Answer:
The speed is [tex]v =10.27 *10^{7} \ m/s[/tex]
Explanation:
From the question we are told that
The voltage is [tex]V = 30 kV = 30*10^{3} V[/tex]
The initial velocity of the electron is [tex]u = 0 \ m/s[/tex]
Generally according to the law of energy conservation
Electric potential Energy = Kinetic energy of the electron
So
[tex]PE = KE[/tex]
Where
[tex]KE = \frac{1}{2} * m* v^2[/tex]
Here m is the mass of the electron with a value of [tex]m = 9.11 *10^{-31} \ kg[/tex]
and
[tex]PE = e * V[/tex]
Here e is the charge on the electron with a value [tex]e = 1.60 *10^{-19} \ C[/tex]
=> [tex]e * V = \frac{1}{2} * m * v^2[/tex]
=> [tex]v = \sqrt{ \frac{2 * e * V}{m} }[/tex]
substituting values
[tex]v = \sqrt{ \frac{2 * (1.60*10^{-19}) * 30*10^{3}}{9.11 *10^{-31}} }[/tex]
[tex]v =10.27 *10^{7} \ m/s[/tex]
An ice skater spinning with outstretched arms has an angular speed of 5.0 rad/s . She tucks in her arms, decreasing her moment of inertia by 11 % . By what factor does the skater's kinetic energy change? (Neglect any frictional effects.)
Answer:
K_{f} / K₀ =1.12
Explanation:
This problem must work using the conservation of angular momentum (L), so that the moment is conserved in the system all the forces must be internal and therefore the torque is internal and the moment is conserved.
Initial moment. With arms outstretched
L₀ = I₀ w₀
the wo value is 5.0 rad / s
final moment. After he shrugs his arms
[tex]L_{f}[/tex] = I_{f} w_{f}
indicate that the moment of inertia decreases by 11%
I_{f} = I₀ - 0.11 I₀ = 0.89 I₀
L_{f} = L₀
I_{f} w_{f} = I₀ w₀
w_{f} = I₀ /I_{f} w₀
let's calculate
w_{f} = I₀ / 0.89 I₀ 5.0
w_{f} = 5.62 rad / s
Having these values we can calculate the change in kinetic energy
[tex]K_{f}[/tex] / K₀ = ½ I_{f} w_{f}² (½ I₀ w₀²)
K_{f} / K₀ = 0.89 I₀ / I₀ (5.62 / 5)²
K_{f} / K₀ =1.12
A medieval city has the shape of a square and is protected by walls with length 500 m and height 15 m. You are the commander of an attacking army and the closest you can get to the wall is 100 m. Your plan is to set fire to the city by catapulting heated rocks over the wall (with an initial speed of 80 m/s). At what range of angles should you tell your men to set the catapult? (Assume the path of the rocks is perpendicular to the wall. Round your answers to one decimal place. Use g ≈ 9.8 m/s2. Enter your answer using interval notation. Enter your answer in terms of degrees without using a degree symbol.)
Answer:
θ₁ = 85.5º θ₂ = 12.98º
Explanation:
Let's analyze this projectile launch problem, the catapults are 100 m from the wall 15 m high, the objective is for the walls, let's look for the angles for which the rock stops touching the wall.
Let's write the equations for motion for this point
X axis
x = v₀ₓ t
x = v₀ cos θ t
Y axis
y = [tex]v_{oy}[/tex] t - ½ g t2
y = v_{o} sin θ t - ½ g t²
let's substitute the values
100 = 80 cos θ t
15 = 80 sin θ t - ½ 9.8 t²
we have two equations with two unknowns, so the system can be solved
let's clear the time in the first equation
t = 100/80 cos θ
15 = 80 sin θ (10/8 cos θ) - 4.9 (10/8 cos θ)²
15 = 100 tan θ - 7.656 sec² θ
we can use the trigonometric relationship
sec² θ = 1- tan² θ
we substitute
15 = 100 tan θ - 7,656 (1- tan² θ)
15 = 100 tan θ - 7,656 + 7,656 tan² θ
7,656 tan² θ + 100 tan θ -22,656=0
let's change variables
tan θ = u
u² + 13.06 u + 2,959 = 0
let's solve the quadratic equation
u = [-13.06 ±√(13.06² - 4 2,959)] / 2
u = [13.06 ± 12.599] / 2
u₁ = 12.8295
u₂ = 0.2305
now we can find the angles
u = tan θ
θ = tan⁻¹ u
θ₁ = 85.5º
θ₂ = 12.98º
A tightly wound toroid of inner radius 1.2 cm and outer radius 2.4 cm has 960 turns of wire and carries a current of 2.5 A.
Requried:
a. What is the magnetic field at a distance of 0.9 cm from the center?
b. What is the field 1.2 cm from the center?
