Answer:
(a) [tex]4\frac{1}{5}[/tex]
(b) [tex]7\frac{7}{24}[/tex]
Step-by-step explanation:
One way of operating with mixed numbers is to first convert them into improper fractions, and operate with them following the simple rules of fraction multiplication, and at the end convert the answer into mixed number.
(a) For this operation let's first convert [tex]5\,\frac{2}{5}[/tex] into an improper fraction:
[tex]5\frac{2}{5} =5+\frac{2}{5} =\frac{25}{5} +\frac{2}{5} =\frac{27}{5}[/tex]
Now perform the requested operation:
[tex]\frac{7}{9} \,*\,\frac{27}{5} =\frac{189}{45} =\frac{21}{5} =4\frac{1}{5}[/tex]
(b) Start by converting both mixed numbers into improper fractions and then operate as indicated:
[tex]1\frac{3}{4} =\frac{4+3}{4} =\frac{7}{4} \\4\frac{1}{6} =\frac{24+1}{6} =\frac{25}{6}[/tex]
[tex]\frac{7}{4} *\frac{25}{6} =\frac{175}{24} =7\frac{7}{24}[/tex]
identify an equation in slope intercept form for the line parellel to y=-3x+7 that passes through (2,-4)
Answer:
y= -3x+2
Step-by-step explanation:
Parallel lines have the same slope. We can form an incomplete equation:
y= -3x+b
(make sure to see why the slope is -3)
We can plug in the coordinates of (2, -4):
-4= -3(2)+b
-4= -6+b
2=b
b is 2! We can form an equation: y= -3x+2
3. Write an exponential equation for each coin that will give the coin's value, V, at any time, t. Use
the formula:
Vt) = P(1 + r) where V(t) is the value of the coin in t years, Please HELP! help on number three
Answer:
Coin A : [tex]V(t)=25(1.07)^t[/tex]
Coin B : [tex]V(t)=40(1.05)^t[/tex]
Step-by-step explanation:
Consider the given formula is
[tex]V(t)=P(1+r)^t[/tex]
where, P is current value, V(t) is the value of the coin in t years, and r is annual appreciation rate.
For coin A, current value is 25 dollars and annual appreciation rate is 7%.
[tex]V(t)=25(1+0.07)^t[/tex]
[tex]V(t)=25(1.07)^t[/tex]
For coin B, current value is 40 dollars and annual appreciation rate is 5%.
[tex]V(t)=40(1+0.05)^t[/tex]
[tex]V(t)=40(1.05)^t[/tex]
Therefore, the required equations for coin A and B are [tex]V(t)=25(1.07)^t[/tex] and [tex]V(t)=40(1.05)^t[/tex] respectively.
(42) A school only provides bus service
to students who live a distance greater
than 2 miles away from the school. On a
coordinate plane, the school is located at
the origin, and Michael lives at the closest
point to the school on Maple Street,
which can be represented by the line
y = 2x – 4. If each unit on the coordinate
plane represents 1 mile, does Michael
live far enough from the school for bus
service?
Answer:
~1.8 mile
Step-by-step explanation:
Michael lives at the closest point to the school (the origin) on Maple Street, which can be represented by the line y = 2x – 4.
This means Michael's house will be the intersection point of line y1 (y = 2x - 4) and line y2 that is perpendicular to y1 and passes the origin.
Denote equation of y2 is y = ax + b,
with a is equal to negative reciprocal of 2 => a = -1/2
y2 pass the origin (0, 0) => b = 0
=> Equation of y2:
y = (-1/2)x
To find location of Michael's house, we get y1 = y2 or:
2x - 4 = (-1/2)x
<=> 4x - 8 = -x
<=> 5x = 8
<=> x = 8/5
=> y = (-1/2)x = (-1/2)(8/5) = -4/5
=> Location of Michael' house: (x, y) = (8/5, -4/5)
Distance from Michael's house to school is:
D = sqrt(x^2 + y^2) = sqrt[(8/5)^2 + (-4/5)^2) = ~1.8 (mile)
1,305 divided by 31,828 x100
Answer:
[tex]4 \frac{1}{10}[/tex]
Step-by-step explanation:
=> [tex]\frac{1305}{31828} * 100[/tex]
=> 0.041 * 100
=> 4.1
=> [tex]4 \frac{1}{10}[/tex]
describe the solution to the system of equations graphed below.
Answer:
Step-by-step explanation:
The answer is B, the solution to your equation is at (2,1). Your solution is where the two lines meet.
Answer:
The second option.
Step-by-step explanation:
When two lines intersect, they usually intersect at just one point (unless they are parallel, where they never intersect; or no solutions when they infinitely intersect).
According to the graph provided, the lines are intersecting at one point: (2, 1).
So, your answer will be the second option!
Hope this helps!
Expand (x+3)(2x-4)(x-6)
Answer:
The answer is
2x³ - 10x² - 24x + 72Step-by-step explanation:
(x+3)(2x-4)(x-6)
Expand
We have
(x + 3) ( 2x² - 12x - 4x + 24)
(x + 3)( 2x² - 16x + 24)
2x³ - 16x² + 24x + 6x² - 48x + 72
Simplify
Group like terms
2x³ - 16x² + 6x² + 24x - 48x + 72
We have the final answer as
2x³ - 10x² - 24x + 72Hope this helps you
Find the equation of the given parabola in vertex and standard form. Describe in words all transformations that have been applied to the graph of y=x^2 to obtain the given graph of the transformed function
Answer: [tex]a)\ \text{Vertex}:y=-\dfrac{3}{2}(x+1)^2+6[/tex]
[tex]b)\ \text{Standard}:y=-\dfrac{3}{2}x^2-3x=\dfrac{9}{2}[/tex]
c) Transformations: reflection over the x-axis,
vertical stretch by a factor of 3/2,
horizontal shift 1 unit to the left,
vertical shift 6 units up
Step-by-step explanation:
Intercept form: y = a(x - p)(x - q)
Vertex form: y = a(x - h)² + k
Standard form: y = ax² + bx + c
We can see that the new vertex is (-1, 6). Use the Intercept form to find the vertical stretch: y = a(x - p)(x - q) where p, q are the intercepts.
p = -3, q = 1, (x, y) = (-1, 6)
a(-1 + 3)(-1 -1) = 6
a (2)(-2) = 6
a = -6/4
a = -3/2
a) Input a = -3/2 and vertex (h, k) = (-1, 6) into the Vertex form to get:
[tex]y=-\dfrac{3}{2}(x+1)^2+6[/tex]
b) Input a = -3/2 into the Intercept form and expand to get the Standard form:
[tex]y=-\dfrac{3}{2}(x+3)(x-1)\\\\\\y=-\dfrac{3}{2}(x^2+2x-3)\\\\\\y=-\dfrac{3}{2}x^2-3x+\dfrac{9}{2}[/tex]
c) Use the Vertex form to identify the transformations:
[tex]y=-\dfrac{3}{2}(x+1)^2+6[/tex]
a is negative: reflection over the x-axis|a| = 3/2: vertical stretch by a factor of 3/2h = -1: horizontal shift left 1 unitk = +6: vertical shift up 6 unitsSimplify the following expression. 3 – 2(–6x + 3)
Answer:
-3 + 12x
Step-by-step explanation:
3 - 2(-6x + 3)
3 + 12x - 6
-3 + 12 x
Hope this helped! :)
convert 4 1/3 feet to inches
Answer:
52 inches
Step-by-step explanation:
Answer:
we have, 1 feet =12 inches
13/3 foot =12×13/3 inches
=52 inches.
thereforethe , the answer is 52 inches.
Jim & Gavin share a lottery win of £4750 in the ratio 1 : 4. Jim then shares his part between himself, his wife & their son in the ratio 2 : 6 : 2. How much more does his wife get over their son?
Answer:
£380
Step-by-step explanation:
Consider the initial win of £4750
Sum the parts of the ratio, 1 + 4 = 5 parts
Divide the win by 5 to find the value of one part of the ratio.
£4750 ÷ 5 = £950 ← value of 1 part of the ratio
Thus Jim's share is £950
Sum the parts of the ratio shared in his family, 2 + 6 + 2 = 10 parts
Divide his share by 10 to find the value of one part
£950 ÷ 10 = £95 , thus
2 parts = 2 × £95 = £190 ← sons share
6 parts = 6 × £95 = £570 ← wife's share
£570 - £190 = £380
Wife gets £380 more than the son
Bacteria in a petri dish doubles every 10 minutes.
a) If there are 10 bacteria initially, how many are there after 120 minutes?
b) If there are 10 bacteria initially, when would there be a million bacteria?
(Show step by step)
Answer:
Step-by-step explanation:
Givens
Petri Dish A sees a double ever 10 minutes
Petri Dish B sees a double ever 6 minutes
Consequences
A doubles 60 / 10 = 6 times.
B doubles 60 / 6 = 10 times.SolutionIf you work best with numbers then suppose there are 100 bacteria in both dishes at the beginningA = 100 * 2^6B = 100 * 2^10A will have 100 * 64 = 6400 bacteria growing inside AB will have 100 * 1024 = 102400 bacteria growing inside BB/A = 102400 / 6400 = 16There are 16 times as many in B than in A
A: What are the solutions to the quadratic equation 9x2 + 64 = 0?
B: What is the factored form of the quadratic expression 9x2 +64?
Select one answer for question A, and select one answer for question B.
B: (3x + 81)(x - 1)
B: (x-8)(3x-8)
B:(3x8)(3x + 8)
B: (3x - 81)(3x + 81)
Ax = or x = -1
A:x =
A: x = i orx = -
O A x = 1
Answer:
B: (3x + 81)(x - 1)
Step-by-step explanation:
By first calculating the angle of LMN, calculate the area of triangle MNL. You must show all your working.
Answer:
16.66cm²
Step-by-step Explanation:
Given:
∆LMN with m<N = 38°
Length of side NL = 7.2cm
Length of side ML = 4.8cm
Required:
Area of ∆MNL
Solution:
Step 1: Find Angle LMN using the sine rule sin(A)/a = sin(B)/b
Where sin(A) = Sin(M) = ?
a = NL = 7.2cm
sin(B) = sin(N) = 38°
b = ML = 4.8cm
Thus,
Sin(M)/7.2 = sin(38)/4.8
Cross multiply
4.8*sin(M) = 7.2*sin(38)
4.8*sin(M) = 7.2*0.6157
4.8*sin(M) = 4.43304
Divide both sides by 4.8
sin(M) = 4.43304/4.8
sin(M) = 0.92355
M = sin-¹(0.92355) ≈ 67.45°
Step 2: Find m<L
angle M + angle N + angle L = 180 (sum of angles in a triangle)
67.45 + 38 + angle L = 180
105.45 + angle L = 180
Subtract 105.45 from both sides
Angle L = 180 - 105.45
Angle L = 74.55°
Step 3: Find the area of ∆MNL using the formula ½*a*b*sin(C)
Where,
a = NL = 7.2 cm
b = ML = 4.8 cm
sin(C) = sin(L) = sin(74.55)
Thus,
Area of ∆MNL = ½*7.2*4.8*0.9639
= ½*33.31
= 16.655
Area of ∆MNL ≈ 16.66cm²
Create a birthday Polynomial with 07.01.2006
Answer:
Step-by-step explanation:
the birthday date is : 07/01/2006 so the numbers are : 07012006 let's switch them : 60021070 we have 8 numbers so our highest degree is 7 6*(x∧7)+0*(x∧6)+0*(x∧5)+2*(x∧4)+1*(x³)+0*(x²)+7*x+0*(x∧0) 6*(x∧7)+2*(x∧4)+x³+7xHere is another example :
The mean per capita income is 19,292 dollars per annum with a variance of 540,225. What is the probability that the sample mean would be less than 19269 dollars if a sample of 499 persons is randomly selected? Round your answer to four decimal places.
Answer:
The probability is 0.2423.
Step-by-step explanation:
Given mean per capita = 19292 dollars
Given the variance = 540225
Now find the probability that the sample mean will be less than 19269 dollar when the sample is 499.
Below is the calculation:
[tex]\bar{X} \sim N(\mu =19292, \ \sigma = \frac{\sqrt{540225}}{\sqrt{499}}) \\\bar{X} \sim N(\mu =19292, \ \sigma = 32.90) \\\text{therefore the probability is:} \\P (\bar{X}< 19269) \\\text{Convert it to standard normal variable.} \\P(Z< \frac{19269-19292}{32.90}) \\P(Z< - 0.6990) \\\text{Now getting the probability from standard normal table}\\P(Z< -0.6990) = 0.2423[/tex]
Find the coefficient of x^2 in the expression of (x - 7)^5. a. -3430 b. -3034 c. 3034 d. 3430
Answer:
let me know when you have the anwser
Step-by-step explanation:
show that the straight line x+y does not intersect the curve x^2-8x+y^2-12y+6=0 if k^2-20k+8>0
i need the answer right now
1/5 of a chocolate chip cookie has 30 cal how many calories are in a whole cookie
Answer:
150 cal
Step-by-step explanation:
5x30=150
Answer:
150 calories.
Step-by-step explanation:
Assuming there is the same amount of chocolate as well as cookie dough throughout the whole cookie.
You know that 1/5 of a chocolate chip cookie has 30 calories.
Find one cookie, by multiply 5 to both numbers. Set the equation:
1/5x = 30
Isolate the variable. Multiply 5 to both sides:
(1/5x) * 5 = (30) * 5
x = 30 * 5
x = 150
150 calories is your answer.
Written Response! Please help!
Evelyn believes that if she flips a coin 480 times, it will land tails up exactly 240 times. What would you tell Evelyn about her prediction?
Based on Evelyn's response, it can be said that she predicts that there is a 50% chance of the coin landing on tails and a 50% chance of the coin landing on heads.
What is the probability?Probability determines the chances that an event would happen. The probability the event occurs is 1 and the probability that the event does not occur is 0.
The probability that the coin lands on tails is half of the number of times the coin is tossed. This means she belives that there is an equal chance that the coin would land on either heads or tails.
To learn more about probability, please check: https://brainly.com/question/13234031
What is the equation for a straight line that would allow you to predict the value of Y from a given value of X. That is, calculate the value of "a" and the value of "b" and then substitute the 2 values into the generic equation (Y = a + bX) for a straight line. (Hint: calculate "b" first)
Answer:
[tex]m=-\frac{13}{20.8}=-0.625[/tex]
Nowe we can find the means for x and y like this:
[tex]\bar x= \frac{\sum x_i}{n}=\frac{16}{5}=3.2[/tex]
[tex]\bar y= \frac{\sum y_i}{n}=\frac{35}{5}=7[/tex]
And we can find the intercept using this:
[tex]b=\bar y -m \bar x=7-(-0.625*3.2)=9[/tex]
So the line would be given by:
[tex]y=-0.625 x +9[/tex]
Step-by-step explanation:
We have the following data:
X: 3,3,2,1,7
Y:6,7,8,9,5
We want to find an equationinf the following form:
[tex] y= bX +a[/tex]
[tex]a=m=\frac{S_{xy}}{S_{xx}}[/tex]
Where:
[tex]S_{xy}=\sum_{i=1}^n x_i y_i -\frac{(\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}{n}[/tex]
[tex]S_{xx}=\sum_{i=1}^n x^2_i -\frac{(\sum_{i=1}^n x_i)^2}{n}[/tex]
So we can find the sums like this:
[tex]\sum_{i=1}^n x_i = 3+3+2+1+7=16[/tex]
[tex]\sum_{i=1}^n y_i =6+7+8+9+5=35[/tex]
[tex]\sum_{i=1}^n x^2_i =72[/tex]
[tex]\sum_{i=1}^n y^2_i =255[/tex]
[tex]\sum_{i=1}^n x_i y_i =99[/tex]
With these we can find the sums:
[tex]S_{xx}=\sum_{i=1}^n x^2_i -\frac{(\sum_{i=1}^n x_i)^2}{n}=72-\frac{16^2}{5}=20.8[/tex]
[tex]S_{xy}=\sum_{i=1}^n x_i y_i -\frac{(\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}=99-\frac{16*35}{5}=-13[/tex]
And the slope would be:
[tex]m=-\frac{13}{20.8}=-0.625[/tex]
Nowe we can find the means for x and y like this:
[tex]\bar x= \frac{\sum x_i}{n}=\frac{16}{5}=3.2[/tex]
[tex]\bar y= \frac{\sum y_i}{n}=\frac{35}{5}=7[/tex]
And we can find the intercept using this:
[tex]b=\bar y -m \bar x=7-(-0.625*3.2)=9[/tex]
So the line would be given by:
[tex]y=-0.625 x +9[/tex]
HELP PLEASEEE ASAAAAPPPPPPPPPPPP I WILL GIVE BRAINLY TO THE FIRST ONE!!!!!!!!
Answer:
the total amount is £ 756.
hope it helps..
Solve the equation x^2 – 16x + 25 = 0 to the nearest tenth.
Answer:
1.8 and 14.3
Step-by-step explanation:
Our equation is a quadratic equation so we will use the dicriminant method
Let Δ be our dicriminant a=1b= -16c= 25Δ= (-16)²-4*25*1=156≥0 so we have two solutions : x and y x= (16-[tex]\sqrt{156}[/tex])/2= 1.7555≈ 1.8y=(16+[tex]\sqrt{156}[/tex])/2=14.244≈ 14.3a right square pyramid has a slant height of 20 feet, and the length of a side of the base is 32 feet. what is the height, h, of the pyramid?
Answer:
The pyramid's height h = 12 ft
Step-by-step explanation:
Notice that the slant height of the pyramid forms a right angle triangle with the segment that joins the bottom end of the slant height with the center of the pyramid's base, and with the pyramid height (h).
The segment joining the slant height with the center of the pyramid's base is one half of the side of the base in length, so that it; 16 feet.
then we have a right angle triangle with hypotenuse given by the pyramid's slant height (20 ft), a leg given by 16 ft, and we need to find the length of the second leg (pyramid's height (h).so we use the Pythagorean theorem:
[tex]hyp^2=leg_1^2+leg_2^2\\(20\,ft)^2= (16\,ft)^2+h^2\\h^2=400\,ft^2-256\,ft^2\\h^2=144\,ft^2\\h=12 \,ft[/tex]
Answer:
C.12ft
Step-by-step explanation:
for people on edmentum
52:PLEASE HELP Find the slope of the line that passes through the points (8,2) and (9,7)
Answer:
5/1
Step-by-step explanation:it goes up 5 and over 1
Answer:
5Solution,
Let the points be A and B
A ( 8 , 2 ) -----> (X1 , y1 )
B ( 9 , 7 ) -------> (x2 , y2)
Now,
Slope =[tex] \frac{y2 - y1}{x2 - x1} [/tex]
[tex] = \frac{7 - 2}{9 - 8} [/tex]
[tex] = \frac{ 5}{1} [/tex]
[tex] = 5[/tex]
Hope this helps..
Good luck on your assignment...
Bettina is measuring the food for her farm animals. She has 265 grams of corn, 500 grams of hay, and 495 grams of oats. What is the total weight in kilograms?
Answer
260 kilograms
Step-by-step explanation:
the correct answer is 260 kg
Answer: 12.6 kg
Step-by-step explanation: add the amounts of food for her farm, and just search for how many kg are in 1,260 grams
What single transformation maps ∆ABC onto ∆A'B'C'? A. rotation 90° clockwise about the origin B. rotation 90° counterclockwise about the origin C. reflection across the x-axis D. reflection across the line y = x
Answer:
B. rotation 90° counterclockwise about the origin.
Step-by-step explanation:
Transformation is the process by which the size or orientation of a given figure is altered without any effect on its shape. Examples are; rotation, reflection, translation and dilation.
Rotation is the process of turning a figure about a reference point called the origin. While reflection is turning a figure about a line to produce its image.
In the given question, ∆ABC is mapped onto ∆A'B'C' by rotating it at 90° counterclockwise about the origin.
The correct option is (B). rotation 90°counterclockwise about the origin.
Given, ∆ABC and ∆A'B'C' are shown in attached figure.
We have to map ∆ABC onto ∆A'B'C',.
A transformation is a general term for four specific ways to manipulate the shape and or position of a point, a line, or geometric figure.
Transformation is also the process by which the size or orientation of a given figure is altered without any effect on its shape.
A rotation is a transformation in which the object is rotated about a fixed point.The direction of rotation can be clockwise or anticlockwise.
It is clear from the fig that the ∆ABC can be mapped over ∆A'B'C' by the rotation of 90°counterclockwise about the origin.
Hence the correct option is (B). rotation 90°counterclockwise about the origin.
For more details follow the link:
https://brainly.com/question/1571997
n is an interger -15<3n《6
write the values of n
Answer:
So for the first few small values of n, we have proven by demonstration that f(n) = n / (n+1).
Our task is to prove that if it works for any positive integer value of n, then it works for n + 1. This way, it must by induction work for all subsequent values of n.
Formally said, we need to prove that if for some positive integer n we can show that f(n) = n / (n+1), then we can conclude that f(n+1) = (n + 1) / (n + 2).
We begin the real "proof" by expanding f(n + 1):
f(n + 1) = f(n) + 1 / ((n+1)((n+1)+1)) because that's based on the construction.
= n / (n+1) + 1 / ((n+1)(n+2)) because f(n) = n / (n+1); this is called "using what you know from earlier".
= n(n+2) / ((n+1)(n+2)) + 1 / ((n+1)(n+2)) because we can multiply the left fraction by (n+2)/(n+2).
= (n2 + 2n + 1) / ((n+1)(n+2)) because we have a common denominator and can combine the numerators.
= (n+1)2 / ( (n+1)(n+2)) because we can factor the numerator now; it is a perfect square.
= (n+1) / (n+2) because we can cancel the common (n+1) factor from the numerator and denominator.
Q.E.D. (which means "that which was to be proven", in other words: "voilà")
Step-by-step explanation:
Which relation is not a function?
a) y = 1x + 7
by=- 4(x + 3)2 + 10
c) -2y = - 3x + 9
d) x2 + y2 = 25
Answer:
x^2+y^2=25
Step-by-step explanation:
x^2+y^2=25 graphs a circle. A relation is a function if every x only has one y value. This is not true in a circle.
Answer:
d) x^2 + y^2 = 25.
Step-by-step explanation:
D is the equation of a circle so it fails the vertical line test for a function. If a relation is a function then any vertical line passing through it's graph will only intersect it once. This is not true of a circle.
A package of 8-count AA batteries cost $6.16. A package of 20-count AA batteries cost $15.60. Which statement about the unit prices is true?
Answer:
The unit prices will be within the range of $0.77 ≤x≤$0.78
Step-by-step explanation:
If a package 8-count AA batteries cost $6.16 and a package of same 20-count AA batteries cost $15.60, to calculate the unit price, the following steps must be carried out:
8 counts AA batteries = $6.16
A unit price (i.e 1 count) = x
Cross multiplying
8 × x = 6.16 × 1
x = 6.16/8
x = $0.77 for a unit price
Similarly, if 20-count AA batteries cost $15.60, then:
20 counta = $15.60
1 count = x
Cross multiplying
20 × x = $15.60 × 1
x = $15.60/20
x = $0.78 for a unit price
From above calculation, of can be seen that the unit price is almost similar but with a difference of $0.01 ($0.78-$0.77) which is insignificant. Based on this, we can conclude that a unit price of the battery is between the range
$0.77 ≤x≤$0.78
Answer:
The 8-count pack of AA batteries has a lower unit price of 0.77
per battery.
Step-by-step explanation: