We have confirmed that the sum of the series is 28/3. Therefore, the correct answer is option (b) 28/3.
What is geometric series?A geometric series is a series of numbers where each term is a fixed multiple of the preceding term. Specifically, a geometric series has the form:
a+ar+ar²+ar³+.....
The given series is a geometric series with first term (a) = 14 and common ratio (r) = -1/2.
Consider sum of series be S, So-
S = a/(1 - r) = 14/(1 - (-1/2)) = 28/3
To see why this is the correct answer, we can also write out the first few terms of the series:
14-7+7/2-7/4+7/8-.....
It is evident that each term is produced by multiplying the one before it by -1/2.
So, the second term is obtained by multiplying the first term by -1/2, the third term is obtained by multiplying the second term by -1/2, and so on.
We can also notice that the sum of the first two terms is 7, the sum of the first three terms is 21/2, and the sum of the first four terms is 28/3. This suggests that the sum of the first n terms of the series might be given by the formula Sn = a(1 - rⁿ)/(1 - r).
We can verify that this is true by using the formula to find the sum of the first four terms:
S4 = 14(1 - (-1/2)⁴)/(1 - (-1/2)) = 28/3
To know more about common ratio visit:
https://brainly.com/question/24989238
#SPJ1
. imagine you had a research question in which you wanted to compare a sample mean to the mean of a population. under these circumstances you would either do a z-test or a one-sample t-test. what key piece of information would be missing if you needed to do a one-sample t-test?
Sample size and sample standard deviation are the key information needed for a single-sample t-test.
In the event that you need to compare the test cruel with the populace cruel, and you perform a single-sample t-test rather than a z-test, the vital piece of data that will be lost is the populace standard deviation.
Within the z-test, the populace standard deviation is known and the standard mistake of the cruel is calculated utilizing the populace standard deviation.
In a single-sample t-test, the populace standard deviation is obscure, and the standard mistake of the cruel is evaluated from the test standard deviation.
Therefore, sample size and sample standard deviation are the key information needed for a single-sample t-test.
learn more about standard deviation
brainly.com/question/23907081
#SPJ4
Given the following code fragment, which of the following expressions is always true?
int x;
scanf("%d", &x);
A) if( x = 1)
B) if( x < 3)
C) if( x == 1)
D) if((x/3) > 1)
If the expressions given, only C) if( x == 1) is always true.
In the given code fragment, the value of x is read from the user using the scanf() function. The value of x can be any integer value, depending on what the user enters. After the value of x is read, the program checks the value of x using a conditional statement (if statement) and executes the code inside the if statement only if the condition is true.
Expression A) if( x = 1) assigns the value 1 to x and then checks if x is true. This means that the condition is always true, because the assignment operation (=) returns the assigned value (in this case, 1), which is a non-zero value and therefore considered true in C programming.
Expression B) if( x < 3) checks if x is less than 3. This expression is not always true, as x can be any value greater than or equal to 3, in which case the condition would be false.
Expression C) if( x == 1) checks if x is equal to 1. This expression is always true if the user enters the value 1 for x.
Expression D) if((x/3) > 1) checks if the integer division of x by 3 is greater than 1. This expression is not always true, as x can be any value less than or equal to 3, in which case the result of the integer division by 3 would be 1 or less, in which case the condition would be false.
Learn more about expressions
https://brainly.com/question/14083225
#SPJ4
the only expression that is always true in this code fragment is option C) if( x == 1).
The expression that is always true in this code fragment is option C) if( x == 1).
Option A) if( x = 1) is not always true because it is an assignment statement instead of a comparison statement. It assigns the value 1 to x instead of checking if x is equal to 1.
Option B) if( x < 3) is also not always true because x could be any number less than 3.
Option D) if((x/3) > 1) is not always true because x could be any number less than or equal to 3, in which case the expression would evaluate to false.
