Answer:I believe that it is A but i am not fully sure
Step-by-step explanation:
Please answer this correctly
Answer:
Pillows:
Blankets:
Pet Beds:
Step-by-step explanation:
18 + 45 + 27 = 90 (there are 90 students)
18 out of 90 = 20%
45 out of 90 = 50%
27 out of 90 = 30%
Hope this helps!
Imagine you have a rectangular wooden block with dimensions of 10 cm x 3 cm x 8 cm (L x W x H). Required:a. What is the volume of your wooden block?b. What is the density of this wooden block if it has a mass of 168 g?
Answer:
a) The volume of the wooden block is 240 cm^3.
b) The density of the wooden block is 0.7 g/cm^3.
Step-by-step explanation:
The volume of the rectangular wooden block can be calculated as the multiplication of the length in each dimension: length, wide and height.
With dimensions 10 cm x 3 cm x 8 cm, the volume is:
[tex]V=L\cdot W\cdot H = 10\cdot 3\cdot 8=240[/tex]
The volume of the wooden block is 240 cm^3.
If we know that the mass of the wooden block is 168 g, we can calculate the density as:
[tex]\rho = \dfrac{M}{V}=\dfrac{168}{240}=0.7[/tex]
The density of the wooden block is 0.7 g/cm^3.
Please answer this correctly
Answer:
20-39 ⇒ 5
40-59 ⇒ 3
60-79 ⇒ 5
80-99 ⇒ 10
Answer:
20-39: 5
40-59: 3
60-79: 5
80-99: 10
Step-by-step explanation:
If you just added up, you can find all the values.
The populations and areas of four states are shown.Which statement regarding these four states is true?
Clarkson University surveyed alumni to learn more about what they think of Clarkson. One part of the survey asked respondents to indicate whether their overall experience at Clarkson fell short of expectations, met expectations, or surpassed expectations. The results showed that of the respondents did not provide a response, said that their experience fell short of expectations, and of the respondents said that their experience met expectations.A. If we chose an alumnus at random, what is the probability that the alumnus would say their experience surpassed expectations?B. If we chose an alumnus at random, what is the probability that the alumnus would say their experience met or surpassed expectations?
Answer:
Step-by-step explanation:
The question is incomplete. The complete question is:
Clarkson University surveyed alumni to learn more about what they think of Clarkson. One part of the survey asked respondents to indicate whether their overall experience at Clarkson fell short of expectations, met expectations, or surpassed expectations. The results showed that 4% of respondents did not provide a response, 26% said that their experience fell short of expectations, 65% of the respondents said that their experience met expectations (Clarkson Magazine, Summer, 2001). If we chose an alumnus at random, what is the probability that the alumnus would say their experience surpassed expectations? If we chose an alumnus at random, what is the probability that the alumnus would say their experience met or surpassed expectations?
Solution:
Probability = number of favorable outcomes/number of total outcomes
From the information given,
The probability that respondents did not provide a response, P(A) is 4/100 = 0.04
The probability that a respondent said that their experience fell short of expectations, P(B) is 26/100 = 0.26
The probability that a respondent said that their experience met expectations, P(C) is 65/100 = 0.65
A) Adding all the probabilities, it becomes 0.04 + 0.26 + 0.65 = 0.95
Therefore, the probability,P(D) that a respondent said that their experience surpassed expectations is 1 - 0.95 = 0.05
B) The event of a randomly chosen respondent saying that their experience met expectations and that their experience surpassed expectations are mutually exclusive because they cannot occur together. It means that P(C) × P(D) = 0
Therefore, the probability of P(C) or P(D) is 0.65 + 0.05 = 0.7
Five times the sum of a number and 13 is 20. Find the number
Answer:
x = -9
Step-by-step explanation:
Step 1: Write out expression
5(x + 13) = 20
Step 2: Distribute
5x + 65 = 20
Step 3: Isolate x
5x = -45
x = -9
And we have our answer!
Answer:
-9
Step-by-step explanation:
Let the number be x.
5(x+13) = 20
Expand.
5x+65 = 20
Subtract 26 on both sides.
5x = 20 - 65
5x = -45
Divide 5 into both sides.
x = -45/5
x = -9
The number is -9.
Find the midpoint of AB when A=(1,-2) B=(1,-1)
Answer:
Midpoint Of AB = ( 1+1/2 , -2-1/2)
= (2/2 , -3/2)
= ( 1 , -1.5)
Hope this helps
Please mark Branliest.