Answer:
a
[tex]B = 0.0533 \ T[/tex]
b
[tex]B = 0.04 \ T[/tex]
Explanation:
From the question we are told that
The inner radius is [tex]r = 1.2 \ cm = 0.012 \ m[/tex]
The outer radius is [tex]r_o = 2.4 \ cm = \frac{2.4}{100} = 0.024 \ m[/tex]
The nu umber of turns is [tex]N = 960[/tex]
The current it is carrying is [tex]I = 2. 5 A[/tex]
Generally the magnetic field is mathematically represented as
[tex]B = \frac{\mu_o * N* I }{2 * \pi * r }[/tex]
Where [tex]\mu_o[/tex] is the permeability of free space with a constant value
[tex]\mu = 4\pi * 10^{-7} N/A^2[/tex]
And the given distance where the magnetic field is felt is r = 0.9 cm = 0.009 m
Now substituting values
[tex]B = \frac{ 4\pi * 10^{-7} * 960* 2.5 }{2 * 3.142 * 0.009 }[/tex]
[tex]B = 0.0533 \ T[/tex]
Fro the second question the distance of the position considered from the center is r = 1.2 cm = 0.012 m
So the magnetic field is
[tex]B = \frac{ 4\pi * 10^{-7} * 960* 2.5 }{2 * 3.142 * 0.012 }[/tex]
[tex]B = 0.04 \ T[/tex]
The magnetic field at a distance of 0.9 cm from the center of the toroid is 0.053 T.
The magnetic field at a distance of 1.2 cm from the center of the toroid is 0.04 T.
The given parameters;
radius of the toroid, r = 1.2 cm = 0.012 mouter radius of the toroid, R = 2.4 cm = 0.024 mnumber of turns, N = 960 turnscurrent in wire, I = 2.5 AThe magnetic field at a distance of 0.9 cm from the center of the toroid is calculated as follows;
[tex]B = \frac{\mu_o NI}{2\pi r} \\\\B = \frac{(4\pi \times 10^{-7})\times (960) \times (2.5)}{2\pi \times 0.009} \\\\B = 0.053 \ T[/tex]
The magnetic field at a distance of 1.2 cm from the center of the toroid is calculated as follows;
[tex]B = \frac{\mu_o NI}{2\pi r} \\\\B = \frac{(4\pi \times 10^{-7})\times (960) \times (2.5)}{2\pi \times 0.012} \\\\B = 0.04 \ T[/tex]
Learn more here:https://brainly.com/question/19564329
When a particular wire is vibrating with a frequency of 6.3 Hz, a transverse wave of wavelength 53.3 cm is produced. Determine the speed of wave pulses along the wire.
Answer:
335.79cm/s
Explanation:
When a transverse wave of wavelength λ is produced during the vibration of a wire, the frequency(f), and the speed(v) of the wave pulses are related to the wavelength as follows;
v = fλ ------------------(ii)
From the question;
f = 6.3Hz
λ = 53.3cm
Substitute these values into equation (i) as follows;
v = 6.3 x 53.3
v = 335.79cm/s
Therefore, the speed of the wave pulses along the wire is 335.79cm/s
At what temperature will silver have a resistivity that is two times the resistivity of iron at room temperature? (Assume room temperature is 20° C.)
Answer:
The temperature of silver at this given resistivity is 2971.1 ⁰C
Explanation:
The resistivity of silver is calculated as follows;
[tex]R_t = R_o[1 + \alpha(T-T_o)]\\\\[/tex]
where;
Rt is the resistivity of silver at the given temperature
Ro is the resistivity of silver at room temperature
α is the temperature coefficient of resistance
To is the room temperature
T is the temperature at which the resistivity of silver will be two times the resistivity of iron at room temperature
[tex]R_t = R_o[1 + \alpha(T-T_o)]\\\\\R_t = 1.59*10^{-8}[1 + 0.0038(T-20)][/tex]
Resistivity of iron at room temperature = 9.71 x 10⁻⁸ ohm.m
When silver's resistivity becomes 2 times the resistivity of iron, we will have the following equations;
[tex]R_t,_{silver} = 2R_o,_{iron}\\\\1.59*10^{-8}[1 + 0.0038(T-20)] =(2 *9.71*10^{-8})\\\\\ \ (divide \ through \ by \ 1.59*10^{-8})\\\\1 + 0.0038(T-20) = 12.214\\\\1 + 0.0038T - 0.076 = 12.214\\\\0.0038T +0.924 = 12.214\\\\0.0038T = 12.214 - 0.924\\\\0.0038T = 11.29\\\\T = \frac{11.29}{0.0038} \\\\T = 2971.1 \ ^0C[/tex]
Therefore, the temperature of silver at this given resistivity is 2971.1 ⁰C
A skater on ice with arms extended and one leg out spins at 3 rev/s. After he draws his arms and the leg in, his moment of inertia is reduced to 1/2. What is his new angular speed
Answer:
The new angular speed is [tex]w = 6 \ rev/s[/tex]
Explanation:
From the question we are told that
The angular velocity of the spin is [tex]w_o = 3 \ rev/s[/tex]
The original moment of inertia is [tex]I_o[/tex]
The new moment of inertia is [tex]I =\frac{I_o}{2}[/tex]
Generally angular momentum is mathematically represented as
[tex]L = I * w[/tex]
Now according to the law of conservation of momentum, the initial momentum is equal to the final momentum hence the angular momentum is constant so
[tex]I * w = constant[/tex]
=> [tex]I_o * w _o = I * w[/tex]
where w is the new angular speed
So
[tex]I_o * 3 = \frac{I_o}{2} * w[/tex]
=> [tex]w = \frac{3 * I_o}{\frac{I_o}{2} }[/tex]
=> [tex]w = 6 \ rev/s[/tex]
A solid conducting sphere is placed in an external uniform electric field. With regard to the electric field on the sphere's interior, which statement is correct
Complete question:
A solid conducting sphere is placed in an external uniform electric field. With regard to the electric field on the sphere's interior, which statement is correct?