Therefore, the only expression that is always true in this code fragment is option C) if( x == 1).
learn more about code fragment
https://brainly.com/question/31133611
#SPJ11
Find the volume of a pyramid with a square base, where the area of the base is 19. 6 ft 2 19. 6 ft 2 and the height of the pyramid is 11. 6 ft 11. 6 ft. Round your answer to the nearest tenth of a cubic foot
If the area of the base is 19. 6 ft^2 and the height of the pyramid is 11. 6 ft, the volume of the pyramid is approximately 79.1 cubic feet.
The formula for the volume of a pyramid is given by:
V = (1/3) × base area × height
In this case, we are given that the pyramid has a square base, so the base area is simply the area of a square with side length s:
base area = s^2 = 19.6 ft^2
We are also given the height of the pyramid:
height = 11.6 ft
Substituting these values into the formula for the volume of a pyramid, we get:
V = (1/3) × base area × height
= (1/3) × 19.6 ft^2 × 11.6 ft
≈ 79.1 ft^3 (rounded to the nearest tenth)
To learn more about volume click on,
https://brainly.com/question/23861754
#SPJ4
From a horizontal distance of 80.0 m, the angle to the top of a flagpole is 18°. Calculate the height of the flagpole to the nearest tenth of a meter.
1. 24.7 meters
2. 76.1 meters
3. 26.0 meters
4. 25.3 meters
Answer:
The figure is omitted--please sketch it to confirm my answer.
Set your calculator to degree mode.
Let h be the height of the flagpole.
[tex] \tan(18) = \frac{h}{80} [/tex]
[tex]h = 80 \tan(18) = 25.994[/tex]
The height of the flagpole is approximately 26.0 meters. #3 is correct.
the integers from 1 to 15, inclusive, are partitioned at random into two sets, one with 7elements and the other with 8. what is the probability that 1 and 2 are in the same set?
The chance/
probability
is
16/33
, or roughly 0.485 that 1 and 2 are in the
same set.
Let's say we divide the range of numbers from
1 to 15
into two sets, each containing seven and eight numbers, respectively. Finding the likelihood that the numbers 1 and 2 are included in the same
set
is our goal.
We can determine the
total number
of ways to divide the numbers into the two sets of
7
and
8
in order to begin solving this issue. Calculating this yields the result 6435 using a formula.
The number of ways in which the pairs 1 and 2 can be found in the same set must then be determined. Considering that there are
seven numbers
in the set, we must select six more from the remaining thirteen to complete the set, presuming that one is among the seven .There are
1716
ways to do this. The number of methods remains the same, 1716, even if we suppose that 2 is among the set of 7 numbers.
Hence, there are
3432
different ways to combine the numbers 1 and 2 into one set. The chance is 16/33, or roughly 0.485, when we divide this number by the total number of possible
divisions
of the numbers.
Learn more about
probability:
https://brainly.com/question/14210034
#SPJ4
If you spin the spinner 36 times, what is the best prediction possible for the number of times
it will land on green or blue?
The best prediction possible for the number of times the spinner will land on green or blue is given as follows:
30 spins.
How to calculate a probability?A probability is calculated as the division of the desired number of outcomes by the total number of outcomes in the context of a problem/experiment.
Out of six regions, three are green and two are blue, hence the probability of one spin resulting in green or blue is given as follows:
p = (3 + 2)/6
p = 5/6.
Thus the expected number out of 36 trials of spins resulting in green or blue is given as follows:
E(X) = 5/6 x 36
E(X) = 30 spins.
More can be learned about probability at https://brainly.com/question/24756209
#SPJ1
The data for the height and weight of different people was collected the line of best fit for this date it was determined to be Y equals 0. 9 1X -65. 5 where X is the height in centimeters and why is the weight in kilograms is in the equation predict the height of a person who weighs 63 kg
According to the equation, a person who weighs 63 kg is predicted to be approximately 141 centimeters tall.
The equation given is Y = 0.91X - 65.5, where X represents the height in centimeters and Y represents the weight in kilograms. To predict the height of a person who weighs 63 kg, we need to solve for X, the height in centimeters.
