Answer:
Step-by-step explanation:
[tex]\int\limits^{\infty}_0 {A^2_1} (e^{-r/a})r^2dr= {A^2_1}\int\limits^{\infty}_0r^2(e^{-r/a})^2\, dr)[/tex]
[tex]=A_1^2\int\limits^{\infty}_0 r^2e^{-2r/a}\ dr[/tex]
[tex]=A_1^2[\frac{r^2e^{2r/a}}{-2/a} |_0^{\infty}-\int\limits^{\infty}_0 2r\frac{e^{-2r/a}}{-2/a} \ dr][/tex]
[tex]=A^2_1[0+\int\limits^{\infty}_0 a\ r\ e^{-2r/a}\ dr][/tex]
[tex]=A^2_1[\frac{a \ r \ e^{-2r/a}}{-2/a} |^{\infty}_0-\int\limits^{\infty}_0 \frac{a \ e^{-2r/a}}{-2/a} \ dr][/tex]
[tex]=A_0^2[0-0+\int\limits^{\infty}_0 \frac{a^2}{2} e^{-2r/a}\ dr\\\\=A_1^2\frac{a^2}{2} \int\limits^{\infty}_0 e^{-2r/a}\ dr\\\\=A_1^2\frac{a^2}{2} [\frac{e^{-2r/a}}{-2/a} ]^{\infty}_0[/tex]
[tex]=\frac{A_1^2a^2}{2} -\frac{a}{2} [ \lim_{r \to \infty} [e^{-2r/a} -e^0]\\\\=\frac{A_1^2a^2}{2} -(\frac{a}{2}) (0-1)[/tex]
[tex]=\frac{A_1^2a^3}{4}[/tex]
[tex]\therefore A_1^2\int\limits^{\infty}_0 r^2(e^{-r/a}) \ dr =\frac{A_1^2a^3}{4}[/tex]
Find the unique positive value of A1
[tex]=4\pi (\frac{A_1^2a^3}{4} )\\\\=A_1^2a^3\pi\\\\A_1^2=\frac{1}{a^3\pi} \\\\A_1=\sqrt{\frac{1}{a^3\pi} }[/tex]
WRITING BOOK
Personal Writing
AD 1
NUMBERS
Which of the following cannot be an integer?
A. 0.8
B. -3
C. 4
D. 25
Answer:
A
Step-by-step explanation:
Integers are negative and positive whole numbers
Answer: A. 0.8
Step-by-step explanation:
An integer is a whole number (not a fractional number) that can be positive, negative, or zero. Examples of integers are: -5, 1, 5, 8, 97, and 3. Examples of numbers that are not integers are: -1.43, 1 3/4, 3.14
Ann pays $300 for membership to a local gym. She is allowed to bring one guest on any visit. John pays Ann $5 to go to the gym with her occasionally. Describe what the expression 300 - 5t could represent. Then evaluate the expression for T equals five 10 15 and 20
Answer:
f
Step-by-step explanation:
Use the distributive property to remove the parentheses .
-8(y-v-3)
Answer:
-8y +8v +24
Step-by-step explanation:
-8(y-v-3)
Multiply each term inside the parentheses by -8
-8y -v*-8 -3*-8
-8y +8v +24
___________________________________
Hey!!!
solution,
-8(y-v-3)
= -8y+8v+24
_________________________________
Here,
You have to remember these things:
(+)*(+)=(+)(+)*(-)=(-)(-)*(-)=(+)(-)*(+)=(-)Hope it helps.
Good luck on your assignment
Please hurry
On each bounce, a ball dropped from 100 feet rises to the height
from which it has fallen. How high does the ball rise, in feet, on the 10th bounce?
Answer:
D
Step-by-step explanation:
divide 10 times starting with 100.
The answer is 25/256 or 0.09765625
The height of the ball dropped from 100 feet on the 10th bounce is 0.09766 feet
What is an equation?An equation is an expression that shows the relationship between two or more numbers and variables.
Let y represent the height of the ball after x bounce. Given that the ball rises to the height from which it has fallen, hence:
y = 100(1/2)ˣ
After the 10th bounce:
y = 100(1/2)¹⁰ = 0.09766
The height of the ball dropped from 100 feet on the 10th bounce is 0.09766 feet.
Find out more on equation at: https://brainly.com/question/2972832
Please answer this correctly
Answer:
41-60 => 5
Step-by-step explanation:
41-50 => 2
51-60 => 3
So 2+3 =5
Answer:
5
Step-by-step explanation:
Add up the number of children between 41 and 60
41-50: 2
51-60: 3
------------
total 5
A cell phone company is offering 2 different monthly plans. Each plan charges a monthly fee plus an additional cost per minute. Plan A: $ 40 fee plus $0.45 per minute Plan B: $70 fee plus $0.35 per minute a) Write an equation to represent the cost of Plan A b) Write an equation to represent the cost of Plan B c) Which plan would be least expensive for a total of 100 minutes?
*Please Show Work*
Answer:
Plan A would be the least expensive
Step-by-step explanation:
Plan A= $0.45x100= 45, 45+40=$85
Plan B= $0.35x100= 35, 35+70= %105
(Each plan is for 100 minutes)