A. the interior field points in a direction parallel to the exterior field
B. There is no electric field on the interior of the conducting sphere.
C. The interior field points in a direction perpendicular to the exterior field.
D. the interior field points in a direction opposite to the exterior field.
Answer:
B. There is no electric field on the interior of the conducting sphere.
Explanation:
Conductors are said to have free charges that move around easily. When the conductor is now placed in a static electric field, the free charges react to attain electrostatic equilibrium (steady state).
Here, a solid conducting sphere is placed in an external uniform electric field. Until the lines of the electric field are perpendicular to the surface, the free charges will move around the spherical conductor, causing polarization. There would be no electric field in the interior of the spherical conductor because there would be movement of free charges in the spherical conductor in response to any field until its neutralization.
Option B is correct.
There is no electric field on the interior of the conducting sphere.
An asteroid that has an orbit with a semi-major axis of 4 AU will have an orbital period of about ______ years.
Answer:
16 years.
Explanation:
Using Kepler's third Law.
P2=D^3
P=√d^3
Where P is the orbital period and d is the distance from the sun.
From the question the semi major axis of the asteroid is 4 AU= distance. The distance is always express in astronomical units.
P=?
P= √4^3
P= √256
P= 16 years.
Orbital period is 16 years.
A very long, solid cylinder with radius R has positive charge uniformly distributed throughout it, with charge per unit volume \rhorho.
(a) Derive the expression for the electric field inside the volume at a distance r from the axis of the cylinder in terms of the charge density \rhorho.
(b) What is the electric field at a point outside the volume in terms of the charge per unit length \lambdaλ in the cylinder?
(c) Compare the answers to parts (a) and (b) for r = R.
(d) Graph the electric-field magnitude as a function of r from r = 0 to r = 3R.
Answer:
the answers are provided in the attachments below
Explanation:
Gauss law state that the net electric field coming out of a closed surface is directly proportional to the charge enclosed inside the closed surface
Applying Gauss law to the long solid cylinder
A) E ( electric field ) = p*r / 2 * [tex]e_{0}[/tex]
B) E = 2K λ / r
C) Answers from parts a and b are the same
D) attached below
Applying Gauss's law which states that the net electric field in an enclosed surface is directly ∝ to the charge found in the enclosed surface.
A ) The expression for the electric field inside the volume at a distance r
Gauss law : E. A = [tex]\frac{q}{e_{0} }[/tex] ----- ( 1 )
where : A = surface area = 2πrL , q = p(πr²L)
back to equation ( 1 )
E ( electric field ) = p*r / 2 * [tex]e_{0}[/tex]
B) Electric field at point Outside the volume in terms of charge per unit length λ
Given that: linear charge density = area * volume charge density
λ = πR²P
from Gauss's law : E ( 2πrL) = [tex]\frac{q}{e_{0} }[/tex]
∴ E = [tex]\frac{\pi R^{2}P }{2e_{0}r\pi }[/tex] ----- ( 2 )
where : πR²P = λ
Back to equation ( 2 )
E = λ / 2e₀π*r where : k = 1 / 4πe₀
∴ The electric field ( E ) at point outside the volume in terms of charge per unit Length λ
E = 2K λ / r
C) Comparing answers A and B
Answers to part A and B are similar
Hence we can conclude that Applying Gauss law to the long solid cylinder
E ( electric field ) = p*r / 2 * [tex]e_{0}[/tex], E = 2K λ / r also Answers from parts a and b are the same.