To do this, we can plug in the given weight of 63 kg for Y in the equation and then solve for X. So, we have:
63 = 0.91X - 65.5
Adding 65.5 to both sides, we get:
63 + 65.5 = 0.91X
Simplifying, we have:
128.5 = 0.91X
Finally, to solve for X, we divide both sides by 0.91, giving:
X = 141.21
To know more about equation here
https://brainly.com/question/10413253
#SPJ4
The volume of a cylinder is given by the formula v - pi^h, where r is the radius of the cylinder and h is the height.
Which expression represents the volume of this cylinder?
The expression that represents the volume of the cylinder is:
V = π[tex]r^{2}[/tex]h
What is cylinder?
A cylinder is a three-dimensional geometric shape that consists of two parallel circular bases of the same size and shape, and a curved lateral surface connecting the bases. The cylinder can be thought of as a tube or a can. The lateral surface of the cylinder is formed by "unrolling" a rectangular shape along the circumference of the base.
There appears to be a typographical error in the given formula for the volume of a cylinder. The correct formula is:
V = π[tex]r^{2}[/tex]h
where V is the volume of the cylinder, r is the radius of the circular base, and h is the height of the cylinder.
Using this formula, the expression that represents the volume of the cylinder is:
V = π[tex]r^{2}[/tex]h
To learn more about cylinder from the given link:
https://brainly.com/question/16134180
#SPJ1
In a triangle PQR,the sides PQ, QR and PR measure 15 in, 20 in and 25 in respectively.
Triangle PQR's perimeter is **60 inches**.
What is the triangle's perimeter?The lengths of a triangle's sides added together form its perimeter.
Pythagorean triplet: what is it?The Pythagorean theorem asserts that in a right-angled triangle, the square of the hypotenuse's length (the side opposite the right angle) is equal to the sum of the squares of the lengths of the other two sides 1. A Pythagorean triplet is a group of three positive integers that satisfies this condition.
Triangle PQR has sides PQ = 15 inches, QR = 20 inches, and PR = 25 inches.
A triangle's perimeter is equal to the sum of its sides. Triangle PQR's perimeter is 15 + 20 + 25= **60 inches**. as a result.
To know more about perimeter of triangle visit:
brainly.com/question/29507476
#SPJ1
As a nurse working in a hospital one of the jobs is to give appropriate doses of medicine
before surgery so the patient doesn't wake up during surgery. 4cc of this particular medicine is
meant for a 180lb man, what would be the correct dosage for a 145 lb. woman?
Answer:
the correct dosage of the medicine for a 145 lb. woman would be approximately 3.22 cc
Step-by-step explanation:
To calculate the correct dosage of the medicine for a 145 lb. woman, we can use the following formula:
dosage = (weight of patient / weight of reference patient) x reference dosage
where the weight of the reference patient is 180 lb. and the reference dosage is 4 cc.
Plugging in the given values, we get:
dosage = (145 / 180) x 4
= 3.22 cc (rounded to two decimal places)
Therefore, the correct dosage of the medicine for a 145 lb. woman would be approximately 3.22 cc. However, it's important to note that dosages of medications should only be determined by a qualified medical professional based on a number of factors, including the patient's weight, medical history, and current condition.
Lucia has three separate pieces of ribbon. Each piece is 5 yards long. She needs to cut pieces that are 27 inches long to decorate folklorico dance dresses. What is the greatest number of 27-inch pieces that she can cut from three pieces of ribbon?
A 20
B 18
C 7
D 6
The greatest number of 27-inch pieces that she can cut from three pieces of ribbon is found to be 19. So, option B is the correct answer choice.
Each yard is equal to 36 inches, so 5 yards are equal to 180 inches. Therefore, each piece of ribbon is 180 inches long.
To find out how many 27-inch pieces Lucia can cut from each piece of ribbon, we divide 180 by 27.
180/27 = 6.67
Since Lucia can only cut whole pieces, she can cut 6 pieces of ribbon from each piece of ribbon.
Therefore, she can cut a total of 6 x 3 = 18 pieces of ribbon from the three separate pieces of ribbon.
Learn more about Division :
https://brainly.com/question/19871608
#SPJ4
HELP PLS EXPLAIN THISSSSS
Plugging in the values given into the expression, and simplifying, we would have our answer as: B. [tex]\frac{9}{25}[/tex]
How to Evaluate an Expression?To evaluate an expression, follow these steps:Identify the variables and constants in the expression.Substitute the given values for each variable in the expression.Simplify the expression until there are no more operations left.Given that, a = 5 and k = -2, substitute the values into the expression given and simplify:
[tex](\frac{3^2(5^{-2})}{3(5^{-1})} )^{-2}[/tex]
Simplify:
[tex](\frac{9 * \frac{1}{25} }{3* \frac{1}{5} } )^{-2}[/tex]
[tex](\frac{\frac{9}{25} }{\frac{3}{5} } )^{-2}\\\\(\frac{9}{25} * \frac{5}{3} } )^{-2}\\\\(\frac{3}{5} )^{-2}\\\\ = \frac{9}{25}[/tex]
Learn more about value of an expression on:
https://brainly.com/question/625174
#SPJ1
an appropriations bill passes the u.s. house of representatives with 47 more members voting in favor than against. if all 435 members of the house voted either for or against the bill, how many voted in favor and how many voted against? in favor members against mem
194 member voted against the bill whereas 241 members voted in favour of the bill.
What is bill refers to?A bill usually refers to a piece of paper money, such as a dollar bill or a euro bill.
To solve this problem, we can use algebra. Let's call the number of members who voted against the bill "x". Then, the number of members who voted in favor of the bill would be "x + 47" (since there were 47 more members voting in favor than against).
We know that the total number of members who voted (either for or against) was 435. So, we can write an equation:
x + (x + 47) = 435
Simplifying this equation, we get:
2x + 47 = 435
Subtracting 47 from both sides:
2x = 388
Dividing both sides by 2:
x = 194
So, 194 members voted against the bill, and the number of members who voted in favor would be:
x + 47 = 194 + 47 = 241
Therefore, 241 members voted in favor of the bill.
Learn more about equation here:
https://brainly.com/question/10413253
#SPJ1
You select a marble without looking and then put it back. If you do this 24 times, what is the
best prediction possible for the number of times you will pick a marble that is not orange?
times
Step-by-step explanation:
24 times, as there are no orange marbles in the set.
so, every pull will produce a marble that is not orange with 100% certainty.
in general, we have 12 marbles.
let's change the problem description into picking a marbles that is not blue.
we have 6 blue marbles.
the chance to pick a blue marble is therefore 6/12 = 1/2.
and the probability to not pick a blue marbles is 1 - 1/2 = 1/2.
so, in 24 pulls, we expect 24× 1/2 = 12 times to get a marble that is not blue.
or change it to "not green" marbles.
5 green marbles.
the probability to pick a green marble is 5/12.
the probabilty to not pick a green marble = 1 - 5/12 = 7/12.
in 24 pulls we expect 24 × 7/12 = 14 times to get a marble that is not green.
it change it to "not purple" marbles.
1 purple marble.
the probability to pick a purple marble is 1/12.
the probabilty to not pick a purple marble = 1 - 1/12 = 11/12.
in 24 pulls we expect 24 × 11/12 = 22 times to get a marble that is not purple.
Lin notices that the number of cups of red paint is always 2/5 of the total number of cups. She writes the equation r = 2/5 to describe the relationship.
In the given equation r = 2/5 t "r" is the dependent variable.
Dependent variables:In mathematics, a variable is a symbol that represents a quantity that can take on different values. In many cases, variables can be divided into two types: dependent variables and independent variables.
An independent variable is a variable that can be changed freely, and its value is not dependent on any other variable in the equation.
A dependent variable is a variable whose value depends on the value of one or more other variables in the equation
Here we have
Lin notices that the number of cups of red paint is always 2/5 of the total number of cups.
She writes the equation r = 2/5 t to describe the relationship.
In the equation, r = 2/5 t, "t" represents the total number of cups, while "r" represents the number of cups of red paint.
Here "t" is the independent variable because it represents the total number of cups, which can be changed arbitrarily.
The value of "r" depends on the value of "t" because the number of cups of red paint is always 2/5 of the total number of cups.
Therefore,
In the given equation r = 2/5 t "r" is the dependent variable.
Learn more about Variables at
https://brainly.com/question/1479694
#SPJ1
Complete Question:
Lin notices that the number of cups of red paint is always 2/5 of the total number of cups. She writes the equation r = 2/5 t to describe the relationship. Which is the independent variable? Which is the dependent variable? Explain how you know.
Write a sine function that has an amplitude of 3, a midline of y =2 and a period of 1
the sine function that meets the given conditions is:
[tex]y(t) = 3 \times sin ((2\pi / 1200) \times t) + 2[/tex]
Function with the given characteristics.
The terms and their definitions we need to consider:
Amplitude:
The maximum displacement from the midline (in this case, 3)
Midline:
The horizontal line that passes through the center of the wave (y = 2)
Period:
The length of one complete cycle of the wave (1200)
Now, let's write the sine function:
[tex]y(t) = A \times sin (B \times t) + C[/tex]
Where:
y(t) is the sine function with respect to time (t)
A is the amplitude (3)
B is the frequency (to be determined)
C is the midline (2)
First, we need to find the frequency (B).
The period and frequency are related by the following formula:
[tex]Period = 2\pi / B[/tex]
In this case, the period is 1200:
[tex]1200 = 2\pi / B[/tex]
Now, solve for B:
[tex]B = 2\pi / 1200[/tex]
Now, we can plug in the amplitude (A), frequency (B), and midline (C) into our sine function:
[tex]y(t) = 3 \times sin((2\pi / 1200) \times t) + 2[/tex]
For similar questions on Function
https://brainly.com/question/11624077
#SPJ11
in a recent basketball game, shenille attempted only three-point shots and two-point shots. she was successful on 20% of her three-point shots and 30% of her two-point shots. shenille attempted 30 shots. how many points did she score?(2013 amc 12a
The probability of a score for a recent basketball game, shenille attempted only three-point shots and two-point shots is 18 points in the game. The answer is Option B.
Let x be the number of three-point shots and y be the number of two-point shots attempted by Shenille.
Then, we have:
x + y = 30 (total number of shots attempted)
Let's solve for one of the variables. For example, we can solve for x by subtracting y from both sides of the equation:
x = 30 - y
Now, we can express Shenille's points in terms of x and y:
Points = 3x + 2y
Substituting x = 30 - y, we get:
Points = 3(30 - y) + 2y
Points = 90 - y
Shenille's success rate for three-point shots is 20%, so the number of successful three-point shots she made is 0.2x. Similarly, the number of successful two-point shots she made is 0.3y.
Total points scored = (0.2x)(3) + (0.3y)(2)
Substituting x = 30 - y, we get:
Total points scored = (0.2(30 - y))(3) + (0.3y)(2
Total points scored = 18 + 0.4y
Now we need to maximize the total points scored by Shenille. Since she attempted 30 shots in total, we have:
y = 30 - x
Substituting this into the equation for total points, we get:
Total points scored = 18 + 0.4(30 - x)
Total points scored = 30 - 0.4x
This is a linear function, which is maximized at its endpoint. The maximum value of this function occurs at x = 0, which means Shenille attempted all two-point shots. In this case, y = 30, and the total points scored would be:
Total points scored = 0 + 0.3(30)(2)
Total points scored = 18
Learn more about probability at
https://brainly.com/question/30034780
#SPJ4
The question is -
In a recent basketball game, Shenille attempted only three-point shots and two-point shots. She was successful on 20% of her three-point shots and 30% of her two-point shots. Shenille attempted 30 shots. How many points did she score?
(A) 12
(B) 18
(C) 24
(D) 30
(E) 36
Evaluate the expression when x = 7 (4x + 9) - 4(x - 1) + x use the answer choices in the diagram
Answer:
The answer is 20
Step-by-step explanation:
when x=7
(4x+9)-4(x-1)+x
(4(7)+9)-4(7-1)+7
28+9 -4(6)+7
37+7-24
44-24
=20
An angle measures 37.6° more than the measure of its complementary angle. What is the measure of each angle?
The pair of required complementary angles are 26.2° and 63.8° respectively.