Answer:
-2,0
Step-by-step explanation:
Graph g(x)=-2|x-5|-4
Answer:
Step-by-step explanation:
Mary is selling chocolate bars to raise money. She earns $3 for each solid milk chocolate bar sold and $4 for each caramel-filled bar sold. If m represents the number of milk chocolate bars sold, and c represents the number of caramel bars sold, which of the following expressions represents the amount of money that Mary has raised? Question 6 options: A) 3m – 4c B) m∕3 + i∕4 C) 12mc D) 3m + 4c
Answer:
3m + 4c
Step-by-step explanation:
Whenever a word problem says the word earn that means the slope, also known as the rate of change, will be positive. Knowing this you can determine that both the caramel and milk chocolate slopes will be positive. After figuring all that out the only thing left to do is to make the equation. You know you have two slopes, and each slope needs a variable, so you will have to look back at the question. It is given that m represents the milk chocolate and c represents the caramel. Now all you have to do is make the slope the coefficient to the corresponding variable. The milk chocolates are 3 dollars, so the 3 goes in front of the m and the caramel chocolates are 4 dollars, so teh 4 goes in front of the 4. Since both slopes are positive no negatives or minus signs will be used in the equation. Knowing all this information you can now create the expression 3m + 4c.
Answer:
D
Step-by-step explanation:
3m + 4c
Jaden had 2 7/16 yards of ribbon. He used 1 3/8 yards of ribbon to make a prize ribbon. How much does he have now?
EASY!
Answer: 17/16 or 1 1/16
Step-by-step explanation:
BRO IT'S ELEMANTARY FRACTIONS!!!!
what is between 1/3 and 7/8 answer
Answer:
The number which is exactly in between 1/3 and 7/8 will be their average. The average = (1/3 + 7/8) / 2 = (8/24 + 21/24) / 2 = (29/24) / 2 = 29/48.
Solve the equation.
5x + 8 - 3x = -10
x = -1
x=1
x=9
Answer:
x=-9solution,
[tex]5x + 8 - 3x = - 10 \\ or \: 5x - 3x + 8 = -10 \\ or \: 2x + 8 = -10 \\ or \: 2x = -10 - 8 \\ or \: 2x = -18\\ or \: x = \frac{-18}{2 } \\ x = -9[/tex]
hope this helps..
Good luck on your assignment
Answer:
x = -9
Step-by-step explanation:
5x + 8 - 3x = -10
Rearrange.
5x - 3x + 8 = -10
Subtract like terms.
2x + 8 = -10
Subtract 8 on both sides.
2x = -10 - 8
2x = -18
Divide 2 into both sides.
x = -18/2
x = -9
What is the sum of 2x^2-x and -x-2x^2-2
[tex]solution \\ {2x}^{2} - x + ( - x - {2x}^{2} - 2) \\ = {2x}^{2} - x - x - {2x}^{2} - 2 \\ = {2x}^{2} - {2x}^{2} - x - x - 2 \\ = - 2x - 2[/tex]
Hope it helps
Good luck on your assignment
Answer:
[tex] - 2x - 2[/tex]
Step-by-step explanation:
[tex]2 {x}^{2} - x + ( - x - 2 {x}^{2} - 2) \\ 2 {x}^{2} - x - x - 2 {x}^{2} - 2 \\ 2 {x}^{2} - 2 {x}^{2} - x - x - 2 \\ - 2x - 2[/tex]
hope this helps you.
brainliest appreciated
good luck!
have a nice day!
At the U.S. Open Tennis Championship a statistician keeps track of every serve that a player hits during the tournament. The statistician reported that the mean serve speed was 100 miles per hour (mph) and the standard deviation of the serve speeds was 15 mph. Assume that the statistician also gave us the information that the distribution of serve speeds was mound- shaped and symmetric. What percentage of the player's serves were between 115 mph and 145 mph
Answer:
15.74% of the player's serves were between 115 mph and 145 mph
Step-by-step explanation:
When the distribution is normal, we use the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question, we have that:
[tex]\mu = 100, \sigma = 15[/tex]
What percentage of the player's serves were between 115 mph and 145 mph
This is the pvalue of Z when X = 145 subtracted by the pvalue of Z when X = 115.
X = 145
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{145 - 100}{15}[/tex]
[tex]Z = 3[/tex]
[tex]Z = 3[/tex] has a pvalue of 0.9987
X = 115
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{115 - 100}{15}[/tex]
[tex]Z = 1[/tex]
[tex]Z = 1[/tex] has a pvalue of 0.8413
0.9987 - 0.8413 = 0.1574
15.74% of the player's serves were between 115 mph and 145 mph
Rectangle is 5ft in length and 3 ft in height. What is the area of the rectangle
Answer: 15
Step-by-step explanation:
to find the area multiply the length by height
in this case it’s 5ft and 3ft
5 • 3 = 15
A=15
The blood platelet counts of a group of women have a bell-shaped distribution with a mean of 255.4 and a standard deviation of 63.9. (All units are 1000 cells/muL.) Using the empirical rule, find each approximate percentage below. a. What is the approximate percentage of women with platelet counts within 3 standard deviations of the mean, or between 63.7 and 447.1? b. What is the approximate percentage of women with platelet counts between 191.5 and 319.3?
Answer:
a) From the empirical rule we know that within 3 deviations from the mean we have 99.7% of the data
b) [tex] P(191.5<X<319.5)[/tex]
We can find the number of deviations from the mean for the limits using the z score formula given by:
[tex]z=\frac{x-\mu}{\sigma}[/tex]
And replacing we got:
[tex] z=\frac{191.5-255.4}{63.9}= -1[/tex]
[tex] z=\frac{319.3-255.4}{63.9}= 1[/tex]
So we have values within 1 deviation from the mean and using the empirical rule we know that we have 68% of the values for this case
Step-by-step explanation:
For this case we have the following properties for the random variable of interest "blood platelet counts"
[tex]\mu = 255.4[/tex] represent the mean
[tex]\sigma = 63.9[/tex] represent the population deviation
Part a
From the empirical rule we know that within 3 deviations from the mean we have 99.7% of the data
Part b
We want this probability:
[tex] P(191.5<X<319.5)[/tex]
We can find the number of deviations from the mean for the limits using the z score formula given by:
[tex]z=\frac{x-\mu}{\sigma}[/tex]
And replacing we got:
[tex] z=\frac{191.5-255.4}{63.9}= -1[/tex]
[tex] z=\frac{319.3-255.4}{63.9}= 1[/tex]
So we have values within 1 deviation from the mean and using the empirical rule we know that we have 68% of the values for this case
Heights of Women. Heights of adult women are distributed normally with a mean of 162 centimeters and a standard deviation of 8 centimeters. Use the Table B.3 Areas under the Normal Curve (page 519 of the textbook) to find the indicated quantities: a) The percentage of heights less than 150 centimeters b) The percentage of heights between 160 centimeters and 180 centimeters
Answer:
a) 6.68% of heights less than 150 centimeters
b) 58.65% of heights between 160 centimeters and 180 centimeters
Step-by-step explanation:
When the distribution is normal, we use the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question, we have that:
[tex]\mu = 162, \sigma = 8[/tex]
a) The percentage of heights less than 150 centimeters
We have to find the pvalue of Z when X = 150. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{150 - 162}{8}[/tex]
[tex]Z = -1.5[/tex]
[tex]Z = -1.5[/tex] has a pvalue of 0.0668
6.68% of heights less than 150 centimeters
b) The percentage of heights between 160 centimeters and 180 centimeters
We have to find the pvalue of Z when X = 180 subtracted by the pvalue of Z when X = 160.
X = 180
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{180 - 162}{8}[/tex]
[tex]Z = 2.25[/tex]
[tex]Z = 2.25[/tex] has a pvalue of 0.9878
X = 160
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{160 - 162}{8}[/tex]
[tex]Z = -0.25[/tex]
[tex]Z = -0.25[/tex] has a pvalue of 0.4013
0.9878 - 0.4013 = 0.5865
58.65% of heights between 160 centimeters and 180 centimeters
What is the slope of the line represented by the equation y = 4/5x - 3?
in
Answer:
[tex]\boxed{\sf \ \ \ \dfrac{4}{5} \ \ \ }[/tex]
Step-by-step explanation:
when the equation is like y = ax + b
the slope is a
in this case we have
[tex]y \ = \ \dfrac{4}{5}x\ \ - \ 3[/tex]
so the slope is
[tex]\dfrac{4}{5}[/tex]
What is the area of the trapezoid below? Select one: a. 88 cm2 b. 44√3 cm2 c. 65 cm2 d. 36√3 cm2
Answer: D
Step-by-step explanation:
Since we are not given the height of the trapezoid, we can split this into a triangle and a rectangle. We find the area of each and then add them together. In order to do so, we must use Pythagorean Theorem to find the missing length so that we can find the area.
a²+b²=c²
a²+4²=8²
a²+16=64
a²=48
a=√48
a=4√3
Now that we know the missing length of the triangle, we can find the area of the triangle and the rectangle.
Triangle
A=1/2bh
A=1/2(4)(4√3)
A=8√3
-----------------------------------------------------------------------------------------
Rectangle
A=lw
A=7(4√3)
A=28√3
With our areas, we can add them together.
4√3+28√3=36√3 cm²
An elementary school is offering 3 language classes: one in Spanish, one in French, and one in German. The classes are open to any of the 100 students in the school. There are 28 students in the Spanish class, 26 in the French class, and 16 in the German class. There are 12 students who are in both Spanish and French, 4 who are in both Spanish and German, and 6 who are in both French and German. In addition, there are 2 students taking all 3 classes. If two students are randomly chosen, what is the probability that at exactly one of them does exactly two language classes.
Answer:
The probability that at exactly one of them does exactly two language classes is 0.32.
Step-by-step explanation:
We can model this variable as a binomial random variable with sample size n=2.
The probability of success, meaning the probability that a student is in exactly two language classes can be calculated as the division between the number of students that are taking exactly two classes and the total number of students.
The number of students that are taking exactly two classes is equal to the sum of the number of students that are taking two classes, minus the number of students that are taking the three classes:
[tex]N_2=F\&S+S\&G+F\&G-F\&S\&G=12+4+6-2=20[/tex]
Then, the probabilty of success p is:
[tex]p=20/100=0.2[/tex]
The probability that k students are in exactly two classes can be calcualted as:
[tex]P(x=k) = \dbinom{n}{k} p^{k}(1-p)^{n-k}\\\\\\P(x=k) = \dbinom{2}{k} 0.2^{k} 0.8^{2-k}\\\\\\[/tex]
Then, the probability that at exactly one of them does exactly two language classes is:
[tex]P(x=1) = \dbinom{2}{1} p^{1}(1-p)^{1}=2*0.2*0.8=0.32\\\\\\[/tex]
A game popular in Nevada gambling casinos is Keno, which is played as follows: Twenty numbers are selected at random by the casino from the set of numbers 1 through 80. A player can select from 1 to 15 numbers; a win occurs if some fraction of the player’s chosen subset matches any of the 20 numbers drawn by the house. The payoff is a function of the number of elements in the player’s selection and the number of matches. For instance, if the player selects only 1 number, then he or she wins if this number is among the set of 20, and the payoff is $2.20 won for every dollar bet. (As the player’s probability of winning in this case is , it is clear that the "fair" payoff should be $3 won for every $1 bet). When the player selects 2 numbers, a payoff (of odds) of $12 won for every $1 bet is made when both numbers are among the 20.A) What would be the fair payoff in this case? Let P, k denote the probability that exactly k of the n numbers chosen by the player are among the 20 selected by the house. B) Compute Pn, k.C) The most typical wager at Keno consists of selecting 10 numbers. For such a bet, the casino pays off as shown in the following table. Compute the expected payoff.
The missing part in the question;
and the payoff is $2.20 won for every dollar bet. (As the player’s probability of winning in this case is [tex]\dfrac{1}{4}[/tex]........
Also:
For such a bet, the casino pays off as shown in the following table.
The table can be shown as:
Keno Payoffs in 10 Number bets
Number of matches Dollars won for each $1 bet
0 - 4 -1
5 1
6 17
7 179
8 1299
9 2599
10 24999
Answer:
Step-by-step explanation:
Given that:
Twenty numbers are selected at random by the casino from the set of numbers 1 through 80
A player can select from 1 to 15 numbers; a win occurs if some fraction of the player’s chosen subset matches any of the 20 numbers drawn by the house
Let assume X to represent the numbers of player chooses which are in the Casino-selected-set of 20.
Let assume the random variable X has a hypergeometric distribution with parameters N= 80 and m =20.
Then, the probability mass function of a hypergeometric distribution can be defined as:
[tex]P(X=k)=\dfrac{(^m_k)(^{N-m}_{n-k})}{(^N_n)}, k =1,2,3 ... n[/tex]
Now; the probability that i out of n numbers chosen by the player among 20 can be expressed as:
[tex]P(X=k)=\dfrac{(^{20}_k)(^{60}_{n-k})}{(^{80}_n)}, k =1,2,3 ... n[/tex]
Also; given that ; When the player selects 2 numbers, a payoff (of odds) of $12 won for every $1 bet is made when both numbers are among the 20
So; n= 2; k= 2
Then :
Probability P ( Both number in the set 20) [tex]=\dfrac{(^{20}_2)(^{60}_{2-2})}{(^{80}_2)}[/tex]
Probability P ( Both number in the set 20) [tex]= \dfrac{20*19}{80*79}[/tex]
Probability P ( Both number in the set 20) [tex]=\dfrac{19}{316}[/tex]
Probability P ( Both number in the set 20) [tex]=\dfrac{1}{16.63}[/tex]
Thus; the payoff odd for [tex]=\dfrac{1}{16.63}[/tex] is 16.63:1 ,as such fair payoff in this case is $16.63
Again;
Let assume X to represent the numbers of player chooses which are in the Casino-selected-set of 20.
Let assume the random variable X has a hypergeometric distribution with parameters N= 80 and m =20.
The probability mass function of the hypergeometric distribution can be defined as :
[tex]P(X=k)=\dfrac{(^m_k)(^{N-m}_{n-k})}{(^N_n)}, k =1,2,3 ... n[/tex]
Now; the probability that i out of n numbers chosen by the player among 20 can be expressed as:
[tex]P(n,k)=\dfrac{(^{20}_k)(^{60}_{n-k})}{(^{80}_n)}, k =1,2,3 ... n[/tex]
From the table able ; the expected payoff can be computed as shown in the attached diagram below. Thanks.
Im stuck on this question
Answer:
well the shape is acute so it will be quite low work out the opposite angles and you will find out that the lines are parallels there for meaning the answer is the lowest angle
Step-by-step explanation:
Solve for x: −3x + 3 < 6
Answer:x>-1
Step-by-step explanation:
Step 1: Subtract 3 from both sides.
-3x+3-3<6-3
-3x<3
Step 2: Divide both sides by -3.
-3x/-3<3/3
X>-1
Please help !! Correct and first answer I’ll give you brainesttttt ! What is the equation of the line?
Step-by-step explanation:
can u give image PlZzzzz ....
Answer:
Hey!
Your answer should be Y=2x+4
Step-by-step explanation:
Hope this helps!
B
Round your answer to the nearest hundredth.
A
9
B
5
Answer:
56.25°
Step-by-step explanation:
The definition of the cosine function tells you that
cos(B) = BC/BA
B = arccos(BC/BA) = arccos(5/9)
B ≈ 56.25°
Choose the ratio that you would use to convert 1.5 feet to miles. Remember
that there are 5,280 feet in one mile.
Answer: B, 1 mile / 5280 ft.
Step-by-step explanation: If you need to convert feet to miles the unit multiplier (ratio) that you use should have miles on top and feet on the bottom so that the feet cancel when you multiply, leaving miles as the unit. B is the only answer that has miles on top and feet on the bottom as well as the correct amounts (1 mile and 5280 ft).
If the volume of a cube is
64 cubic feet, what is the
surface area of the cube in
square feet?
Answer:
96 ft^2
Step-by-step explanation:
volume=l^3
l=4
4x4x4=64
Surface area (4x4)=16
16x6=96
Answer:
SA =96 ft^2
Step-by-step explanation:
The volume of a cube is given by
V = s^3
64 = s^3
Take the cube root of each side
64 ^ 1/3 = s^3 ^ 1/3
4 =s
The side length si 4
The surface area of a cube is
SA = 6 s^2
SA = 6 * 4^2
SA = 6 * 16
SA =96 ft^2
How many cubes with side lengths of end fraction 1/2 cm does it take to fill the prism? btw anyone who answers this first will be marked the brainiest answer and get a thanks from me :)
Find the equation of the line given
the gradient
Parrallel to the line y= - 2x+4
point ( 1-3)
Answer:
y = -2x - 1
Step-by-step explanation:
Step 1: Find the parallel line
y = -2x + b
Step 2: Solve for b
-3 = -2(1) + b
-3 = -2 + b
b = -1
Step 3: Write parallel equation
y = -2x - 1
Management at a home improvement store randomly selected 45 customers and observed their shopping habits. They recorded the number of items each of the customers purchased as well as the total time the customers spent in the store. Identify the types of variables recorded by the managers of the home improvement store.
Answer:
c. number of items - discrete; total time - continuous
Step-by-step explanation:
The question is incomplete due to the lack of the following options:
to. number of items - continuous; total time - discrete
b. number of items - continuous; total time - continuous
c. number of items - discrete; total time - continuous
d. number of items - discrete; total time - discrete
Knowing this, the type of variables recorded by managers of the home improvement store are,
c. number of items - discrete; total time - continuous
Discrete variables are those that are well defined and in the finite set of values and continuous variables are variables that can take a value between any of the other two values.