succesful.
Step-by-step explanation:
The question is incomplete.
The sample data shows that x=13 out of n=100 use the coupons.
This is a hypothesis test for a proportion.
The claim is that the proportion of coupons use is significantly higher than 10%.
Then, the null and alternative hypothesis are:
[tex]H_0: \pi=0.1\\\\H_a:\pi>0.1[/tex]
The significance level is 0.05.
The sample has a size n=100.
The point estimate for the population proportion is the sample proportion and has a value of p=0.13.
[tex]p=X/n=13/100=0.13[/tex]
The standard error of the proportion is:
[tex]\sigma_p=\sqrt{\dfrac{\pi(1-\pi)}{n}}=\sqrt{\dfrac{0.1*0.9}{100}}\\\\\\ \sigma_p=\sqrt{0.0009}=0.03[/tex]
Then, we can calculate the z-statistic as:
[tex]z=\dfrac{p-\pi-0.5/n}{\sigma_p}=\dfrac{0.13-0.1-0.5/100}{0.03}=\dfrac{0.025}{0.03}=0.833[/tex]
This test is a right-tailed test, so the P-value for this test is calculated as:
[tex]\text{P-value}=P(z>0.833)=0.202[/tex]
As the P-value (0.202) is greater than the significance level (0.05), the effect is not significant.
The null hypothesis failed to be rejected.
At a significance level of 0.05, there is not enough evidence to support the claim that the proportion of coupons use is significantly higher than 10%.
Which graph represents an exponential function?
Answer:
Presumably the first graph solely based on its shape.
Graph A is showing the exponential function. Then the correct option is A.
What is an exponential function?The mathematical expression f(x)= [tex]e^x[/tex] denotes the exponential function. The term typically refers to the positive-valued function of a real variable, unless otherwise specified.
A graph is the representation of the data on the vertical and horizontal coordinates so we can see the trend of the data. In graph A we can see that the values are varying exponentially from the second quadrant to the first quadrant.
Hence, the correct option is A.
To know more about exponential functions follow
https://brainly.com/question/2456547
#SPJ5
Nika baked three loaves of zucchini bread. Each cake needed StartFraction 17 over 4 EndFraction cups of flour. Which expression shows the best estimate of the number of cups of flour that Nika used? 4 + 4 + 4 = 12 5 + 5 + 5 = 15 4 + 4 + 4 = 16 17 + 17 + 17 = 51
Answer:
(A)4 + 4 + 4 = 12
Step-by-step explanation:
Each of Nika's cake needed 17/4 cups of flour. Now, we know that:
[tex]\dfrac{17}{4}=4.25 \approx 4[/tex]
Therefore, for three loaves of bread, the best estimate of the number of cups of flour Nika used is:
4 + 4 + 4 = 12
The correct option is A.
Answer:
The correct answer is A.)4 + 4 + 4 = 12