What are complementary angles?Two angles are said to be supplementary angles because they combine to generate a linear angle when their sum is 180 degrees.
When two angles add up to 90 degrees, however, they are said to be complimentary angles and together they make a right angle.
If the total of two angles is 90o (ninety degrees), then the angles are complementary.
A 30-angle and a 60-angle, for instance, are two complementary angles.
So, to find the 2 angles which are complementary:
x + x + 37.6 = 90
Now, solve it as follows:
x + x + 37.6 = 90
2x = 90 - 37.6
2x = 52.4
x = 52.4/2
x = 26.2
Now, x = 26.2 and the second angle x + 37.6 is = 26.2 + 37.6 = 63.8°.
Therefore, the pair of required complementary angles are 26.2° and 63.8° respectively.
Know more about complementary angles here:
https://brainly.com/question/16281260
#SPJ1
A pancake company uses the
function f(x) = 1.5x² to calculate
the number of calories in a
pancake with a diameter of x cm.
What is the average rate of change
for the function over the interval
10
A.) 150 calories per cm of diameter
B.) 33 calories per cm of diameter
C.) 65calories per cm of diameter
D.) 215 calories per cm of diameter
Answer:
To find the average rate of change of the function f(x) = 1.5x² over the interval [10, 11], we need to calculate the change in f(x) over the interval, and divide by the change in x.
The change in f(x) over the interval [10, 11] is:
f(11) - f(10) = (1.511^2) - (1.510^2) = 165 - 150 = 15
The change in x over the interval [10, 11] is:
11 - 10 = 1
Therefore, the average rate of change of the function over the interval [10, 11] is:
(15/1) = 15
This means that for every 1 cm increase in diameter (i.e., for every 1 unit increase in x), the number of calories in the pancake increases by an average of 15 calories per cm of diameter.
Therefore, the answer is (A) 150 calories per cm of diameter.
If r=0.5 m, A = ???
(Use the r key.)
The calculated value of the angular velocity of the object is 2 rad/s.
Calculating the angular velocityThe angular velocity, denoted by the Greek letter omega (ω), represents the rate of change of the angle with respect to time.
For an object moving in a circular path, the angular velocity is related to the linear speed and the radius of the circle by the equation:
ω = v/r
where v is the linear speed and r is the radius.
In this case, the radius is 0.5m and the speed is 1ms−1. Thus, the angular velocity is:
ω = v/r = 1/0.5 = 2 radians per second (rad/s)
Therefore, the angular velocity of the object is 2 rad/s.
Read more about angular velocity at
https://brainly.com/question/9408577
#SPJ1
Complete question
An object moves in a circular path of radius 0.5m with a speed of 1ms−1. What is its angular velocity (A)?
If r = 0.5 m, A = ???
Which statement is true?
Please help
You are helping with some repairs at home. You drop a hammer and it hits the floor at a speed of 4 feet per second. If the acceleration due to gravity (g) is 32 feet/second 2, how far above the ground (h) was the hammer when you dropped it? Use the formula:
Step-by-step explanation:
vf = vo + at vo = 0 in this case ( you dropped it from 'at rest')
4 f/s = 32 t
t = 1/8 s
df = do + vot + 1/2 at^2 df = final position = 0 ft (on the ground)
0 = do + 0 + 1/2 (-32)(1/8)^2
solve for do = 1/4 foot
a grocery store company wanted to know how well some of their local stores were doing. in order to find out, they hired three different reviewers to rate 10 local stores. the test statistic was 2.3, what is the p value?
Assuming a two-tailed test with 9 degrees of freedom (10 stores minus 1), the p-value for a t-value of 2.3 is approximately 0.040.
In order to calculate the p-value, we need to know the specific test being used and the significance level of the test. Let's assume that the test is a two-tailed t-test with a significance level of 0.05.
Since the test statistic is 2.3, we need to find the probability of getting a t-value of 2.3 or greater (in absolute value) under the null hypothesis. We can use a t-distribution table or a statistical software to find the corresponding p-value.
