he cross-section notes shown below are for a ground excavation for a 10m wide roadway. STA 12+4500 8.435 0 5 8.87 4.67 4 7 56.76 Determine the cross sectional area at STA 12+4500. Round your answer to 3 decimal places. Add your answer

Answers

Answer 1

The cross-sectional area at STA 12+4500 is 56.760 square meters.

1. Look at the given cross-section notes: STA 12+4500 8.435 0 5 8.87 4.67 4 7 56.76. This represents the ground excavation for a 10m wide roadway.

2. The numbers in the notes represent the elevation of the ground at different locations along the roadway.

3. The number 8.435 represents the elevation at STA 12+4500. This is the starting point for determining the cross-sectional area.

4. To find the cross-sectional area, we need to calculate the difference in elevation between the points and multiply it by the width of the roadway.

5. The next number, 0, represents the elevation at the next point along the roadway.

6. Subtracting the elevation at STA 12+4500 (8.435) from the elevation at the next point (0), we get a difference of 8.435 - 0 = 8.435.

7. Multiply the difference in elevation (8.435) by the width of the roadway (10m) to get the cross-sectional area for this segment: 8.435 * 10 = 84.35 square meters.

8. Continue this process for the remaining points in the notes.

9. The last number, 56.76, represents the cross-sectional area at STA 12+4500.

10. Round the final answer to three decimal places: 56.760 square meters.

Therefore, the cross-sectional area at STA 12+4500 is 56.760 square meters.

For more such questions on meters, click on:

https://brainly.com/question/31944734

#SPJ8


Related Questions

The answer above is NOT correct. Let f(x)=11x3−12. Find f−1(x) f−1(x)=

Answers

The inverse function of [tex]\( f(x) = 11x^3 - 12 \)[/tex]  is given by [tex]\( f^{-1}(x) = \sqrt[3]{\frac{x + 12}{11}} \)[/tex]

To find the inverse of the function \( f(x) = 11x^3 - 12 \), we can follow these steps:

Step 1: Replace \( f(x) \) with \( y \):

\( y = 11x^3 - 12 \)

Step 2: Swap \( x \) and \( y \):

\( x = 11y^3 - 12 \)

Step 3: Solve the equation for \( y \):

\( 11y^3 = x + 12 \)

Step 4: Divide both sides by 11:

\( y^3 = \frac{x + 12}{11} \)

Step 5: Take the cube root of both sides:

\( y = \sqrt[3]{\frac{x + 12}{11}} \)

Therefore, the inverse function of \( f(x) = 11x^3 - 12 \) is given by:

\( f^{-1}(x) = \sqrt[3]{\frac{x + 12}{11}} \)

Please note that the cube root symbol (\sqrt[3]{}) represents the principal cube root, which means it gives the real root of the equation.

Learn more about inverse function here

https://brainly.com/question/11735394

#SPJ11

calculate 2v+O
v=(-2,8)

Answers

The result of the expression 2v + O is the vector (-4,16). This means that each component of v is doubled, resulting in the vector (0, 16).

We are given the vector v=(-2,8) and the zero vector O=(0,0). To calculate 2v + O, we need to multiply each component of v by 2 and add it to the corresponding component of O.

First, we multiply each component of v by 2: 2v = 2*(-2,8) = (-4,16).

Next, we add the corresponding components of 2v and O. Since O is the zero vector, adding it to any vector will not change the vector. Therefore, we have 2v + O = (-4,16) + (0,0) = (-4+0, 16+0) = (-4,16).

Thus, the result of the expression 2v + O is the vector (-4,16). This means that each component of v is doubled, resulting in the vector (0, 16).

Learn more about expression here:

https://brainly.com/question/28170201

#SPJ11

Problem 15. (6 points) A biologist has been observing a tree's height. 12 months into the observation, the tree was 12.72 feet tall. 20 months into the observation, the tree was 13.6 foot tall Let z be the number of months passed since the observations started, and let y be the tree's height at that time. Use a linear equation to model the tree's height as the number of months pass a. This line's slope-intercept equation is b. 27 months after the observations started, the tree would be feet in height. 6 months after the observation started, the tree would be 18 feet tall, Note: You can earn partial credit on this problem.

Answers

6 months after the observation started, the tree would be approximately 12.06 feet tall.

To model the tree's height as the number of months pass, we need to find the equation of a straight line that represents the relationship between the number of months (z) and the tree's height (y).

Let's start by finding the slope of the line. The slope (m) of a line can be calculated using the formula:

m = (y2 - y1) / (z2 - z1)

where (z1, y1) and (z2, y2) are two points on the line.

Using the given data:

(z1, y1) = (12, 12.72)

(z2, y2) = (20, 13.6)

We can plug these values into the slope formula:

m = (13.6 - 12.72) / (20 - 12)

 = 0.88 / 8

 = 0.11

So the slope of the line is 0.11.

Now, we can use the point-slope form of a linear equation to find the equation of the line:

y - y1 = m(z - z1)

Using the point (z1, y1) = (12, 12.72):

y - 12.72 = 0.11(z - 12)

Next, let's simplify the equation:

y - 12.72 = 0.11z - 1.32

Now, let's rearrange the equation to the slope-intercept form (y = mx + b):

y = 0.11z + (12.72 - 1.32)

y = 0.11z + 11.40

So, the slope-intercept equation that models the tree's height as the number of months pass is y = 0.11z + 11.40.

Now, let's answer the given questions:

a. 27 months after the observations started, we can plug z = 27 into the equation:

y = 0.11 * 27 + 11.40

y = 2.97 + 11.40

y = 14.37

Therefore, 27 months after the observations started, the tree would be approximately 14.37 feet in height.

b. 6 months after the observation started, we can plug z = 6 into the equation:

y = 0.11 * 6 + 11.40

y = 0.66 + 11.40

y = 12.06

Therefore, 6 months after the observation started, the tree would be approximately 12.06 feet tall.

Learn more about linear equation here:

https://brainly.com/question/32634451

#SPJ11

Shante caught 17 ladybugs every 4 days. Hiw Mandy ladybugs dies Shante need to catch on the fifth day so that she will have caught an average of 20 laydybugs per day over 5 days? Solve this problem in two different ways and explain both solutions.

Answers

Shante will need to catch 32 ladybugs on the fifth day in order to have an average of 20 ladybugs per day over 5 days.

To get the required average of 20 ladybugs, Shante needs to catch 100 ladybugs in 5 days.

Let x be the number of ladybugs she has to catch on the fifth day.

She has caught 17 ladybugs every 4 days:

Thus, she would catch 4 sets of 17 ladybugs = 4 × 17 = 68 ladybugs in the first four days.

Hence, to get an average of 20 ladybugs in 5 days, Shante will have to catch 100 - 68 = 32 ladybugs in the fifth day.

Solution 1: To solve the problem algebraically:

Let x be the number of ladybugs she has to catch on the fifth day.

Therefore the equation becomes:17 × 4 + x = 100 => x = 100 - 68 => x = 32

Solution 2: To solve the problem using arithmetic:

To get an average of 20 ladybugs, Shante needs to catch 20 × 5 = 100 ladybugs in 5 days. She has already caught 17 × 4 = 68 ladybugs over the first 4 days.

Hence, on the fifth day, she needs to catch 100 - 68 = 32 ladybugs.

Therefore, the required number of ladybugs she needs to catch on the fifth day is 32.

Learn more about "average": https://brainly.com/question/20118982

#SPJ11

An executive committee consists of 13 members: 6 men and 7 women. 5 members are selected at random to attend a meeting in Hawail. The names are drawn from a hat. What is the probability that all 5 selected are men? The probability that all selected are men is (Simplify your answer. Type an integer or a simplified fraction)

Answers

There are 6 men and 7 women on the executive committee. 5 of them are randomly chosen to attend a meeting in Hawaii, so we have a sample size of 13, and we are selecting 5 from this sample to attend the meeting.

The sample space is the number of ways we can select 5 people from 13:13C5 = 1287. For the probability that all 5 members selected are men, we need to consider only the ways in which we can select all 5 men:6C5 x 7C0 = 6 x 1

= 6.Therefore, the probability of selecting all 5 men is 6/1287. Answer:6/1287.

To know more about meeting visit:
https://brainly.com/question/6428649

#SPJ11

The product of two consecutive odd integers is 35 . If x is the smallest of the integers, write an equation in terms of x that describes the situation, and then find all such pairs of integers. The equation that describes the situation is The positive set of integers is The negative set of integers is

Answers

The equation that describes the situation is: x(x + 2) = 35.

Let x be the smallest odd integer. Since we are looking for consecutive odd integers, the next odd integer would be x + 2.

The product of these two consecutive odd integers is given as 35. So, we can write the equation x(x + 2) = 35 to represent the situation.

To find the solutions, we solve the quadratic equation x^2 + 2x - 35 = 0. This equation can be factored as (x + 7)(x - 5) = 0.

Setting each factor equal to zero, we get x + 7 = 0 or x - 5 = 0. Solving for x, we find x = -7 or x = 5.

Therefore, the positive set of integers that satisfies the equation is {5, 7}, and the negative set of integers is {-7, -5}. These are the pairs of consecutive odd integers whose product is 35.

to learn more about equation click here:

brainly.com/question/29174899

#SPJ11

Define a set T by {1} ∈ T (note the set braces!) and if {k} ∈ T,
then {1, 2, ..., k + 1} ∈ T. What is |T|?

Answers

The cardinality of set T, denoted as |T|, is infinite or uncountably infinite.

The set T is defined recursively as follows:

The set {1} is an element of T.

If {k} is an element of T, then the set {1, 2, ..., k + 1} is also an element of T.

Starting with {1}, we can generate new sets in T by applying the recursive rule. For example:

{1} ∈ T

{1, 2} ∈ T

{1, 2, 3} ∈ T

{1, 2, 3, 4} ∈ T

...

Each new set in T has one more element than the previous set. As a result, the cardinality of T is infinite or uncountably infinite because there is no upper limit to the number of elements in each set. Therefore, |T| cannot be determined as a finite value or a countable number.

You can learn more about cardinality  at

https://brainly.com/question/30425571

#SPJ11

A Gallup poll of 1500 adults 18 and older living in all 50 states found that 3% of US adults believe that high school students are very prepared for success in college, and 22% believe graduates are prepared. 56% believe high school graduates are somewhat prepared and 17% believe they are not prepared at all. 5. What is the population represented here? 6. What is the sample? 7. Determine whether the poll was fair or biased. Justify your choice. 8. If the margin of error is reported to be 2.6%, calculate a confidence interval for the proportion of Americans who believe high school graduates are prepared for college. 9. Interpret the confidence interval for the above interval in a meaningful sentence. Remember the margin of error provided is 95% certain.

Answers

5. The population represented here is all adults 18 and older living in all 50 states in the United States.

6. The sample is the 1,500 adults 18 and older who participated in the Gallup poll.

8. the confidence interval for the proportion of Americans who believe high school graduates are prepared for college is approximately (0, 0.02634) with a 95% confidence level.

7. To determine whether the poll was fair or biased, we need more information about the methodology used for sampling. The sample should be representative of the population to ensure fairness. If the sampling method was random and ensured a diverse and unbiased representation of the adult population across all 50 states, then the poll can be considered fair. However, without specific information about the sampling methodology, it is difficult to make a definitive judgment.

8. To calculate the confidence interval, we can use the formula:

  Margin of Error = z * √(p * (1 - p) / n)

   Where:

   - z is the z-score corresponding to the desired confidence level (for 95% confidence, it is approximately 1.96).

   - p is the proportion of adults who believe high school graduates are prepared.

   - n is the sample size.

   We can rearrange the formula to solve for the proportion:

   p = (Margin of Error / z)²

   Plugging in the values:

   p = (0.026 / 1.96)² ≈ 0.0003406

   The confidence interval can be calculated as follows:

   Lower bound = p - Margin of Error

   Upper bound = p + Margin of Error

   Lower bound = 0.0003406 - 0.026 ≈ -0.0256594

   Upper bound = 0.0003406 + 0.026 ≈ 0.0263406

However, since the proportion cannot be negative or greater than 1, we need to adjust the interval limits to ensure they are within the valid range:

Adjusted lower bound = max(0, Lower bound) = max(0, -0.0256594) = 0

Adjusted upper bound = min(1, Upper bound) = min(1, 0.0263406) ≈ 0.0263406

Therefore, the confidence interval for the proportion of Americans who believe high school graduates are prepared for college is approximately (0, 0.02634) with a 95% confidence level.

9. This confidence interval suggests that with 95% confidence, the proportion of Americans who believe high school graduates are prepared for college lies between 0% and 2.634%. This means that based on the sample data, we can estimate that the true proportion of Americans who believe high school graduates are prepared falls within this range. However, we should keep in mind that there is some uncertainty due to sampling variability, and the true proportion could be slightly different.

Learn more about confidence interval here:

https://brainly.com/question/32546207

#SPJ11

3. Use the either the sum or difference formula of cosine to solve the following (5 points) cos(525 degrees)

Answers

By using  the sum or difference formula of cosine to solve cos(525°) we get cos(525°) = -0.465

The formula to find the value of cos(A ± B) is given as,

cos(A + B) = cosA cosB − sinA sinBcos(A − B) = cosA cosB + sinA sinB

Here, A = 450° and B = 75°

We can write 525° as the sum of 450° and 75°.

Therefore,cos(525°) = cos(450° + 75°)

Now, we can apply the formula for cos(A + B) and solve it.

cos(A + B) = cosA cosB − sinA sinBcos(450° + 75°) = cos450° cos75° − sin450° sin75°= 0.707 × 0.259 − 0.707 × 0.966= -0.465

Substituting the values in the above equation, we get

cos(525°) = 0.707 × 0.259 − 0.707 × 0.966= -0.465

Thus, cos(525°) = -0.465.

To know more about cosine visit:

brainly.com/question/29114352

#SPJ11

Perform the indicated operations. 2^{9} - 9^{2} = ___________

Answers

The result of the expression 2^9 - 9^2 is 431. Let's perform the indicated operations step by step.

To evaluate the expression 2^9 - 9^2, we first need to calculate the values of the exponents.

2^9:

To find 2^9, we multiply 2 by itself 9 times:

2^9 = 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 = 512.

9^2:

To find 9^2, we multiply 9 by itself 2 times:

9^2 = 9 * 9 = 81.

Now, we can substitute these values back into the original expression:

2^9 - 9^2 = 512 - 81.

Calculating the subtraction, we get:

2^9 - 9^2 = 431.

Therefore, the result of the expression 2^9 - 9^2 is 431.

Learn more about exponents here:

https://brainly.com/question/5497425

#SPJ11

find the common factor between
36y2z2,24yz,30y3z4

Answers

The common factor among the expressions 36y^2z^2, 24yz, and 30y^3z^4 is 2 * 3 * y * z^2.

To find the common factors among the given expressions, we need to factorize each expression and identify the common factors.

Let's factorize each expression:

36y^2z^2:

We can break down 36 into its prime factors as 2^2 * 3^2. So, we have:

36y^2z^2 = (2^2 * 3^2) * y^2 * z^2 = (2 * 2 * 3 * 3) * y^2 * z^2 = 2^2 * 3^2 * y^2 * z^2

24yz:

We can break down 24 into its prime factors as 2^3 * 3. So, we have:

24yz = (2^3) * 3 * y * z = 2^3 * 3 * y * z

30y^3z^4:

We can break down 30 into its prime factors as 2 * 3 * 5. So, we have:

30y^3z^4 = (2 * 3 * 5) * y^3 * z^4 = 2 * 3 * 5 * y^3 * z^4

Now, let's compare the expressions and identify the common factors:

The common factors among the given expressions are 2, 3, y, and z^2. These factors appear in each of the expressions: 36y^2z^2, 24yz, and 30y^3z^4.

Therefore, the common factor between 36y^2z^2, 24yz, and 30y^3z^4 is 2 * 3 * y * z^2.

Learn more about expressions here:

https://brainly.com/question/28170201

#SPJ11

is the solution region to the system below bounded or unbounded? 8x+y ≤ 16 X20 y20 The solution region is because it a circle
Test: Exam#z solution region to the system below bounded or unbounded?

Answers

The solution region is bounded because it is a closed circle

How to determine the boundary of the solution

from the question, we have the following parameters that can be used in our computation:

8x+y ≤ 16

In the above, we have the inequality to be ≤

The above inequality is less than or equal to

And it uses a closed circle

As a general rule

All closed circles are bounded solutions

Hence, the solution region is bounded because it is a closed circle

Read more about inequality at

https://brainly.com/question/32124899

#SPJ4

solve for ( a)sin(s+t), (b) tan (s+t), and the quadrant s+t
Use the given information to find (a) sin (s+t), (b) tan (s+t), and (c) the quadrant of s+t. 3 and sint = -,s and t in quadrant IV 5' cos s= 12 13 ... (a) sin (s+t) = (Simplify your answer, including

Answers

The given values are:s = -3t = -3and

cos s= 12/13

(a) sin (s+t) = sin s cos t + cos s sin t

We know that:sin s = -3/5cos s

= 12/13sin t

= -3/5cos t

= -4/5

Therefore,sin (s+t) = (-3/5)×(-4/5) + (12/13)×(-3/5)sin (s+t)

= (12/65) - (36/65)sin (s+t)

= -24/65(b) tan (s+t)

= sin (s+t)/cos (s+t)tan (s+t)

= (-24/65)/(-12/13)tan (s+t)

= 2/5(c) Quadrant of s+t:

As per the given information, s and t are in the IV quadrant, which means their sum, i.e. s+t will be in the IV quadrant too.

The IV quadrant is characterized by negative values of x-axis and negative values of the y-axis.

Therefore, sin (s+t) and cos (s+t) will both be negative.

The values of sin (s+t) and tan (s+t) are given above.

The value of cos (s+t) can be determined using the formula:cos^2 (s+t) = 1 - sin^2 (s+t)cos^2 (s+t)

= 1 - (-24/65)^2cos^2 (s+t)

= 1 - 576/4225cos^2 (s+t)

= 3649/4225cos (s+t)

= -sqrt(3649/4225)cos (s+t)

= -61/65

Now, s+t is in the IV quadrant, so cos (s+t) is negative.

Therefore,cos (s+t) = -61/65

To know more about cos visit :-

https://brainly.com/question/24305408

#SPJ11

Let A, B be nonempty subsets of R that are bounded below. Prove that if A ⊂ B, then inf A ≥ inf B.

Answers

Therefore, we have proved that if A ⊂ B, then inf A ≥ inf B.

Let A, B be nonempty subsets of R that are bounded below. We have to prove that if A ⊂ B, then inf A ≥ inf B.

Let's begin the proof:

We know that since A is a non-empty subset of R and is bounded below, therefore, inf A exists.

Similarly, since B is a non-empty subset of R and is bounded below, therefore, inf B exists. Also, we know that A ⊂ B, which means that every element of A is also an element of B. As a result, we can conclude that inf B ≤ inf A because inf B is less than or equal to each element of B and since each element of B is an element of A, therefore, inf B is less than or equal to each element of A as well.

Therefore, we have proved that if A ⊂ B, then inf A ≥ inf B.

To know more about subsets visit:

https://brainly.com/question/28705656

#SPJ11

number 1 help
Perform the indicated operations for the given vectors. \( \mathbf{v}=\langle 8,-10\rangle, \boldsymbol{w}=\langle-3,7\rangle \). Find \( w+v \) \( (2,9) \) \( (-3,4) \) \( \langle 5,-3\rangle \) \( \

Answers

To find \( w+v \), we add the corresponding components of the vectors, \(\mathbf{v}\) and \(\mathbf{w}\), which gives us the vector \(\langle 5, -3\rangle\).

Vector addition involves adding the corresponding components of the vectors, i.e., adding the first components to get the first component of the resulting vector, and adding the second components to get the second component of the resulting vector. For example, to find \( w+v \), we add the corresponding components of \(\mathbf{v}\) and \(\mathbf{w}\):
\begin{align*}
w+v&= \langle-3,7\rangle + \langle 8,-10\rangle\\
&= \langle(-3+8), (7-10)\rangle\\
&= \langle5,-3\rangle
\end{align*}
Therefore, \(w+v\) is the vector \(\langle 5, -3\rangle\).
In general, if \(\mathbf{v}=\langle a, b\rangle\) and \(\mathbf{w}=\langle c, d\rangle\), then \(\mathbf{v}+\mathbf{w}=\langle a+c, b+d\rangle\).

Learn more about vector hhere:

https://brainly.com/question/24256726

#SPJ11

Which of the following rates are equivalent to the rate 55 pounds per 44 months?
Check ALL boxes that correspond to correct answers.
5454 pounds per month
1.251.25 pounds per month
10 pounds every 8 months
one pound per 4545 months
60 pounds per year

Answers

To find the equivalent rates to the given rate 55 pounds per 44 months, we need to convert the given rate into different units. Let's begin:To convert the given rate into pounds per month, we multiply the numerator and denominator by 12 (number of months in a year).

$$\frac{55 \text{ pounds}}{44 \text{ months}}\cdot\frac{12 \text{ months}}{12 \text{ months}}=\frac{660 \text{ pounds}}{528 \text{ months}}

=\frac{55}{44}\cdot\frac{12}{1}

= 82.5\text{ pounds per month}$$Therefore, 54 and 1.25 pounds per month are not equivalent to the rate 55 pounds per 44 months.Therefore, 10 pounds every 8 months is equivalent to the rate 55 pounds per 44 months.To convert the given rate into pounds per 45 months, we multiply the numerator and denominator by 45 (number of months):$$\frac{55 \text{ pounds}}{44 \text{ months}}\cdot\frac{45 \text{ months}}{45 \text{ months}}=\frac{2475 \text{ pounds}}{1980 \text{ months}}

=\frac{55}{44}\cdot\frac{45}{1}

= 68.75\text{ pounds per 45 months}$$Therefore, one pound per 45 months is not equivalent to the rate 55 pounds per 44 months.Thus, the following rates are equivalent to the rate 55 pounds per 44 months:$$\text{• }82.5\text{ pounds per month}$$$$\text{• }10\text{ pounds every 8 months}$$Hence, the correct answers are:5454 pounds per month10 pounds every 8 months.

To know more about pounds visit:
https://brainly.com/question/29173298

#SPJ11

Please answer the following astrophisics questions with explanations.Thank you we value your time and efforts. (b) Consider another binary with orbital period T = 49.94 yr. The com- ponents A and B have masses MA and MB respectively. Assume that the orbits are circular, with radii TA and rg respectively. (i) Apply Kepler's law to both this system and the Sun-Earth system. Hence, show that the orbital period expressed in years (Tyrs), is given by (a/A)³ T² yrs [(MA + MB)/Mo] = where A is the mean sun-earth distance. [ 5 marks] (ii) The trigonometric parallax of the system is P = 0.377" while the an- gular extent a of the semi-major axis of the relative ellipse is 7.62". Sketch a diagram of the system, showing both the separation a between the compo- nents and a. Hence, determine the ratio a/A for the system. [6 marks] (iii) The ratio of the distances of A and B from the centre of mass is 0.466. Determine the mass of each component in terms of the mass of the Sun. [ 6 marks] 3

Answers

(i) The required relation is (MA + MB)/Mo = (a/A)³ T² yrs.

(ii) The required ratio is 7.20.

(iii) MA/Mo = 0.413 and MB/Mo = 0.587.

Part (i) We are given the period T of the binary star system as 49.94 years.

The masses of the two components are MA and MB respectively.

Their orbits are circular and have radii TA and TB.

By Kepler's law: (MA + MB) TA² = (4π²)TA³/(G T²) (MA + MB) TB² = (4π²)TB³/(G T²) where G is the universal gravitational constant.

Now, let A be the mean sun-earth distance.

Therefore, TA/A = (1 au)/(TA/A) and TB/A = (1 au)/(TB/A).

Hence, (MA + MB)/Mo = ((TA/A)³ T² yrs)/[(A/TA)³ G yrs²/Mo] = ((TB/A)³ T² yrs)/[(A/TB)³ G yrs²/Mo] where Mo is the mass of the sun.

Thus, (MA + MB)/Mo = (TA/TB)³ = (TB/TA)³.

Hence, (MA + MB)/Mo = [(TB/A)/(TA/A)]³ = (a/A)³, where a is the separation between the stars.

Therefore, (MA + MB)/Mo = (a/A)³.

Hence, the required relation is (MA + MB)/Mo = (a/A)³ T² yrs.

This relation is identical to that for the Sun-Earth system, with a different factor in front of it.

Part (ii) Let the distance to the binary system be D.

Therefore, D = 1/P = 2.65 kpc (kiloparsec).

Now, let M be the relative mass of the two components of the binary system.

Therefore, M = MB/MA. By Kepler's law, we have TA/TB = (MA/MB)^(1/3).

Therefore, TB = TA (MA/MB)^(2/3) and rg = a (MB/(MA + MB)).

We are given a = 7.62" and P = 0.377".

Therefore, TA = (P/A)" = 7.62 × (A/206265)" = 0.000037 A, and rg = 0.0000138 a.

Therefore, TB = TA(MA/MB)^(2/3) = (0.000037 A)(M)^(2/3), and rg = 0.0000138 a = 0.000105 A(M/(1 + M)).

We are required to find a/A = rg/TA. Hence, (a/A) = (rg/TA)(1/P) = 0.000105/0.000037(0.377) = 7.20.

Therefore, the required ratio is 7.20.

Part (iii) The ratio of the distances of A and B from the center  of mass is 0.466.

Therefore, let x be the distance of A from the center of mass.

Hence, the distance of B from the center of mass is 1 - x.

Therefore, MAx = MB(1 - x), and x/(1 - x) = 0.466.

Therefore, x = 0.316.

Hence, MA/MB = (1 - x)/x = 1.16.

Therefore, MA + MB = Mo.

Thus, MA = Mo/(1 + 1.16) = 0.413 Mo and MB = 0.587 Mo.

Therefore, MA/Mo = 0.413 and MB/Mo = 0.587.

(i) The required relation is (MA + MB)/Mo = (a/A)³ T² yrs.

(ii) The required ratio is 7.20.

(iii) MA/Mo = 0.413 and MB/Mo = 0.587.

Learn more about center of mass

brainly.com/question/8662931

#SPJ11

Find WV

A. 7
B. 23
C. 84
D. 145

Answers

Answer:

B. 23

Step-by-step explanation:

We Know

WV = YX

Let's solve

12x - 61 = 3x + 2

12x = 3x + 63

9x = 63

x = 7

Now we plug 7 in for x and find WV

12x - 61

12(7) - 61

84 - 61

23

So, the answer is B.23

emember that rectangular form is z=a+bi and that polar form is
z=r(cosθ+isinθ)
Take following number in polar form and convert it to
rectangular form:
3.61(cos8+isin8)
(Round to the nearest hundredt

Answers

The polar form of a complex number is given byz=r(cosθ+isinθ). Therefore, the answer is z = 3.5800 + i0.5022.

Here,

r = 3.61 and

θ = 8°

So, the polar form of the complex number is3.61(cos8+isin8)We have to convert the given number to rectangular form. The rectangular form of a complex number is given

byz=a+bi,

where a and b are real numbers. To find the rectangular form of the given complex number, we substitute the values of r and θ in the formula for polar form of a complex number to obtain the rectangular form.

z=r(cosθ+isinθ)=3.61(cos8°+isin8°)

Now,

cos 8° = 0.9903

and

sin 8° = 0.1392So,

z= 3.61(0.9903 + i0.1392)= 3.5800 + i0.5022

Therefore, the rectangular form of the given complex number is

z = 3.5800 + i0.5022

(rounded to the nearest hundredth).

Given complex number in polar form

isz = 3.61(cos8+isin8)

The formula to convert a complex number from polar to rectangular form is

z = r(cosθ+isinθ) where

z = x + yi and

r = sqrt(x^2 + y^2)

Using the above formula, we have:

r = 3.61 and

θ = 8°

cos8 = 0.9903 and

sin8 = 0.1392

So the rectangular form

isz = 3.61(0.9903+ i0.1392)

z = 3.5800 + 0.5022ii.e.,

z = 3.5800 + i0.5022.

(rounded to the nearest hundredth).Therefore, the answer is z = 3.5800 + i0.5022.

To know more about number visit:

https://brainly.com/question/3589540

#SPJ11

A family has a $134,829,30-year mortgage at 6% compounded monthly. Find the monthly payment. Also find the unpaid balance after the following periods of time. (A) 10 years (B) 20 years (C) 25 years The monthly payment is $ (Round to the nearest cent as needed.)

Answers

The unpaid balance after 25 years is $28,961.27.

To find the monthly payment, we can use the formula:

P = (A/i)/(1 - (1 + i)^(-n))

where P is the monthly payment, A is the loan amount, i is the monthly interest rate (6%/12 = 0.005), and n is the total number of payments (30 years x 12 months per year = 360).

Plugging in the values, we get:

P = (134829.3*0.005)/(1 - (1 + 0.005)^(-360)) = $805.23

Therefore, the monthly payment is $805.23.

To find the unpaid balance after 10 years (120 months), we can use the formula:

B = A*(1 + i)^n - (P/i)*((1 + i)^n - 1)

where B is the unpaid balance, n is the number of payments made so far (120), and A, i, and P are as defined above.

Plugging in the values, we get:

B = 134829.3*(1 + 0.005)^120 - (805.23/0.005)*((1 + 0.005)^120 - 1) = $91,955.54

Therefore, the unpaid balance after 10 years is $91,955.54.

To find the unpaid balance after 20 years (240 months), we can use the same formula with n = 240:

B = 134829.3*(1 + 0.005)^240 - (805.23/0.005)*((1 + 0.005)^240 - 1) = $45,734.89

Therefore, the unpaid balance after 20 years is $45,734.89.

To find the unpaid balance after 25 years (300 months), we can again use the same formula with n = 300:

B = 134829.3*(1 + 0.005)^300 - (805.23/0.005)*((1 + 0.005)^300 - 1) = $28,961.27

Therefore, the unpaid balance after 25 years is $28,961.27.

Learn more about unpaid balance here:

https://brainly.com/question/31065295

#SPJ11

- How many ways can you select a group/set of 5 players, without regard to order, out of a total of 12 ? Answer: How many ways can you assign by position/Order Matters (e.g., Left \& Right Tackles; Left \& Right Guards \& center) 5 players out of a total of 12? Answer:

Answers

The number of ways of selecting a group of 5 players out of a total of 12 without regard to order. To solve this problem, we can use the combination formula, which is:nCk= n!/(k!(n-k)!)where n is the total number of players and k is the number of players we want to select.

Substituting the given values into the formula, we get:

12C5= 12!/(5!(12-5)!)

= (12x11x10x9x8)/(5x4x3x2x1)

= 792.

There are 792 ways of selecting a group of 5 players out of a total of 12 without regard to order. The question asks us to determine the number of ways of assigning 5 players by position out of a total of 12. Since order matters in this case, we can use the permutation formula, which is: nPk= n!/(n-k)!where n is the total number of players and k is the number of players we want to assign to specific positions.

Substituting the given values into the formula, we get:

12P5= 12!/(12-5)!

= (12x11x10x9x8)/(7x6x5x4x3x2x1)

= 95,040

There are 95,040 ways of assigning 5 players by position out of a total of 12.

To know more about combination visit:

https://brainly.com/question/31586670

#SPJ11

If log 2 = x and log, 3 = y, evaluate the following in terms of x and y: (a) log, 24 = (b) log, 1296 (c) logt log, 27 (d) log, 2 = = =

Answers

The expression log 24 is 3x + y and log 1296 is 4x + 4y. The expression logt log 27 cannot be simplified further without knowing the specific base value of logarithm t.

To evaluate the expressions in terms of x and y, we can use the properties of logarithms. Here are the evaluations:

(a) log 24:

We can express 24 as a product of powers of 2 and 3: 24 = 2^3 * 3^1.

Using the properties of logarithms, we can rewrite this expression:

log 24 = log(2^3 * 3^1) = log(2^3) + log(3^1) = 3 * log 2 + log 3 = 3x + y.

(b) log 1296:

We can express 1296 as a power of 2: 1296 = 2^4 * 3^4.

Using the properties of logarithms, we can rewrite this expression:

log 1296 = log(2^4 * 3^4) = log(2^4) + log(3^4) = 4 * log 2 + 4 * log 3 = 4x + 4y.

(c) logt log 27:

We know that log 27 = 3 (since 3^3 = 27).

Using the properties of logarithms, we can rewrite this expression:

logt log 27 = logt 3 = logt (2^x * 3^y).

We don't have an explicit logarithm base for t, so we can't simplify it further without more information.

(d) log 2 = = =

It seems there might be a typographical error in the expression you provided.

To know more about logarithms refer here:

https://brainly.com/question/30226560#

#SPJ11

Insurance policv holderc / rlsime in 2017 Average car insurance cost and claim value by age group (2017) No. of policy holders No. of claims On average, for which age group must a driver have the highest number of accident-free years before making a claim for the insurance company to make a profit? Insurance policy holders / claims in 2017 Average car insurance cost and claim value by age group (2017) No. of policy holders No. of claims In 2017, 4.5\% of policy holders aged 18-21 made insurance claims. What was the average number of claims made per policy holder?

Answers

On average, for which age group must a driver have the highest number of accident-free years before making a claim for the insurance company to make a profit.

The age group for which a driver must have the highest number of accident-free years before making a claim for the insurance company to make a profit is 65 years and above. Since the insurance claims decline as the age increases, hence the policyholders of this age group will make fewer claims.

The average number of claims made per policyholder in 2017, 4.5% of policyholders aged 18-21 made insurance claims is 0.045.What is the No. of policyholders and claims for the Average car insurance cost and claim value by age group (2017)?Sorry, there is no data provided for No. of policyholders and claims for the Average car insurance cost and claim value by age group (2017).

To know more about number visit :

https://brainly.com/question/3589540

#SPJ11

Which of the following statements is ALWAYS true? Pr[A∪B]=Pr[A]+Pr[B]
Pr[A∩B]=Pr[A]⋅Pr[B]
Pr[A∣B]=Pr[B∣A]
Pr[A]=1−Pr[A′ ]

Answers

The correct option is, “Pr[A∩B]=Pr[A]⋅Pr[B].” as it is always true.

The correct option is, “Pr[A∩B]=Pr[A]⋅Pr[B]. Probabilities of A and B are the probability of two events in which the probability of A can occur, B can occur, or both can occur.

Therefore, the probability of A or B or both happening is the sum of their probabilities. In mathematical notation, it is stated as: Pr[A∪B]=Pr[A]+Pr[B] The probability of the intersection of A and B is the probability of both A and B happening.

The probability of both happening is calculated by multiplying their probabilities. This relationship can be expressed as: Pr[A∩B]=Pr[A]⋅Pr[B] The probability of A happening given that B has occurred is written as: Pr[A∣B]=Pr[A∩B]/Pr[B]The probability of A not happening is written as A′.

Therefore, the probability of A happening is the complement of the probability of A not happening. This relationship is expressed as: Pr[A]=1−Pr[A′]

Hence, the correct option is, “Pr[A∩B]=Pr[A]⋅Pr[B].” as it is always true.

To know more about always visit:

brainly.com/question/31721690

#SPJ11

Question 15 The ratio of current ages of two relatives who shared a birthday is 7 : 1. In 6 years' time the ratio of theirs ages will be 5: 2. Find their current ages. A. 7 and 1 B. 14 and 2 C. 28 and 4 D. 35 and 5

Answers

The current ages of the two relatives who shared a birthday are 28 and 4 which corresponds to option C.

Let's explain the answer in more detail. We are given two ratios: the current ratio of their ages is 7:1, and the ratio of their ages in 6 years will be 5:2. To find their current ages, we can set up a system of equations.

Let's assume the current ages of the two relatives are 7x and x (since their ratio is 7:1). In 6 years' time, their ages will be 7x + 6 and x + 6. According to the given information, the ratio of their ages in 6 years will be 5:2. Therefore, we can set up the equation:

(7x + 6) / (x + 6) = 5/2

To solve this equation, we cross-multiply and simplify:

2(7x + 6) = 5(x + 6)

14x + 12 = 5x + 30

9x = 18

x = 2

Thus, one relative's current age is 7x = 7 * 2 = 14, and the other relative's current age is x = 2. Therefore, their current ages are 28 and 4, which matches option C.

Learn more about ratio here:

https://brainly.com/question/13419413

#SPJ11

(For problems 8 - 10 rouesd monetary answers to nearest peniny.) 8. Margaret buys new stereo equipment for $500. The store agrees to finance the parchase price for 4 months at 12% annual interest rate compounded monthly, with approximately equal payments at the end of each month. Her first 3 monthly payments will be $128. 14. The amount of the fourth payment will be \$128.14 or less (depending on the balance after the third payment). Use this information to complete the amortiration schedule below.

Answers

The first step is to find out the monthly interest rate.Monthly Interest rate, r = 12%/12 = 1%

Now, we have to find the equal payments at the end of each month using the present value formula. The formula is:PV = Payment × [(1 − (1 + r)−n) ÷ r]

Where, PV = Present Value Payment = Monthly Payment

D= Monthly Interest Raten n

N= Number of Months of Loan After substituting the given values, we get

:500 = Payment × [(1 − (1 + 0.01)−4) ÷ 0.01

After solving this equation, we get Payment ≈ $128.14.So, the monthly payment of Margaret is $128.14.Thus, the amortization schedule is given below

:Month Beginning Balance Payment Principal Interest Ending Balance1 $500.00 $128.14 $82.89 $5.00 $417.111 $417.11 $128.14 $85.40 $2.49 $331.712 $331.71 $128.14 $87.99 $0.90 $243.733 $243.73 $128.14 $90.66 $0.23 $153.07

Thus, the amount of the fourth payment will be \$153.07.

To know more about cost estimate visit :-

https://brainly.in/question/40164367

#SPJ11

D Question 3 3. If, f(x) = ax² bx²+c and as xx, f(x) -1, which of the following must be true? O a = 2, b = -2, and c = 2. 10 pts a = -1, c = 0, and b can be any real number. a = -b, and c can be any

Answers

So the answer is a = 1, b can be any real number, and c ≈ -b².  This means that none of the options provided in the question are correct.

We have f(x) = ax² + bx² + c

We are given that as x approaches infinity, f(x) approaches 1.

This means that the leading term in f(x) is ax² and that f(x) is essentially the same as ax² as x becomes large.

So as x becomes very large, f(x) = ax² + bx² + c → ax²

As f(x) approaches 1 as x → ∞, this means that ax² approaches 1.

We can therefore conclude that a > 0, because otherwise, as x approaches infinity, ax² will either approach negative infinity or positive infinity (depending on the sign of

a).The other two terms bx² and c must be relatively small compared to ax² for large values of x.

Thus, we can say that bx² + c ≈ 0 as x approaches infinity.

Now we are left with f(x) = ax² + bx² + c ≈ ax² + 0 ≈ ax²

Since f(x) ≈ ax² and f(x) approaches 1 as x → ∞, then ax² must also approach 1.

So a is the positive square root of 1, i.e. a = 1.

So now we have f(x) = x² + bx² + c

The other two terms bx² and c must be relatively small compared to ax² for large values of x.

Thus, we can say that bx² + c ≈ 0 as x approaches infinity.

Therefore, c ≈ -b².

The answer is that none of the options provided in the question are correct.

To know more about number visit:

https://brainly.com/question/3589540

#SPJ11

A. hot bowl otseds is geryed at a dincher party. It statis to cool according to Newton's Law of Cooling so that its temperature at time i it given by T(t)=55+150e −0.058
where tis measured in minutes and T is measured in of: fa) What is the initial temperature of the soup? ef thw. What is the tecrperature after 10 min? (found your answer to one deomal place.) alp sel thter howliong will the terperature be 100 "f 7 (Round your answer po the nearest whole number) min

Answers

According to Newton's Law of Cooling, the temperature of a hot bowl of soup at time \(t\) is given by the function \(T(t) = 55 + 150e^{-0.058t}\).

TheThe initial temperature of the soup is 55°F. After 10 minutes, the temperature of the soup can be calculated by substituting \(t = 10\) into the equation. The temperature will be approximately 107.3°F. To find how long it takes for the temperature to reach 100°F, we need to solve the equation \(T(t) = 100\) and round the answer to the nearest whole number.

The initial temperature of the soup is given by the constant term in the equation, which is 55°F.
To find the temperature after 10 minutes, we substitute \(t = 10\) into the equation \(T(t) = 55 + 150e^{-0.058t}\):
[tex]\(T(10) = 55 + 150e^{-0.058(10)} \approx 107.3\)[/tex] (rounded to one decimal place).
To find how long it takes for the temperature to reach 100°F, we set \(T(t) = 100\) and solve for \(t\):
[tex]\(55 + 150e^{-0.058t} = 100\)\(150e^{-0.058t} = 45\)\(e^{-0.058t} = \frac{45}{150} = \frac{3}{10}\)[/tex]
Taking the natural logarithm of both sides:
[tex]\(-0.058t = \ln\left(\frac{3}{10}\right)\)\(t = \frac{\ln\left(\frac{3}{10}\right)}{-0.058} \approx 7\)[/tex] (rounded to the nearest whole number).
Therefore, it takes approximately 7 minutes for the temperature of the soup to reach 100°F.

learn more about whole number here

https://brainly.com/question/29766862



#SPJ11

Solve the problem. A pilot wants to fly on a bearing of \( 60.8^{\circ} \). By fiving due east he finds that a 59 weh wind, blowing from the south, puts him on course. Find the ground speed of the pla

Answers

The vector components of the 59 km/h wind are:(0, -59) km/hThe pilot is aiming for a bearing of 60.8°, so the vector components of the plane's velocity are:

v = (v₁, v₂) km/hwhere:v₂/v₁ = tan(60.8°) = 1.633tan(60.8°) is approximately equal to 1.633Therefore,v = (v, 1.633v) km/hThe ground speed of the plane is the magnitude of the resultant velocity vector:(v + 0)² + (1.633v - (-59))² = (v + 0)² + (1.633v + 59)²= v² + 3v² + 185.678v + 3481= 4v² + 185.678v + 3481

The plane's ground speed is given by the positive square root of this quadratic equation:S = √(4v² + 185.678v + 3481)To find v, we need to use the fact that the wind blows the plane on course. In other words, the plane's velocity vector is perpendicular to the wind's velocity vector. Therefore, their dot product is zero:v₁(0) + v₂(-59) = 0Solving for v₂:1.633v₁(-59) = -v₂²v₂² = -1.633²v₁²v₂ = -1.633v₁

To solve for v, substitute this expression into the expression for the magnitude of the resultant velocity vector:S = √(4v² + 185.678v + 3481)= √(4v² - 301.979v + 3481)We can now solve this quadratic equation by using the quadratic formula:v = (-b ± √(b² - 4ac))/(2a)where a = 4, b = -301.979, and c = 3481.v = (-(-301.979) ± √((-301.979)² - 4(4)(3481)))/(2(4))= (301.979 ± √1197.821))/8v ≈ 19.83 km/h (rejecting negative root)Therefore, the plane's velocity vector is approximately:v ≈ (19.83 km/h, 32.35 km/h)The plane's ground speed is then:S = √(4v² + 185.678v + 3481)= √(4(19.83)² + 185.678(19.83) + 3481)≈ √7760.23≈ 88.11 km/hAnswer:Conclusion: The plane's ground speed is approximately 88.11 km/h.

To know more about vector visit

https://brainly.com/question/24486562

#SPJ11

Evaluate functions from their graph h (0)

Answers

The numeric value of the function h(x) at x = 0 is given as follows:

h(0) = 5.

How to obtain the numeric value of the function?

The graph of the function in this problem is given by the image presented at the end of the answer.

At x = 0, we have that the function is at the y-axis.

The point marked on the y-axis is y = 5, hence the numeric value of the function h(x) at x = 0 is given as follows:

h(0) = 5.

A similar problem, also featuring numeric values of a function, is given at brainly.com/question/28367050

#SPJ1

Other Questions
4) Why did he ask is David worked with rabbits? 5) Why would it be difficult to simple stain or gram stain some microbes? 5) What is the cause of David's infection? Which of the following is true about the rock material in the Earth System? -the total mass of rock material doesn't increase or decrease with time (i.e., it is a conserved quantity) -once rock materials erode from land and end up in the oceans, they will remain there for the rest of Earth's history since there is no process to transport rock materials between different rock reservoirs -Rock materials cycle between the different rock reservoirs on timetables of centuries (100s of years) to millennia (1000s of years) -there is more rock material found in the sediment reservoir than any other reservoir in the Rock Cycle In polycythemia vera, describe the stable phase, spent phase andthe progressive or acute phase of the disease. Q3. The spring has a stiffness of k = 800 N/m and an unstretched length of 200 mm. Determine the force in cables BC and BD when the spring is held in the position shown. k=800 N/m ***** B60 300 mm 500 1 Virtue ethics are the core moral theories in Board of Engineers Malaysia's (BEM) code of conduct. (a) (b) Elaborate on virtue ethics. [C3] [SP1] [15 marks] The BEM's code of conduct was revised and now it mainly consists derivations from virtue ethics. In your opinion, what are reasons for it? [C5] [SP1, SP2, SP4,SP5, SP6] [10 marks] (25 points, 200 words) Pig-to-human organ transplants use a genetically modified pig as the source of organs. Note that some genes were added and some pig genes were knocked out. Describe in conceptual detail how the gene-modified pig could have been produced. You need not research to find the actual methods that were used this pig line, but based on course material, describe how you could do the job. Be sure to describe differences in methods for inserting foreign genes vs knock-out of endogenous genes. 1) How does the "VALUE" requirement for a holder in due course differ from the "CONSIDERATION"requirement in Contract Law?2) Read the case of Georg v Metro Fixtures on page 489 and answer the following questions:a) Was the instrument a draft or a note?b) Who was the drawer drawee and payee on the instrument?c) Was Freestyle a Holder in Due Course? Why or why not? Answer the following questions with either true or false. 1. HP, IP, or LP in steam turbine does not respectively stand for "High Pressure", "Important Pressure" or "Low Pressure". 2. Steam turbine is not a closed system. 3. Variable cost and variable operation costs do not affect the choice of prime energy source. 4. Base load is the demand of the system that is normally required to meet the minimum needs of customers. 5. Peak load is the max amount of electricity generated for the system during a given period. 6. Unplanned outage is not a forced outage. 7. Gas turbine is not an example of green energy.8. Rotor is the only rotating part of a steam turbine. 9. Bearings support the rotor. 10. Steam turbine is not an example of a Brayton cycle 11. GE steam turbines are mainly impulse steam injection systems. 12.GE offered its first trbine for sale in 1902 13. Packing ring is not an auxiliary part in turbines 14. Steam turbine is not an example of green energy! 15. Compressor is not needed in a gas turbine 16. Gas turbine is a closed thermodynamics system. 17. Cooling tower is a form of a heat exchanger 18. In a reaction steam injection system the nozzle is on the rotor. 19. Gas turbine is an example of a Rankine cycle. 20 Load shedding is not the reduction of load in an emergency by disconnecting selected loads according to a planned schedule Suppose Bangladesh and Sweden each produce only paper and cars. Bangladesh can produce 12 tons of paper or 4 million cars each year. Sweden can produce 20 tons of paper or 5 million cars each year. ha Describe how the parity operator (P) affects each of the following: i) vector quantities (e.g momentum) ii) scalar quantities (e.g. mass, energy), iii) and pseudo-vector quantities (e.g. left- or righ Gabriel opened an RRSP deposit account on December 1, 2008, with a deposit of $1300. He added $1300 on February 1, 2010, and $1300 on August 1, 2012. How much is in his account on October 1, 2016, if the deposit earns 7.8% p.a. compounded monthly? Which rsum form would you use if you were an entry-level job seeker? Ochronological combination functional or skills O summary Most central banks of industrialized countries have monetary policy formed byMultiple Choicetheir version of Congress.an individual, usually the person heading the central bank at the time.an individual, usually the minister of finance.a committee made up of members of their central bank. Ignoring bend radiuses in a drawing operation determine the starting blank size in a cup to be drawn if the final outside dimensions of the cup is 85mm diameter, 60 mm high and the thickness of the walls is 3mm A. 155 mm B. 161 mm C. 164 mm D. 167 mm E. 170 mm spread plate inoculated with 0.2 ms from 108 dilation contained ao colonies Calculate the cell concentration of the original culture, spread plate noculat a olmi limit 20 - 200 cfulm) knowing that each of the shaft AB, BC, and CD consistof a solid circular rod, determine the shearing stress in shaft AB,BD and CD. (final answer in mpa, 3 decimal places) The initial value of function f(s) = 4(s+25) / s(s+10) at t = 0 is..a. 10b. 4c. 0 d. [infinity] Question 3: Explain in your own words what happens with the energy terms for a stone falling from a height into a bucket of water. Assume the water and stone are at the same temperature, which is higher than the surrounding temperature. What would happen if the object was a bouncing ball falling to a hard surface? 1. Find a cross section of a sea star ovary with oocytes. Sketch one oocyte, and label cell membrane, cytoplasm, nucleus, chromatin, nucleolus (1.5 pts) 2 2. Cleavage divisions: 2,4,8,16 (morula), 32, 64 cells (sketch 2-cell, 4-cell, 8-cell) (1.5 pts) 3. Blastula: a) early blastulas have many cells vislble, with a lighter opaque region where its fluld-filled cavity lies (1 pt) b) late blastulas will have a dark ring around their perimeter with a solld non-cellular S appearing area in the center, where the fluld-illed cavity is located (1 pt) 4. Gastrula: a) early gastrulas have less invagination of germ layers than late ones do. Sketch one or two below: (1 pt) b) Late gastrulas have more invagination and a more elongated shape. Sketch one or two below: (1 pt) 5. Bipinnaria: early larva (simpler appearing and less organ development inside than in the late larval stage) (1 pt) 6. Brachiolaria: late larva (notice there is much more inside this larva compared to the early ones; this represents organ development) (1 pt) 7. Young sea star (note the tube feet): ( 1 pt) Which of the following statements is true? A. Individuals evolve over time leading to new species B. The most "fit" individuals in terms of natural selection in a population are always the strongest C. Populations evolve over time in response to environmental conditionsD. gene flow has the largest effect on small populations