Answer:
200g
Explanation:
n = CV
n = mass/molar mass
mass/molar mass = CV
mass/40 = 2 x 2.5
mass/40 = 5
mass = 5x 40
mass = 200g
A gas particle of mass 5.31 × 10^-23 kg has a velocity of 1.00 102 m/s. What is the kinetic energy of the molecule
Answer:
Kinetic energy = 1/2mv²
where m is the mass
v = velocity
m = 5.31 × 10^-23 kg
v = 1.00 × 10^2 m/s
Kinetic energy = 1/2 × 5.31 × 10^-23 × ( 1.00 × 10^2)²
= 2.655 × 10^-19 Joules
Hope this helps
g Suppose you are titrating an acid of unknown concentration with a standardized base. At the beginning of the titration, you read the base titrant volume as 1.94 mL. After running the titration and reaching the endpoint, you read the base titrant volume as 23.82 mL. What volume of base was required for the titration
Answer:
21.88mL is the volume of base required for the titration.
Explanation:
For an acid-base titration trying to find the concentration of an acid, you must add a known quantity of the acid and titrate it with an standarized base.
If you know the moles of base you add to the acid solution, these moles are equal to moles of acid.
In the buret of the titration, initial volume is 1.94mL and final volume is 23.82mL. The volume you are adding is the difference between initial and final volume, that is:
23.82mL - 1.94mL
21.88mL is the volume of base required for the titration.Considering the steps involved in dissolution, which of the following do you expect to speed up a dissolution process?
A. Sweeping all the solute particles into a pile within the solvent.
B. Stirring the solution vigorously.
C. Grinding the solute down into tiny particles.
D. Gently heating the solution.
Answer:
C. Grinding the solute down into tiny particles.
Explanation:
The dissolution of a solute has something to do with particle size. The size of solute particles usually determines how quickly a solute dissolves in a solvent. When large solute particles are introduced into the solvent, the large solute particles do not easily interact with solvent particles hence preventing easy dissolution in the solvent.
However, when the solute is ground into tiny particles, smaller solute particles interact more effectively with solvent particles hence dissolution is faster.
Therefore, tiny solute particles will dissolve faster in a solvent than a lump of solute. Summarily, small particle size enhances dissolution of a solute in the appropriate solvent.
Answer: stirring the solution vigorously
Grinding the solute down into tiny particles
gently heating the solution
Explanation:
A dissolution will proceed more readily when heated . Breaking up the solute as much as possible will aid in overcoming the solute-solute interaction, as will stirring the solution
1. Natural gas is used as a cooking fuel in many restaurants and homes. The primary chemical components of natural gas are hydrocarbons known as alkanes. Research and list the primary alkanes found in natural gas, and explain why these compounds excel as fuel sources.
Answer:
The main component of natural gas is methane (CH4) at 60 to 90% followed by various combination of ethane, propane, and butane whose percentage can vary from 0 to 20% each. For each unit mass of alkanes, the combustion energy (energy released when the fuel reacts with oxygen) released is very high about 13 to 15 kcal/g, which is higher than even those generated by petrol or diesel. So, for heating or other energy generation purpose for household purposes, this source of energy is used.
The equation for combustion of methane is shown below. Upon combustion, carbondioxide and water is produced with simultaneous generation of heat which is the source of energy used for consumption.
CH4 + 2O2 --> CO2+ 2H2O + heat [ For methane, the combustion energy is ~ 6kcal/g]
As the CH2 units are increased in the alkanes, the combustion energy increases, for e.g., ethane has combustion energy of 7 kcal/g and propane has about 12 kcal/g.
Explanation:
What element forms an ion with an electronic configuration of 1s22s22p6 (or [Ne] ) and a −2 charge? Give the symbol for the element. g
Answer:
Mg²⁺
Explanation:
Electronic configuration = 1s22s22p6 (or [Ne] )
Charge = -2
This means the element has two extra electrons. So total electrons = 12.
The lement is Magnesium and the ion is Mg²⁺
How many oxygen molecules are needed to make 10 carbon dioxide molecules according to the following balanced chemical equation? 2 CO + O2 → 2 CO2
five oxygen molecules
step by step explanation.
according to the equation,one molecule of oxygen is enough to react with two carbon molecules thus 10 carbon molecules need 5oxygen molecules
A naturally occurring oil co-distills with water to produce an oil/water distillate that is 20% oil by weight. If the molecular weight of the oil 100 g/mol, what was the partial pressure of the oil during distillation assuming atmospheric pressure is 760 mm Hg
Answer:
Explanation:
Partial pressure of oil = mole fraction of oil x total pressure
mole fraction of oil = mole of oil / mole of water + mole of oil
= mole of oil = mass of oil / molecular weight of oil
= 20 / 100 = .2
mole of water = 80 / 18
= 4.444
mole fraction of oil = .2 / .2 + 4.444
= .2 / 4.644
Partial pressure of oil = mole fraction of oil x total pressure
= (.2 / 4.644 ) x 760 mm
= 32.73 mm Hg .
How many formula units make up 36.0 g of magnesium chloride (MgCl2)?
Express the number of formula units numerically.
Answer: There are [tex]2.29\times 10^{23}[/tex] formula units
Explanation:
According to avogadro's law, 1 mole of every substance occupies 22.4 L at STP and contains avogadro's number [tex]6.023\times 10^{23}[/tex] of particles.
To calculate the moles, we use the equation:
[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text {Molar mass}}=\frac{36.0g}{95g/mol}=0.38moles[/tex]
1 mole of [tex]MgCl_2[/tex] contains = [tex]6.023\times 10^{23}[/tex] formula units
Thus 0.38 moles of [tex]MgCl_2[/tex] contains = [tex]\frac{6.023\times 10^{23}}{1}\times 0.38=2.29\times 10^{23}[/tex] formula units
Thus there are [tex]2.29\times 10^{23}[/tex] formula units
Consider the following four solutions: a. NaCl in water b. Acetic acid in water c. Acetic acid in benzene d. Naphthalene in benzene Which of these solutions has the strongest solute-solvent interactions and the interaction is of which type?1. Acetic acid in water; hydrogen bonding2. Acetic acid in benzene; dipole-induced dipole interaction3. NaCl in water; ion-dipole interaction4. Naphthalene in benzene; London Dispersion Forces5. NaCl in water; hydrogen bonding
Answer:
NaCl in water; ion-dipole interaction
Explanation:
Sodium chloride is an ionic solid. Ionic solids dissolve in water due to ion dipole interaction. Ionic solids are composed of an ion pair which are strongly bound by electrostatic interaction between the oppositely charged ions in the solid state.
When an ionic substance is dissolved in water, the positive ion interacts with the negative end of the dipole in water while the negative ion interacts with the positive end of the dipole in water. Hence the ions are pulled apart by this ion-dipole interaction and the crystal structure of the solid collapses as the ionic solid dissolves in water.
Sodium chloride is an ionic solid. Interaction between the sodium ion and the negative end of the dipole in water as well as chloride ion and the positive end of the dipole in water leads to the dissolution of sodium chloride solid in water. This is the strongest solute-solvent interaction in the list.
When The strongest solute-solvent interactions and the interaction the correct option is A NaCl in water; ion-dipole interaction
What is Sodium chloride?
Sodium chloride is an ionic solid. Ionic solids liquefy in water due to ion-dipole interaction. Ionic solids are formed of an ion team that is strongly bound by electrostatic interaction between the differently delegated ions in the solid-state.
When an ionic substance is disbanded in water, the positive ion interacts with the negative end of the dipole in the water while the opposing ion interacts with the positive end of the dipole in water. Therefore the ions are dragged apart by this ion-dipole interaction and also when the crystal configuration of the solid collapses as the ionic solid dissolves in water.
Sodium chloride is an ionic solid. The interchange between the sodium ion and the negative future of the dipole in water as well as the chloride ion and the positive end of the dipole in water leads to the abolishment of sodium chloride solid in water. This is the strongest solute-solvent exchange on the list.
Find more information about Sodium chloride here:
https://brainly.com/question/26880978
What are the correct formulas and coefficients for the products of the following double-replacement reaction? RbOH + H3PO4→
Answer:
3 RbOH + H₃PO₄ → Rb₃PO₄ + 3 H₂O
Explanation:
Let's consider the double-replacement reaction between rubidium hydroxide and phosphoric acid to form rubidium phosphate and water. The cation rubidium replaces the cation hydrogen and the anion hydroxyl replaces the anion phosphate. The balanced chemical reaction is:
3 RbOH + H₃PO₄ → Rb₃PO₄ + 3 H₂O
Explain with examples following characteristics of chemical reactions: a. Change of colour b. Evolution of gas c. Change of smell d. Change of state
Answer:
Explanation:
a. change of colour:
A chemical reaction rearranges the constituent atoms of the reactants to create different substances as products. The products have different molecular structures than the reactants. Different atoms and molecules radiate different colours of light. Hence, there usually is a change in colour during a chemical reaction.
Eg: copper reactions with the elements
b. Evolution of gas:
A gas evolution reaction is a chemical reaction in which one of the end products is a gas such as oxygen or carbon dioxide.
Eg: ammonium hydroxide breaks down to water and ammonia gas.
c. Change of smell :
Production of an Odor Some chemical changes produce new smells. ... The formation of gas bubbles is another indicator that a chemical change may have occured.
Eg: The chemical change that occurs when an egg is rotting produces the smell of sulfur.
d. Change of state:
A chemical reaction is a process in which one or more substances, also called reactants, are converted to one or more different substances, known as products.
Eg: candle wax (solid) melts initially to produce molten wax (liquid)
plz mark as brainliest!!!!
How many moles of carbon atoms are there in 0.500 mol of C2H6?
The number of moles of carbon atoms in 0.500 mol of ethane (C₂H₆) is equal to one mole.
What is a mole?A mole can be defined as a scientific unit that is utilized to calculate the quantities such as atoms, molecules, ions, or other particular particles. The mass of one mole of a given chemical element is atomic mass and that of 1 mole of a chemical compound is molar mass.
The number of entities found in one mole is equal to 6.023 × 10 ²³ which is known as Avogadro’s constant.
Given, the number of moles of C₂H₆ = 0.500 mole
One molecule of ethane has carbons = 2
One mole of ethane has moles of carbons = 2 moles
0.500 mol of ethane has moles of carbon atoms = 0.500×2 = 1 mol
Therefore, one mole of carbon atoms is present in 0.500 mol of ethane C₂H₆.
Learn more about the mole, here:
brainly.com/question/26416088
#SPJ5
what is the value of the equilibrium constant at 500k for a chemical equilivrium that has a delta h value of 250kj mol and s value of 48 j mol k
Rubidium has two naturally occurring isotopes. The average atomic mass of Rb is 85.4678 amu. If 72.15% of Rb is found as Rb-85 (84.9117 amu), what is the mass of the other isotope?
Answer:
x = 86.908 amu
Explanation:
Average mass of isotope = 85.4678 amu
Rb-85 = 84.9117 amu, Percentage = 72.15% = 0.7215
Other isotope = x, Percentage = 100 - 72.15 = 27.85% = 0.2785
Average mass = (Percentage * Mass of Rb-85) + (Percentage * Mass of Rb-87)
85.4678 = (0.7215 * 84.9117) + (0.2785 * x)
85.4678 = 61.2638 + 0.2785x
0.2785x = 24.204
x = 24.204 / 0.2785
x = 86.908 amu
86.908 amu
It is given that:
Average atomic mass of Rb = 85.4678 amu.
Also the mass of Rb-85 = 84.9117 amu and its Percentage = 72.15% = 0.7215
Let the mass of other isotope (Rb-87) = x
So, Percentage of other isotope (Rb-87) = 100 - 72.15 = 27.85% = 0.2785
Average mass = (Percentage * Mass of Rb-85) + (Percentage * Mass of Rb-87)
85.4678 = (0.7215 * 84.9117) + (0.2785 * x)
85.4678 = 61.2638 + 0.2785x
0.2785 x = 24.204
x = 24.204 / 0.2785
x = 86.908 amu
Learn more:
https://brainly.com/question/364529
Use your trendline equation to determine the gas pressure at 200 K and 400 K. (notice the temperature units) How many times greater is the pressure at 400 K in comparison to 200 K? Is this what you’d expect? Why?
Answer:
The pressure will be twice the initial pressure
Explanation:
Gay-Lussac's law states that the pressure of a gas is directely proportional to absolute temperature under constant volume. That is because vibrations of a gas increase when temperature increases, increasing the pressure of the gas.
That means if the temperature of a gas is doubled, the pressure will be twice the initial pressure.
why is copper and iron are used for cooking utensils
Answer:
because according to the electron sea model they are good conductor of heat so,they can be used for cooking.
Which pair of factors affects the force of gravity between objects
Answer:
The Answer is B. Mass and distance
Explanation:
Trust me lol
Answer:mass and distance
Explanation:
Vitamin c is known chemically by the name ascorbic acid determine the empirical formula of ascorbic acid if it is composed of 40.92% carbon, 4.58% hydrogen, and 54.50% oxygen.
Answer:
[tex]=C_3H_4O_3[/tex]
Explanation:
When percentage composition is given, and asked for the empirical formula, it is simplest to assume 100 g of material. Thus,
Mass C = 40.92 g. Moles C = 40.92 g x 1 mole/12 g = 3.41 moles C
Mass H = 4.58 g. Moles H = 4.58 g x 1 mole/1.0 g = 4.58 moles H
Mass O = 54.50 g. Moles O = 54.50 g x 1 mole/16 g = 3.41 moles O
Now, we want to get the moles into whole numbers, so we begin by dividing all by the smallest, i.e. divide all values by 3.41.
Moles C = 3.41/3.41 = 1
Moles H = 4.58/3.41 = 1.34
Moles O = 3.41/3.41 = 1
Now, in order to get 1.34 to be a whole number we multiply it (and all others) by 3
Moles C = 1x3 = 3
Moles H = 1.34x3 = 4
Moles O = 1x3 = 3
Empirical Formula [tex]=C_3H_4O_3[/tex]
A silver cube with an edge length of 2.42 cm and a gold cube with an edge length of 2.75 cm are both heated to 85.4 ∘C and placed in 112.0 mL of water at 20.5 ∘C . What is the final temperature of the water when thermal equilibrium is reached?
Answer:
Explanation:
Volume of silver cube = 2.42³ = 14.17 cm³
mass of silver cube = volume x density
= 14.17 x 10.49 = 148.64 gm
Volume of gold cube = 2.75³ = 20.8 cm³
mass of gold cube = 20.8 x 19.3 = 401.44 gm
specific heat of silver and gold are .24 and .129 J /g°C
mass of 112 mL water = 112 g
Heat absorbed = heat lost = mass x specific heat x temperature fall or rise
Heat lost by metals
= 148.64 x .24 x ( 85.4 -T) + 401.44 x .129 x ( 85.4 - T )
= (35.67 + 51.78 ) x ( 85.4 - T )
87.45 x ( 85.4 - T )
= 7468.23 - 87.45 T
Heat gained by water
= 112 x 1 x ( T - 20.5 )
= 112 T - 2296
Heat lost = heat gained
7468.23 - 87.45 T = 112 T - 2296
199.45 T = 9764.23
T = 48.95° C
Which element's neutral atoms will have the electron configuration
1s22s22p3s23p'?
a. boron
b. carbon
c. silicon
d. aluminum
Answer:
Alumunium
Explanation:
Alumunium = [Ne] 3s² 3p¹
Ne = [He]2s²2p⁶
He = 1s
Alumunium = 1s 2s²2p⁶3s² 3p¹
Answer:
D
Explanation:
1. Corrosion in metals is an example of what?
Answer:
In the most common use of the word, this means electrochemical oxidation of metal in reaction with an oxidant such as oxygen or sulfates. Rusting, the formation of iron oxides, is a well-known example of electrochemical corrosion.A balloon filled with helium has a volume of 4.5 × 103 L at 25°C. What volume will the balloon occupy at 50°C if the pressure surrounding the balloon remains constant?
Answer:
[tex]V_2 = 4.87 * 10^3[/tex]
Explanation:
This question is an illustration of ideal Gas Law;
The given parameters are as follows;
Initial Temperature = 25C
Initial Volume = 4.5 * 10³L
Required
Calculate the volume when temperature is 50C
NB: Pressure remains constant;
Ideal Gas Law states that;
[tex]PV = nRT[/tex]
The question states that the pressure is constant; this implies that the constant in the above formula are P, R and n
Divide both sides by PT
[tex]\frac{PV}{PT} = \frac{nRT}{PT}[/tex]
[tex]\frac{V}{T} = \frac{nR}{P}[/tex]
Represent [tex]\frac{nR}{P}[/tex] with k
[tex]\frac{V}{T} = k[/tex]
[tex]k = \frac{V_1}{T_1} = \frac{V_2}{T_2}[/tex]
At this point, we can solve for the required parameter using the following;
[tex]\frac{V_1}{T_1} = \frac{V_2}{T_2}[/tex]
Where V1 and V2 represent the initial & final volume and T1 and T2 represent the initial and final temperature;
From the given parameters;
V1 = 4.5 * 10³L
T1 = 25C
T2 = 50C
Convert temperatures to degree kelvin
V1 = 4.5 * 10³L
T1 = 25 +273 = 298K
T2 = 50 + 273 = 323K
Substitute values for V1, T1 and T2 in [tex]\frac{V_1}{T_1} = \frac{V_2}{T_2}[/tex]
[tex]\frac{4.5 * 10^3}{298} = \frac{V_2}{323}[/tex]
Multiply both sides by 323
[tex]323 * \frac{4.5 * 10^3}{298} = \frac{V_2}{323} * 323[/tex]
[tex]323 * \frac{4.5 * 10^3}{298} = V_2[/tex]
[tex]V_2 = 323 * \frac{4.5 * 10^3}{298}[/tex]
[tex]V_2 = \frac{323 * 4.5 * 10^3}{298}[/tex]
[tex]V_2 = \frac{1453.5 * 10^3}{298}[/tex]
[tex]V_2 = 4.87 * 10^3[/tex]
Hence, the final volume at 50C is [tex]V_2 = 4.87 * 10^3[/tex]
Describe the formation of an aqueous libr solution when solid libr dissolves in water
Fill in the blanks with words given below.
K and I atoms
K and IF ions
dissociation
atoms
KI molecules
polar dilution
hydration
molecules ions
nonpolar
At the_______ surface of the solid _____________are pulled into solution by___________ the water molecules, where the______________ process surrounds separate with water molecules.
Answer and Explanation:
The water is a polar solvent which dissolves into the LiBr molecules and converts into [tex]Li^+[/tex] and [tex]Br^-[/tex] ions far from the solid also into the solution, when they are hydrated.
Now, the complete words are as given below:-
The [tex]K^+[/tex] and [tex]I^-[/tex] ions at the surface of the solid are pulled into the solution by the polar water molecules, where the hydration process surrounds separate ions with water molecules.
LiBr has been the ionic compound and has been dissociated in the water by the force of the polar water molecules. The water molecules that have been polar in nature exert the force onto the ionic compounds and help in the dissociation.
At the dissociation surface of the solid KI molecules, are pulled into the solution by the polar water molecules, where the hydration process surrounds ions and separates them with water molecules.
For more information about the hydration process, refer to the link:
https://brainly.com/question/939764
The percent yield (isolation yield) of guaifenesin isolated from a 650 mg tablet containing 400 mg dose of drug, can be expressed as: Group of answer choices
Answer:
61.54%
Explanation:
Hello,
To calculate the percent yield of a product, we express it as ratio between the actual yield to the theoretical yield multiplied by 100.
Percent yield = (actual yield / theoretical yield) × 100
Actual yield = 400mg
Theoretical yield = 650mg
Percent yield = (400 / 650) × 100
Percent yield = 0.6154 × 100
Percent yield = 61.54%
Percent yield of guaifenesin in the drug is 61.54%
What are the three types of combustion reactions
Answer:
Slow combustion
Spontaneous combustion
Explosive combustion
Explanation:
-Slow combustion reactions: Occurs at low temperatures. Cellular respiration is an example.
-Spontaneous combustion reactions: Occurs suddenly without an outside heat source. The heat source is the result of oxidation.
-Explosive combustion reactions: Involves an oxidizing agent.
hopefully this helped :3
Answer:
Three types are: Rapid Combustion, Complete Combustion, and Spontaneous Combustion.
Explanation:
Note: there are more types! This is just three random ones I picked to list. Hope this helps! :)
A cylindrical rod of length 1 m and radius 1 cm is submerged in water. The rod has a non-uniform mass distribution such that one half of the rod is much more massive than the other half. At which point in the rod can the buoyant force be considered to be acting?
A) at the rod's geometrical center
B) two of the given choices are correct
C) none of these
D) at the rod's center of mass
E) at the rod's center of gravity
Answer:
A) at the rod's geometrical center
Explanation:
Let us assume that the rod is replaced by water. And now this water volume is in translational and in rotational equilibrium.
Therefore, a net upward force must have been exerted by the surrounding liquid which acts at the center of mass of the water volume.
This force determines through the geometric center of the column of the cylindrical water
Moreover, the force is also independent of submerged body into it
Hence, the first option is correct
Identify the particle that must receive 2 electrons to acquire a charge of +1. a) K b) Fe2+ c) O2- d) Nee) Al3+ (URGENT) Needs to be done in 30 mins
Answer:
E) Al³⁺
Explanation:
A reaction involving a gain of electrons is known as a reduction reaction because the oxidation number of the species gaining the electron is reduced.
In the given question, the oxidation number (charge) of particle accepting two electrons will decrease by 2. From the given options;
A. K is a neutral atom with oxidation number of 0. If is accepts two electrons, its oxidation number becomes -2.
K + 2e⁻ ----> K⁻²
B) Fe²⁺ has a charge of +2. If it accepts two electrons, its charge comes 0.
Fe⁺ + 2e⁻ ----> Fe
C) O²⁻ has a charge of -2. if it accepts two electrons, it will have a charge of -4.
O²⁻ + 2e⁻ ----> O⁴⁻
D) Ne has a charge of zero. If it accepts two electrons, its charge becomes -2.
Ne + 2e⁻ ----> Ne²⁻
E) Al³⁺ has a charge of +3. If it gains two electrons, its charge becomes +1.
Al³⁺ + 2e⁻ ----> Al⁺
Kinetic energy and gravitational potential energy are both forms of which type
of energy?
A. Internal energy
B. Mechanical energy
C. Potential energy
D. Thermal energy
Answer:
C. Potential energy
Explanation:
Kinetic energy and gravitational potential energy are both forms of potential energy. Potential energy is stored energy, when an object is not in motion it has stored energy. When an object is an motion it has kinetic energy. An object posses gravitational potential energy when it is above or below the zero height.
what bonding is similar to ionic bonding, except there are no high-electronegativity atosms present to accept any electrons that the present atoms are willing to donate.
Answer:
Metallic bonding
Explanation:
Ionic bonding involves the transfer of electrons from a highly electropositive metal to a highly electronegative nonmetal.
The metallic bond is somewhat similar to the ionic bond since there are also charged positive metal ions. The only difference is that there isn't any electronegative element that accepts the electrons.
In a metallic bond, the positively charged metal ions are bound together by a sea of mobile electrons. The attractive force between the metal ions and the mobile electrons hold the metallic crystal lattice together.
need this asap , help please
Answer:
Path A-B-D involves a catalyst and is slower than A-C-D
Explanation:
The diagram above illustrates both the catalyzed path and the uncatalyzed path of a chemical reaction.
The catalysed path is the path expressed with broken lines and the uncatalyzed path is the path expressed with thick small line as shown in the diagram above.
The catalyzed path has a higher activation energy than the uncatalyzed path.
Therefore, the catalyzed path will be slower that the uncatalyzed path because, the catalyzed path will require a higher energy to overcome the activation energy in order for the reaction to proceed to product.
On the other hand, the uncatalyzed path has a lower activation energy and a lesser amount of energy is needed to overcome it in order for the reaction to proceed to product.