Assuming a two-tailed test with 9 degrees of freedom (10 stores minus 1), the p-value for a t-value of 2.3 is approximately 0.040. Therefore, if the significance level of the test is 0.05, we would reject the null hypothesis and conclude that there is a significant difference between the ratings given by the three reviewers.
To know more about statistic here
https://brainly.com/question/15525560
#SPJ4
What is the slope of the line?
-2
-1
1
2
Answer: positive 2
Step-by-step explanation:
if p is a prime number and a is a positive inte- ger, how many distinct positive divisors does pa have?
If p is a prime number and a is a positive integer, then pa has (a+1) distinct positive divisors.
A prime number is a positive integer greater than 1, which is divisible only by 1 and itself. Divisors are the numbers that evenly divide a given number.
For a prime number p raised to the power of a (p^a), the number of distinct positive divisors can be found using the following formula:
Number of divisors = (a + 1)
This is because each power of p from 0 to a can divide p^a without any remainder, giving us a total of a + 1 distinct divisors. These divisors are:
1, p, p^2, p^3, ..., p^(a-1), p^a
For example, if p = 2 (a prime number) and a = 3 (a positive integer), then the number of distinct positive divisors for 2^3 (which is 8) would be:
Number of divisors = (3 + 1) = 4
The divisors for 2^3 (8) are 1, 2, 4, and 8.
Learn more about Prime numbers here: brainly.com/question/30358834
#SPJ11
call a positive integer kinda-prime if it has a prime number of positive integer divisors. if there are $168$ prime numbers less than $1000$, how many kinda-prime positive integers are there less than $1000$?
There are 173 kinda-prime positive integer less than 1000.
To find the number of kinda-prime positive integer less than 1000, we'll follow these steps:
1. Understand the definition of a kinda-prime number: A positive integer is kinda-prime if it has a prime number of positive integer divisors.
2. Determine the number of prime numbers less than 1000: There are 168 prime numbers less than 1000, as given.
3. Determine the possible prime number of divisors: Since 168 is not too large, we only need to consider 2 and 3 as possible prime numbers of divisors for a kinda-prime number.
4. Analyze the cases:
Case 1: Kinda-prime numbers with 2 divisors (prime numbers)
All prime numbers have exactly 2 divisors (1 and itself). Thus, all 168 prime numbers less than 1000 are kinda-prime.
Case 2: Kinda-prime numbers with 3 divisors
Let N be a kinda-prime number with 3 divisors. Then, N = p^2 for some prime number p. To find the suitable prime numbers p, we need[tex]p^2 < 1000[/tex]. The prime numbers that meet this condition are 2, 3, 5, 7, and 11 (since 13^2 = 169 > 1000). Therefore, there are 5 additional kinda-prime numbers ([tex]2^2, 3^2, 5^2, 7^2, and 11^2[/tex]).
5. Add the total number of kinda-prime numbers from both cases: 168 + 5 = 173.
Learn more about integer here:
https://brainly.com/question/17118150
#SPJ11
[tex]$(\pi(1000)-1)+11=\boxed{177}$[/tex] "kind a-prime" positive integers less than $1000$.
Let [tex]$n$[/tex] be a positive integer with[tex]$k$[/tex] positive integer divisors.
If [tex]$k$[/tex] is prime, then.
[tex]$n$[/tex] is a "kind a-prime" integer.
[tex]$k$[/tex] must be of the form.
[tex]$k=p$[/tex] or [tex]$k=p^2$[/tex] for some prime [tex]$p$[/tex].
If [tex]$k=p$[/tex], then [tex]$n$[/tex] must be of the form.
[tex]$p^{p-1}$[/tex] for some prime [tex]$p$[/tex]. Since [tex]$p < 1000$[/tex], there are.
[tex]$\pi(1000)$[/tex]possible values of [tex]$p$[/tex].
[tex]$p=2$[/tex] gives [tex]$2^1$[/tex], which is not prime, so we have to subtract.
[tex]$1$[/tex] from [tex]$\pi(1000)$[/tex] to get the number of possible.
[tex]$p$[/tex].