Learn more about Gauss's Law : https://brainly.com/question/15175106
The compressor of an air conditioner draws an electric current of 16.2 A when it starts up. If the start-up time is 1.45 s long, then how much electric charge passes through the circuit during this period
Answer:
Q = 23.49 C
Explanation:
We have,
Electric current drawn by the air conditioner is 16.2 A
Time, t = 1.45 s
It is required to find the electric charge passes through the circuit during this period. We know that electric current is defined as the electric charge flowing per unit time. So,
[tex]I=\dfrac{q}{t}\\\\q=It\\\\q=16.2\times 1.45\\\\q=23.49\ C[/tex]
So, the charge of 23.49 C is passing through the circuit during this period.
An electron, moving west, enters a magnetic field of a certain strength. Because of this field the electron curves upward. What is the direction of the magnetic field?
Answer:
Towards the west.
Explanation:
The direction of a magnetic field lines is the direction north end of a compass needle points. The magnetic field exert force on positive charge.
Using the magnetic rule,which indicate that in order to find the direction of magnetic force on a moving charge, the thumb of the right hand point in the direction of force, the index finger in the direction of velocity charge and the middle finger in the direction of magnetic field.
According to the right hand rule, the electron moving moving west which is the thumb, the direction of the electron is west which is the middle finger and it is upward
Consider a skateboarder who starts from rest at the top of ramp that is inclined at an angle of 18.0 ∘ to the horizontal.
Assuming that the skateboarder's acceleration is gsin 18.0 ∘, find his speed when he reaches the bottom of the ramp in 3.50 s .
Answer:
Explanation:
v= u + at
v is final velocity , u is initial velocity . a is acceleration and t is time
Initial velocity u = 0 . Putting the given values in the equation
v = 0 + g sin 18 x 3.5
= 10.6 m /s
For a skateboarder who starts from the rest, the speed when he reaches the bottom of the ramp will be 10.6 m/s.
What are Velocity and Acceleration?The term "velocity" refers to a vector measurement of the rate and direction of motion. Velocity is the rate of movement in a single direction, to put it simply. Velocity can be used to determine how fast a rocket is heading into space and how fast a car is moving north on a congested motorway.
There are several types of velocity :
Instantaneous velocityAverage VelocityUniform VelocityNon-Uniform VelocityThe pace at which a person's velocity changes is known as acceleration. This implies that an object is accelerating if its velocity is rising or falling. An object that is accelerating won't have a steady change in location every second like an item moving at a constant speed does.
According to the question, the given values are :
Time, t = 3.50 sec
Initial Velocity, u = 0 m/s
Use equation of motion :
v = u+at
v = 0+ g sin 18 × 3.5
v = 10.6 m/s.
So, the final velocity will be 10.6 m/s.
To get more information about Velocity and Acceleration :
https://brainly.com/question/14683118
#SPJ2
The Law of Biot-Savart shows that the magnetic field of an infinitesimal current element decreases as 1/r2. Is there anyway you could put together a complete circuit (any closed path of current-carrying wire) whose field exhibits this same 1/r^2 decrease in magnetic field strength? Explain your reasoning.
Answer and Explanation:
There is no probability of obtaining such a circuit of closed track current carrying wire whose field of magnitude displays i.e. [tex]B \alpha \frac{1}{r^2}[/tex]
The magnetic field is a volume of vectors
And [tex]\phi\ bds = 0[/tex]. This ensures isolated magnetic poles or magnetic charges would not exit
Therefore for a closed path, we never received magnetic field that followed the [tex]B \alpha \frac{1}{r^2}[/tex] it is only for the simple current-carrying wire for both finite or infinite length.
Use Coulomb’s law to derive the dimension for the permittivity of free space.
Answer:
Coulomb's law is:
[tex]F = \frac{1}{4*pi*e0} *(q1*q2)/r^2[/tex]
First, force has units of Newtons, the charges have units of Coulombs, and r, the distance, has units of meters, then, working only with the units we have:
N = (1/{e0})*C^2/m^2
then we have:
{e0} = C^2/(m^2*N)
And we know that N = kg*m/s^2
then the dimensions of e0 are:
{e0} = C^2*s^2/(m^3)
(current square per time square over cubed distance)
And knowing that a Faraday is:
F = C^2*S^2/m^2
The units of e0 are:
{e0} = F/m.
Given that the velocity of blood pumping through the aorta is about 30 cm/s, what is the total current of the blood passing through the aorta (in grams of blood per second)?
Answer:
94.248 g/sec
Explanation:
For solving the total current of the blood passing first we have to solve the cross sectional area which is given below:
[tex]A_1 = \pi R^2\\\\A_1 = \pi (1)^2\\\\A_1 = 3.1416 cm^2[/tex]
And, the velocity of blood pumping is 30 cm^2
Now apply the following formula to solve the total current
[tex]Q = \rho A_1V_1\\\\Q = (1)(3.1416)(30)\\\\[/tex]
Q = 94.248 g/sec
Basically we applied the above formula So, that the total current could come
find the value of k for which the given pair of vectors are not equal
2ki +3j and 8i + 4kj
Answer:
5
Explanation:
A cylindrical shell of radius 7.00 cm and length 2.21 m has its charge uniformly distributed on its curved surface. The magnitude of the electric field at a point 15.2 cm radially outward from its axis (measured from the midpoint of the shell) is 36.0 kN/C. (a) Find the net charge on the shell.
Answer:
The net charge on the shell is 30x10^-9C
Explanation:
Pls see attached file
A positive kaon (K+) has a rest mass of 494 MeV/c² , whereas a proton has a rest mass of 938 MeV/c². If a kaon has a total energy that is equal to the proton rest energy, the speed of the kaon is most nearly:___________.
A. 0.25c
B. 0.40c
C. 0.55c
D. 0.70c
E. 0.85c
Answer:
0.85c
Explanation:
Rest mass of Kaon [tex]M_{0K}[/tex] = 494 MeV/c²
Rest mass of proton [tex]M_{0P}[/tex] = 938 MeV/c²
The rest energy is gotten by multiplying the rest mass by the square of the speed of light c²
for the kaon, rest energy [tex]E_{0K}[/tex] = 494c² MeV
for the proton, rest energy [tex]E_{0P}[/tex] = 938c² MeV
Recall that the rest energy, and the total energy are related by..
[tex]E[/tex] = γ[tex]E_{0}[/tex]
which can be written in this case as
[tex]E_{K}[/tex] = γ[tex]E_{0K}[/tex] ...... equ 1
where [tex]E[/tex] = total energy of the kaon, and
[tex]E_{0}[/tex] = rest energy of the kaon
γ = relativistic factor = [tex]\frac{1}{\sqrt{1 - \beta ^{2} } }[/tex]
where [tex]\beta = \frac{v}{c}[/tex]
But, it is stated that the total energy of the kaon is equal to the rest mass of the proton or its equivalent rest energy, therefore...
[tex]E_{K}[/tex] = [tex]E_{0P}[/tex] ......equ 2
where [tex]E_{K}[/tex] is the total energy of the kaon, and
[tex]E_{0P}[/tex] is the rest energy of the proton.
From [tex]E_{K}[/tex] = [tex]E_{0P}[/tex] = 938c²
equ 1 becomes
938c² = γ494c²
γ = 938c²/494c² = 1.89
γ = [tex]\frac{1}{\sqrt{1 - \beta ^{2} } }[/tex] = 1.89
1.89[tex]\sqrt{1 - \beta ^{2} }[/tex] = 1
squaring both sides, we get
3.57( 1 - [tex]\beta^{2}[/tex]) = 1
3.57 - 3.57[tex]\beta^{2}[/tex] = 1
2.57 = 3.57[tex]\beta^{2}[/tex]
[tex]\beta^{2}[/tex] = 2.57/3.57 = 0.72
[tex]\beta = \sqrt{0.72}[/tex] = 0.85
but, [tex]\beta = \frac{v}{c}[/tex]
v/c = 0.85
v = 0.85c
An aging coyote cannot run fast enough to catch a roadrunner. He purchases on eBay a set of jet-powered roller skates, which provide a constant horizontal acceleration of 15.0 m/s2. The coyote starts at rest 70.0 m from the edge of a cliff at the instant the roadrunner zips past in the direction of the cliff.
Required:
a. Determine the minimum constant speed the roadrunner must have to reach the cliff before the coyote. At the edge of the cliff, the roadrunner escapes by making a sudden turn, while the coyote continues straight ahead. The coyote’s skates remain horizontal and continue to operate while he is in flight.
b. The cliff is 100 m above the flat floor of the desert. Determine how far from the base of the cliff the coyote lands.
c. Determine the components of the coyote’s impact velocity
Answer:
a) v_correcaminos = 22.95 m / s , b) x = 512.4 m ,
c) v = (45.83 i ^ -109.56 j ^) m / s
Explanation:
We can solve this exercise using the kinematics equations
a) Let's find the time or the coyote takes to reach the cliff, let's start by finding the speed on the cliff
v² = v₀² + 2 a x
they tell us that the coyote starts from rest v₀ = 0 and its acceleration is a=15 m / s²
v = √ (2 15 70)
v = 45.83 m / s
with this value calculate the time it takes to arrive
v = v₀ + a t
t = v / a
t = 45.83 / 15
t = 3.05 s
having the distance to the cliff and the time, we can find the constant speed of the roadrunner
v_ roadrunner = x / t
v_correcaminos = 70 / 3,05
v_correcaminos = 22.95 m / s
b) if the coyote leaves the cliff with the horizontal velocity v₀ₓ = 45.83 m / s, they ask how far it reaches.
Let's start by looking for the time to reach the cliff floor
y = y₀ + [tex]v_{oy}[/tex] t - ½ g t²
in this case y = 0 and the height of the cliff is y₀ = 100 m
0 = 100 + 45.83 t - ½ 9.8 t²
t² - 9,353 t - 20,408 = 0
we solve the quadratic equation
t = [9,353 ±√ (9,353² + 4 20,408)] / 2
t = [9,353 ± 13] / 2
t₁ = 11.18 s
t₂ = -1.8 s
Since time must be a positive quantity, the answer is t = 11.18 s
we calculate the horizontal distance traveled
x = v₀ₓ t
x = 45.83 11.18
x = 512.4 m
c) speed when it hits the ground
vₓ = v₀ₓ = 45.83 m / s
we look for vertical speed
v_{y} = [tex]v_{oy}[/tex] - gt
v_{y} = 0 - 9.8 11.18
v_{y} = - 109.56 m / s
v = (45.83 i ^ -109.56 j ^) m / s
Monochromatic coherent light shines through a pair of slits. If the wavelength of the light is decreased, which of the following statements are true of the resulting interference pattern? (There could be more than one correct choice.)
a. The distance between the maxima decreases.
b. The distance between the minima decreases.
c. The distance between the maxima stays the same.
d. The distance between the minima increases.
e. The distance between the minima stays the same.
Answer:
he correct answers are a, b
Explanation:
In the two-slit interference phenomenon, the expression for interference is
d sin θ= m λ constructive interference
d sin θ = (m + ½) λ destructive interference
in general this phenomenon occurs for small angles, for which we can write
tanθ = y / L
tan te = sin tea / cos tea = sin tea
sin θ = y / La
un
derestimate the first two equations.
Let's do the calculation for constructive interference
d y / L = m λ
the distance between maximum clos is and
y = (me / d) λ
this is the position of each maximum, the distance between two consecutive maximums
y₂-y₁ = (L 2/d) λ - (L 1 / d) λ₁ y₂ -y₁ = L / d λ
examining this equation if the wavelength decreases the value of y also decreases
the same calculation for destructive interference
d y / L = (m + ½) κ
y = [(m + ½) L / d] λ
again when it decreases the decrease the distance
the correct answers are a, b
can I get help please?
Alternating Current In Europe, the voltage of the alternating current coming through an electrical outlet can be modeled by the function V 230 sin (100t), where tis measured in seconds and Vin volts.What is the frequency of the voltage
Answer:
[tex]\frac{50}{\pi }[/tex]Hz
Explanation:
In alternating current (AC) circuits, voltage (V) oscillates in a sine wave pattern and has a general equation as a function of time (t) as follows;
V(t) = V sin (ωt + Ф) -----------------(i)
Where;
V = amplitude value of the voltage
ω = angular frequency = 2 π f [f = cyclic frequency or simply, frequency]
Ф = phase difference between voltage and current.
Now,
From the question,
V(t) = 230 sin (100t) ---------------(ii)
By comparing equations (i) and (ii) the following holds;
V = 230
ω = 100
Ф = 0
But;
ω = 2 π f = 100
2 π f = 100 [divide both sides by 2]
π f = 50
f = [tex]\frac{50}{\pi }[/tex]Hz
Therefore, the frequency of the voltage is [tex]\frac{50}{\pi }[/tex]Hz
An 88.0 kg spacewalking astronaut pushes off a 645 kg satellite, exerting a 110 N force for the 0.450 s it takes him to straighten his arms. How far apart are the astronaut and the satellite after 1.40 min?
Answer:
The astronaut and the satellite are 53.718 m apart.
Explanation:
Given;
mass of spacewalking astronaut, = 88 kg
mass of satellite, = 645 kg
force exerts by the satellite, F = 110N
time for this action, t = 0.45 s
Determine the acceleration of the satellite after the push
F = ma
a = F / m
a = 110 / 645
a = 0.171 m/s²
Determine the final velocity of the satellite;
v = u + at
where;
u is the initial velocity of the satellite = 0
v = 0 + 0.171 x 0.45
v = 0.077 m/s
Determine the displacement of the satellite after 1.4 m
d₁ = vt
d₁ = 0.077 x (1.4 x 60)
d₁ = 6.468 m
According to Newton's third law of motion, action and reaction are equal and opposite;
Determine the backward acceleration of the astronaut after the push;
F = ma
a = F / m
a = 110 / 88
a = 1.25 m/s²
Determine the final velocity of the astronaut
v = u + at
The initial velocity of the astronaut = 0
v = 1.25 x 0.45
v = 0.5625 m/s
Determine the displacement of the astronaut after 1.4 min
d₂ = vt
d₂ = 0.5625 x (1.4 x 60)
d₂ = 47.25 m
Finally, determine the total separation between the astronaut and the satellite;
total separation = d₁ + d₂
total separation = 6.468 m + 47.25 m
total separation = 53.718 m
Therefore, the astronaut and the satellite are 53.718 m apart.
When looking at the chemical symbol, the charge of the ion is displayed as the
-superscript
-subscript
-coefficient
-product
Answer:
superscript
Explanation:
When looking at the chemical symbol, the charge of the ion is displayed as the Superscript. This is because the charge of ions is usually written up on the chemical symbol while the atom/molecule is usually written down the chemical symbol. The superscript refers to what is written up on the formula while the subscript is written down on the formula.
An example is H2O . The 2 present represents two molecule of oxygen and its written as the subscript while Fe2+ in which the 2+ is written up is known as the superscript.
Answer:
superscript
Explanation:
A wave with a frequency of 1200 Hz propagates along a wire that is under a tension of 800 N. Its wavelength is 39.1 cm. What will be the wavelength if the tension is decreased to 600 N and the frequency is kept constant
Answer:
The wavelength will be 33.9 cm
Explanation:
Given;
frequency of the wave, F = 1200 Hz
Tension on the wire, T = 800 N
wavelength, λ = 39.1 cm
[tex]F = \frac{ \sqrt{\frac{T}{\mu} }}{\lambda}[/tex]
Where;
F is the frequency of the wave
T is tension on the string
μ is mass per unit length of the string
λ is wavelength
[tex]\sqrt{\frac{T}{\mu} } = F \lambda\\\\\frac{T}{\mu} = F^2\lambda^2\\\\\mu = \frac{T}{F^2\lambda^2} \\\\\frac{T_1}{F^2\lambda _1^2} = \frac{T_2}{F^2\lambda _2^2} \\\\\frac{T_1}{\lambda _1^2} = \frac{T_2}{\lambda _2^2}\\\\T_1 \lambda _2^2 = T_2\lambda _1^2\\\\[/tex]
when the tension is decreased to 600 N, that is T₂ = 600 N
[tex]T_1 \lambda _2^2 = T_2\lambda _1^2\\\\\lambda _2^2 = \frac{T_2\lambda _1^2}{T_1} \\\\\lambda _2 = \sqrt{\frac{T_2\lambda _1^2}{T_1}} \\\\\lambda _2 = \sqrt{\frac{600* 0.391^2}{800}}\\\\\lambda _2 = \sqrt{0.11466} \\\\\lambda _2 =0.339 \ m\\\\\lambda _2 =33.9 \ cm[/tex]
Therefore, the wavelength will be 33.9 cm
What is the change in internal energy of an engine if you put 15 gallon of gasoline into its tank? The energy content of gasoline is 1.5 x 106 J/gallon. All other factors, such as the engine’s temperature, are constant. How many hours the engine can work if the power of the engine’s motor is 600 W? (8 marks)
Answer:
ΔU = 2.25 x 10⁸ J
t = 104.17 s
Explanation:
The change in internal energy of the engine can be given by the following formula:
ΔU = (Mass of Gasoline)(Energy Content of Gasoline)
ΔU = (1.5 x 10⁶ J/gallon)(15 gallon)
ΔU = 2.25 x 10⁸ J
Now, for the time of operation, we use the following formula of power.
P = W/t = ΔU/t
t = ΔU/P
where,
t = time of operation = ?
ΔU = Change in internal energy = 2.25 x 10⁸ J
P = Power of motor = 600 W
Therefore,
t = (2.25 x 10⁸ J)/(600 W)
t = (375000 s)(1 h/3600 s)
t = 104.17 s
A "laser cannon" of a spacecraft has a beam of cross-sectional area A. The maximum electric field in the beam is 2E. The beam is aimed at an asteroid that is initially moving in the direction of the spacecraft. What is the acceleration of the asteroid relative to the spacecraft if the laser beam strikes the asteroid perpendicularly to its surface, and the surface is not reflecting
Answer:
Acceleration of the asteroid relative to the spacecraft = 2ε[tex]E^{2}[/tex]A/m
Explanation:
The maximum electric field in the beam = 2E
cross-sectional area of beam = A
The intensity of an electromagnetic wave with electric field is
I = cε[tex]E_{0} ^{2}[/tex]/2
for [tex]E_{0}[/tex] = 2E
I = 2cε[tex]E^{2}[/tex] ....equ 1
where
I is the intensity
c is the speed of light
ε is the permeability of free space
[tex]E_{0}[/tex] is electric field
Radiation pressure of an electromagnetic wave on an absorbing surface is given as
P = I/c
substituting for I from above equ 1. we have
P = 2cε[tex]E^{2}[/tex]/c = 2ε[tex]E^{2}[/tex] ....equ 2
Also, pressure P = F/A
therefore,
F = PA ....equ 3
where
F is the force
P is pressure
A is cross-sectional area
substitute equ 2 into equ 3, we have
F = 2ε[tex]E^{2}[/tex]A
force on a body = mass x acceleration.
that is
F = ma
therefore,
a = F/m
acceleration of the asteroid will then be
a = 2ε[tex]E^{2}[/tex]A/m
where m is the mass of the asteroid.
2. A pair of narrow, parallel slits sep by 0.25 mm is illuminated by 546 nm green light. The interference pattern is observed on a screen situated at 1.3 m away from the slits. Calculate the distance from the central maximum to the
Answer:
for the first interference m = 1 y = 2,839 10-3 m
for the second interference m = 2 y = 5,678 10-3 m
Explanation:
The double slit interference phenomenon, for constructive interference is described by the expression
d sin θ = m λ
where d is the separation between the slits, λ the wavelength and m an integer that corresponds to the interference we see.
In these experiments in general the observation screen is L >> d, let's use trigonometry to find the angles
tan θ = y / L
with the angle it is small,
tan θ = sin θ / cos θ = sin θ
we substitute
sin θ = y / L
d y / L = m λ
the distance between the central maximum and an interference line is
y = m λ L / d
let's reduce the magnitudes to the SI system
λ = 546 nm = 546 10⁻⁹ m
d = 0.25 mm = 0.25 10⁻³ m
let's substitute the values
y = m 546 10⁻⁹ 1.3 / 0.25 10⁻³
y = m 2,839 10⁻³
the explicit value for a line depends on the value of the integer m, for example
for the first interference m = 1
the distance from the central maximum to the first line is y = 2,839 10-3 m
for the second interference m = 2
the distance from the central maximum to the second line is y = 5,678 10-3 m
Two carts are connected by a loaded spring on a horizontal, frictionless surface. The spring is released and the carts push away from each other. Cart 1 has mass M and Cart 2 has mass M/3.
a) Is the momentum of Cart 1 conserved?
Yes
No
It depends on M
b) Is the momentum of Cart 2 conserved?
Yes
No
It depends on M
c) Is the total momentum of Carts 1 and 2 conserved?
Yes
No
It depends on M
d) Which cart ends up moving faster?
Cart 1
Cart 2
They move at the same speed
e) If M = 6 kg and Cart 1 moves with a speed of 16 m/s, what is the speed of Cart 2?
0 m/s
4.0 m/s
5.3 m/s
16 m/s
48 m/s
64 m/s
Answer:
a) yes
b) no
c) yes
d)Cart 2 with mass [tex]\frac{M}{3}[/tex] is expected to be more faster
e) u₂ = 48 m/s
Explanation:
a) the all out linear momentum of an arrangement of particles of Cart 1 not followed up on by external forces is constant.
b) the linear momentum of Cart 2 will be acted upon by external force by Cart 1 with mass M, thereby it's variable and the momentum is not conserved
c) yes, the momentum is conserved because no external force acted upon it and both Carts share the same velocity after the reaction
note: m₁u₁ + m₂u₂ = (m₁ + m₂)v
d) Cart 2 with mass [tex]\frac{M}{3}[/tex] will be faster than Cart 1 because Cart 2 is three times lighter than Cart 1.
e) Given
m₁= M
u₁ = 16m/s
m₂ =[tex]\frac{M}{3}[/tex]
u₂ = ?
from law of conservation of momentum
m₁u₁= m₂u₂
M× 16 = [tex]\frac{M}{3}[/tex] × u₂(multiply both sides by 3)
therefore, u₂ = [tex]\frac{3(M .16)}{M}[/tex] ("." means multiplication)
∴u₂ = 3×16 = 48 m/s
An elastic band is hung on a hook and a mass is hung on the lower end of the band. When the mass is pulled downward and then released, it vibrates vertically. The equation of motion is s = 9 cos(t) + 9 sin(t), t ≥ 0, where s is measured in centimeters and t in seconds. (Take the positive direction to be downward.) (a) Find the velocity and acceleration at time t.
Answer:
v(t) = s′(t) = −9sin(t)+9cos(t)
a(t) = v′(t) = −9cos(t) −9sin(t)
Explanation:
Given that
s = 9 cos(t) + 9 sin(t), t ≥ 0
Then acceleration and velocity is
v(t) = s′(t) = −9sin(t)+9cos(t)
a(t) = v′(t) = −9cos(t) −9sin(t)