[tex]$\pi(1000)-1$[/tex] values of [tex]$p$[/tex] that give a "kind a-prime" integer of this form.
If [tex]$k=p^2$[/tex], then [tex]$n$[/tex] must be of the form.
[tex]$p^{p^2-1}$[/tex] for some prime[tex]$p$[/tex].
There are.
[tex]$\pi(31)=11$[/tex] primes less than [tex]$31$[/tex], and each of them gives a different "kind a-prime" integer of this form.
Since [tex]$31^5 > 1000$[/tex], no primes larger than [tex]$31$[/tex]can be used to form a "kind a-prime" integer of this form.
[tex]$11$[/tex] possible values of [tex]$p$[/tex] that give a "kind a-prime" integer of this form.
For similar questions on Positive Integer
https://brainly.com/question/16952898
#SPJ11
these four geometry questions i’m not quite sure how to do and have been struggling in them for a while and it’s due tomorrow!!!!
The total areas of each composite shape are:
1) 121 in²
2) 150m²
3) 14.03 ft²
4) 538.36 cm²
How to find the area of the composite figure?1) Formula for area of a rectangle is:
Area = Length * width
Thus:
Area of composite shape = (9 * 8) + (7 * 7)
= 121 in²
2) Formula for area of rectangle is:
Area = Length * width
Area = 12 * 5 = 60 m²
Area of triangle = ¹/₂ * base * height
Area = ¹/₂ * 12 * 15
Area = 90 m²
Area of composite shape = 60 + 90 = 150m²
3) Area of triangle = ¹/₂ * 3 * 7 = 10.5 ft²
Area of semi circle = ¹/₂ * πr²
= ¹/₂ * π * 1.5²
= 3.53 ft²
Total composite area = 10.5 ft² + 3.53 ft²
Total composite area = 14.03 ft²
4) Total composite area = (¹/₂ * π * 7.5²) + (30 * 15)
= 538.36 cm²
Read more about Area of composite figure at: https://brainly.com/question/10254615
#SPJ1
Solve the following problem. Be sure to show all the steps (V. E. S. T. ) and work in order to receive full credit.
The sum of three numbers is 26. The second number is twice the first and the third number is 6 more than the second. Find the numbers.
Please help due tomorrow
The three numbers are 4, 8, and 14.
Let's use variables to represent the three numbers
Let x be the first number.
Then the second number is twice the first, so it is 2x.
The third number is 6 more than the second, so it is 2x + 6.
We know that the sum of the three numbers is 26, so we can write an equation:
x + 2x + (2x + 6) = 26
Now we can solve for x
5x + 6 = 26
5x = 20
x = 4
So the first number is 4.
To find the second number, we can use the equation we wrote earlier:
2x = 2(4) = 8
So the second number is 8.
To find the third number, we can use the other equation we wrote earlier
2x + 6 = 2(4) + 6 = 14
So the third number is 14.
Learn more about equation here
brainly.com/question/14603452
#SPJ4
What is the argument of z = StartFraction 1 Over 16 EndFraction minus StartFraction StartRoot 3 EndRoot Over 16 EndFraction i?
To find the argument of the complex number z = 1/16 - (sqrt(3)/16)i, we need to find the angle that the complex number forms with the positive real axis in the complex plane.
We can start by finding the magnitude of z, which is the distance between the origin and the point representing z in the complex plane:
|z| = sqrt( (1/16)^2 + (sqrt(3)/16)^2 )
= sqrt(1/256 + 3/256)
= sqrt(4/256)
= 1/4
Next, we can find the argument of z using the formula:
arg(z) = tan^(-1)(Im(z)/Re(z))
where Im(z) is the imaginary part of z, and Re(z) is the real part of z.
In this case, we have:
Re(z) = 1/16
Im(z) = -(sqrt(3)/16)
Therefore, we get:
arg(z) = tan^(-1)(Im(z)/Re(z))
= tan^(-1)(-(sqrt(3)/16)/(1/16))
= tan^(-1)(-sqrt(3))
= -60° (in degrees)
So, the argument of z is -60 degrees (or -π/3 radians).
Answer:
A
Step-by-step explanation: