Given is the integer programming problem { } 1 2 1 2 1 2 1 2 max 1.2 . . 1 0.8 1.1 1 , 0, 1 y y s t y y y y y y + + ≤ + ≤ ∈ a) Plot the contours of the objective and the feasible region for the case when the binary variables are relaxed as continuous variables y1, y2 ∈ [0, 1]. b) Determine from inspection the solution of the relaxed problem (i.e. finding the solution by inspecting each feasible solution in the plot). c) Enumerate the four 0-1 combinations in your plot (for all possible values of y1, y2) to find the optimal solution.

Answers

Answer 1

a) To plot the contours of the objective and the feasible region, we first need to convert the given integer programming problem into a linear programming problem by relaxing the binary variables. The problem becomes:

Maximize 1.2y1 + 0.8y2 + 1.1y3
Subject to:
y1 + y2 + y3 ≤ 1
0 ≤ y1 ≤ 1
0 ≤ y2 ≤ 1
0 ≤ y3 ≤ 1

By substituting y3 = 1 - y1 - y2 into the objective function, we can rewrite it as:
Maximize 1.2y1 + 0.8y2 + 1.1(1 - y1 - y2)

b) By inspecting the plot, we find the solution of the relaxed problem by locating the point where the objective function is maximized within the feasible region.

c) Enumerating the four 0-1 combinations in the plot involves evaluating the objective function for all possible values of y1 and y2 within the feasible region. This can be done by substituting the values of y1 and y2 into the objective function and calculating the resulting value. The combination that gives the maximum value is the optimal solution.

To know more about contours visit

https://brainly.com/question/30418296

#SPJ11


Related Questions

Use the following problem to answer questions 7 and 8. MaxC=2x+10y 5x+2y≤40 x+2y≤20 y≥3,x≥0 7. Give the corners of the feasible set. a. (0,3),(0,10),(6.8,3),(5,7.5) b. (0,20),(5,7.5),(14,3) c. (5,7.5),(6.8,3),(14,3) d. (0,20),(5,7.5),(14,3),(20,0) e. (0,20),(5,7.5),(20,0) 8. Give the optimal solution. a. 200 b. 100 c. 85 d. 58 e. 40

Answers

The corners of the feasible set are:

b. (0,20), (5,7.5), (14,3)

To find the corners of the feasible set, we need to solve the given set of inequalities simultaneously. The feasible set is the region where all the inequalities are satisfied.

The inequalities given are:

5x + 2y ≤ 40

x + 2y ≤ 20

y ≥ 3

x ≥ 0

From the inequality x + 2y ≤ 20, we can rearrange it to y ≤ (20 - x)/2.

Since y ≥ 3, we can combine these two inequalities to get 3 ≤ y ≤ (20 - x)/2.

From the inequality 5x + 2y ≤ 40, we can rearrange it to y ≤ (40 - 5x)/2.

Since y ≥ 3, we can combine these two inequalities to get 3 ≤ y ≤ (40 - 5x)/2.

Now, let's check the corners by substituting the values:

For (0, 20):

3 ≤ 20/2 and 3 ≤ (40 - 5(0))/2, which are both true.

For (5, 7.5):

3 ≤ 7.5 ≤ (40 - 5(5))/2, which are all true.

For (14, 3):

3 ≤ 3 ≤ (40 - 5(14))/2, which are all true.

Therefore, the corners of the feasible set are (0,20), (5,7.5), and (14,3).

The corners of the feasible set are (0,20), (5,7.5), and (14,3) - option d.

The optimal solution is:

c. 85

To find the optimal solution, we need to evaluate the objective function at each corner of the feasible set and choose the maximum value.

The objective function is MaxC = 2x + 10y.

For (0,20):

MaxC = 2(0) + 10(20) = 0 + 200 = 200.

For (5,7.5):

MaxC = 2(5) + 10(7.5) = 10 + 75 = 85.

For (14,3):

MaxC = 2(14) + 10(3) = 28 + 30 = 58.

Therefore, the maximum value of the objective function is 85, which occurs at the corner (5,7.5).

The optimal solution is 85 - option c.

To know more about corners, visit;
https://brainly.com/question/30466188
#SPJ11

Need C) and D) answered
Slimey Inc. manufactures skin moisturizer. The graph of the cost function C(x) is shown below. Cost is measured in dollars and x is the number of gallons moisturizer. a. Is C(40)=1200 \

Answers

C(40)=1200b. The marginal cost (MC) function is the derivative of the cost function with respect to the number of gallons (x).MC(x) = dC(x)/dx find MC(40), we need to find the derivative of C(x) at x = 40.

Given that Slimey Inc. manufactures skin moisturizer, where cost is measured in dollars and x is the number of gallons of moisturizer.

The cost function is given as C(x) and its graph is as follows:Image: capture. png. To find out whether C(40)=1200, we need to look at the y-axis (vertical axis) and x-axis (horizontal axis) of the graph.

The vertical axis is the cost axis (y-axis) and the horizontal axis is the number of gallons axis (x-axis). If we move from 40 on the x-axis horizontally to the cost curve and from there move vertically to the cost axis (y-axis), we will get the cost of producing 40 gallons of moisturizer. So, the value of C(40) is $1200.

From the given graph, we can observe that when x = 40, the cost curve is tangent to the curve of the straight line joining (20, 600) and (60, 1800).

So, the cost function C(x) can be represented by the following equation when x = 40:y - 600 = (1800 - 600)/(60 - 20)(x - 20) Simplifying, we get:y = 6x - 180

Thus, C(x) = 6x - 180Therefore, MC(x) = dC(x)/dx= d/dx(6x - 180)= 6Hence, MC(40) = 6. Therefore, MC(40) = 6.

For more such questions on marginal cost

https://brainly.com/question/17230008

#SPJ8

Let BV ={v1,v2,…,vn} be the (ordered) basis of a vector space V. The linear operator L:V→V is defined by L(vk )=vk +2vk−1 for k=1,2,…,n. (We assume that v0 =0.) Compute the matrix of L with respect to the basis BV .

Answers

The matrix representation of the linear operator L with respect to the basis BV is obtained by applying the formula L(vk) = vk + 2vk-1 to each basis vector vk in the given order.

To compute the matrix of the linear operator L with respect to the basis BV, we need to determine how L maps each basis vector onto the basis vectors of V.

Given that L(vk) = vk + 2vk-1, we can write the matrix representation of L as follows:

| L(v1) |   | L(v2) |   | L(v3) |   ...   | L(vn) |

| L(v2) |   | L(v3) |   | L(v4) |   ...   | L(vn+1) |

| L(v3) |   | L(v4) |   | L(v5) |   ...   | L(vn+2) |

|   ...   | = |   ...   | = |   ...   |  ...    |   ...    |

| L(vn) |   | L(vn+1) |   | L(vn+2) |   ...   | L(v2n-1) |

Now let's compute each entry of the matrix using the given formula:

The first column of the matrix corresponds to L(v1):

L(v1) = v1 + 2v0 = v1 + 2(0) = v1

The second column corresponds to L(v2):

L(v2) = v2 + 2v1

The third column corresponds to L(v3):

L(v3) = v3 + 2v2

And so on, until the nth column.

The matrix of L with respect to the basis BV can be written as:

| v1      L(v2)      L(v3)     ...   L(vn)      |

| v2      L(v3)      L(v4)     ...   L(vn+1) |

| v3      L(v4)      L(v5)     ...   L(vn+2) |

|   ...        ...          ...           ...         ...           |

| vn     L(vn+1)  L(vn+2)  ...   L(v2n-1) |

Learn more about linear operator here :-

https://brainly.com/question/30891905

#SPJ11

Suppose a ball thrown in to the air has its height (in feet ) given by the function h(t)=6+96t-16t^(2) where t is the number of seconds after the ball is thrown Find the height of the ball 3 seconds a

Answers

The height of the ball at 3 seconds is 150 feet.

To find the height of the ball at 3 seconds, we substitute t = 3 into the given function h(t) = 6 + 96t - 16t^2.

Step 1: Replace t with 3 in the equation.

h(3) = 6 + 96(3) - 16(3)^2

Step 2: Simplify the expression inside the parentheses.

h(3) = 6 + 288 - 16(9)

Step 3: Calculate the exponent.

h(3) = 6 + 288 - 144

Step 4: Perform the multiplication and subtraction.

h(3) = 294 - 144

Step 5: Compute the final result.

h(3) = 150

Therefore, the height of the ball at 3 seconds is 150 feet.

learn more about "function ":- https://brainly.com/question/22340031

#SPJ11

Suppose a ball thrown in to the air has its height (in feet ) given by the function h(t)=6+96t-16t^(2) where t is the number of seconds after the ball is thrown Find the height of the ball 3 seconds after it is thrown

g identify the straight-line solutions. b) write the general solution. c) describe the behavior of solutions, including classifying the equilibrium point at (0, 0).

Answers

1. The straight-line solutions are of the form y = kx + c, where k and c are constants.

2. The general solution is f(x) = kx + c, where k and c can be any real numbers.

3. The behavior of solutions depends on the value of k: if k > 0, the solutions increase as x increases; if k < 0, the solutions decrease as x increases; and if k = 0, the solutions are horizontal lines. The equilibrium point at (0, 0) is classified as a stable equilibrium point.

a) To identify the straight-line solutions, we need to find the points on the graph where the slope is constant. This means the derivative of the function with respect to x is a constant. Let's assume our function is f(x).

So, we have f'(x) = k, where k is a constant.

By integrating both sides, we get f(x) = kx + c, where c is an arbitrary constant.

Therefore, the straight-line solutions are of the form y = kx + c, where k and c are constants.

b) The general solution can be written as f(x) = kx + c, where k and c can be any real numbers.

c) The behavior of solutions depends on the value of k.
- If k > 0, the solutions will be increasing lines as x increases.
- If k < 0, the solutions will be decreasing lines as x increases.
- If k = 0, the solutions will be horizontal lines.

The equilibrium point at (0, 0) is classified as a stable equilibrium point because any small disturbance will bring the system back to the equilibrium point.

In summary, the straight-line solutions are of the form y = kx + c, where k and c are constants. The behavior of solutions depends on the value of k, and the equilibrium point at (0, 0) is a stable equilibrium point.

Learn more about equilibrium points:

https://brainly.com/question/32765683

#SPJ11

Assume a person is 5.67 feet tall. Using transit the angle of depression to the point of the line 20.71° was measured. The angle of depression to the end of the line is 12.78° . Estimate how long one of those highway lines actually is.

Answers

To estimate the length of the highway line, we can use the concept of trigonometry and the information given.

Let's denote the length of the highway line as "L" (in feet).

From the given information, we know that the person's height is 5.67 feet, the angle of depression to the point on the line is 20.71°, and the angle of depression to the end of the line is 12.78°.

Using trigonometry, we can set up the following equation based on the tangent function:

tan(angle of depression) = height of person / distance to the point on the line

tan(20.71°) = 5.67 / distance to the point on the line

Similarly, for the end of the line:

tan(12.78°) = 5.67 / (distance to the point on the line + L)

Now we can solve these two equations simultaneously to find the value of L, the length of the highway line.

Using the given values and solving the equations, we can find the estimated length of the highway line.

Learn more about trigonometry here:

https://brainly.com/question/11016599

#SPJ11

Give an English language description of the regular expression (0 ∗
1 ∗
) ∗
000(0+1) ∗

Answers

To write it in English, we can say the regular expression matches strings that have any number of repetitions of a pattern consisting of consecutive 0s followed by consecutive 1s, followed by the sequence 000, and ending with any number of consecutive 0s or 1s.

The regular expression (0 ∗ 1 ∗) ∗ 000(0+1) ∗ can be described in English as follows:

This regular expression matches any string that follows the following pattern:

1. It can start with any number (including zero) of consecutive 0s, followed by any number (including zero) of consecutive 1s. This pattern can repeat any number of times.

2. After the previous pattern, the string must contain the sequence 000.

3. After the sequence 000, the string can have any number (including zero) of consecutive 0s or 1s.

To know more about regular expression, visit:

https://brainly.com/question/32344816#

#SPJ11

Please answer the (b)(ii)
b) The height h(t) of a ferris wheel car above the ground after t minutes (in metres) can be modelled by: h(t)=15.55+15.24 sin (8 \pi t) . This ferris wheel has a diameter of 30.4

Answers

(b)(ii)  The maximum height of the ferris wheel car above the ground is 30.79 meters.

To find the maximum and minimum height of the ferris wheel car above the ground, we need to find the maximum and minimum values of the function h(t).

The function h(t) is of the form h(t) = a + b sin(c t), where a = 15.55, b = 15.24, and c = 8π. The maximum and minimum values of h(t) occur when sin(c t) takes on its maximum and minimum values of 1 and -1, respectively.

Maximum height:

When sin(c t) = 1, we have:

h(t) = a + b sin(c t)

= a + b

= 15.55 + 15.24

= 30.79

Therefore, the maximum height of the ferris wheel car above the ground is 30.79 meters.

Minimum height:

When sin(c t) = -1, we have:

h(t) = a + b sin(c t)

= a - b

= 15.55 - 15.24

= 0.31

Therefore, the minimum height of the ferris wheel car above the ground is 0.31 meters.

Note that the diameter of the ferris wheel is not used in this calculation, as it only provides information about the physical size of the wheel, but not its height at different times.

Learn more about "ferris wheel car" : https://brainly.com/question/11306671

#SPJ11

Consider the function f(x)=x2−11​ for {x∈R,x=±1}. Using the definition of the derivative (or by First Principles) we can get: f′(x)=limh→0​(h(x2−1)(x2+2xh+h2−1)x2−1−(x2+2xh+h2−1)​) (i) Write the first step of working that must have been done. [2 marks] (ii) From the equation given in the question, use algebraic techniques and the tool of the limit to give the derivative for f(x) [3 marks ].

Answers

(i) The first step in finding the derivative using the definition of the derivative is to define the function as f(x) = x² - 11.

(ii) By substituting f(x) = x² - 11 into the equation and simplifying, we find that the derivative of f(x) is f'(x) = 2x.

(i) The first step in finding the derivative of the function using the definition of the derivative is as follows:

Let's define the function as f(x)=x²-11. Now, using the definition of the derivative, we can write:

f'(x)= lim h → 0 (f(x + h) - f(x)) / h

(ii) To get the derivative of f(x), we will substitute f(x) with the given value in the question f(x)=x²-11 in the above equation.

f'(x) = lim h → 0 [(x + h)² - 11 - x² + 11] / h

Using algebraic techniques and simplifying, we get,

f'(x) = lim h → 0 [2xh + h²] / h = lim h → 0 [2x + h] = 2x

Therefore, the derivative of the given function f(x) = x² - 11 is f'(x) = 2x.

Learn more about finding derivatives:

https://brainly.com/question/29020856

#SPJ11

Chloe loans out a sum of $1,000 every quarter to her associates at an interest rate of 4%, compounded quarterly. How much does she stand to gain if er loans are repaid after three years? A) $15,025.8 B)$15,318.6

Answers

A) $15,025.8. is the correct option. Chloe loans out a sum of $1,000 every quarter to her associates at an interest rate of 4%, compounded quarterly. She stand to get $15,025.8. if er loans are repaid after three years.

Chloe loans out a sum of $1,000 every quarter to her associates at an interest rate of 4%, compounded quarterly.

We need to find how much she stands to gain if er loans are repaid after three years.

Calculation: Semi-annual compounding = Quarterly compounding * 4 Quarterly interest rate = 4% / 4 = 1%

Number of quarters in three years = 3 years × 4 quarters/year = 12 quarters

Future value of $1,000 at 1% interest compounded quarterly after 12 quarters:

FV = PV(1 + r/m)^(mt) Where PV = 1000, r = 1%, m = 4 and t = 12 quartersFV = 1000(1 + 0.01/4)^(4×12)FV = $1,153.19

Total amount loaned out in 12 quarters = 12 × $1,000 = $12,000

Total interest earned = $1,153.19 - $12,000 = $-10,846.81

Therefore, Chloe stands to lose $10,846.81 if all her loans are repaid after three years.

Hence, the correct option is A) $15,025.8.

To know more about compounded quarterly visit:

brainly.com/question/33359365

#SPJ11

comparison between DES and AES and what is the length of the block and give Round about one of them

Answers

DES (Data Encryption Standard) and AES (Advanced Encryption Standard) are both symmetric encryption algorithms used to secure sensitive data.

AES is generally considered more secure than DES due to its larger key sizes and block sizes. DES has a fixed block size of 64 bits, while AES can have a block size of 128 bits. In terms of key length, DES uses a 56-bit key, while AES supports key lengths of 128, 192, and 256 bits.

AES also employs a greater number of rounds in its encryption process, providing enhanced security against cryptographic attacks. AES is widely adopted as a global standard, recommended by organizations such as NIST. On the other hand, DES is considered outdated and less secure. It is important to note that AES has different variants, such as AES-128, AES-192, and AES-256, which differ in the key length and number of rounds.

To know more about encryption algorithms,

https://brainly.com/question/31831935

#SPJ11

g the integral \int 0^1 \int 0^{y^2}\int 0^{1-y} f(x,y,z) \; dz \; dx \; dy equals: (hint: carefully draw a 3d sketch of the domain

Answers

The integral  [tex]\int_{0}^{1}\int_{0}^{y^2}\int_{0}^{1-y}f(x,y,z)dz dy dx[/tex]  represents the accumulation or area under the function f(x,y,z) over the specified region of integration. The specific value of the integral cannot be determined without knowing the function f(x,y,z).

The given triple integral is:   [tex]\int_{0}^{1}\int_{0}^{y^2}\int_{0}^{1-y}f(x,y,z)dz dy dx[/tex]

To solve this triple integral, we start from the innermost integral and work our way out. Let's go step by step:

   1. First, we integrate with respect to the innermost variable, which is 'z'. Here, we integrate the function f(x,y,z) with respect to 'z' while keeping 'x' and 'y' constant. The limits of integration for 'z' are from 0 to 1 - y.

   2. Once we integrate with respect to 'z', we move to the next integral. This time, we integrate the result obtained from the previous step with respect to 'y'. Here, we integrate the function obtained from the previous step with respect to 'y' while keeping 'x' constant. The limits of integration for 'y' are from 0 to 2y².

   3. Finally, after integrating with respect to 'y', we move to the outermost integral. This time, we integrate the result obtained from the previous step with respect to 'x'. The limits of integration for 'x' are from 0 to 1.

Now, the exact form of the function f(x,y,z) is not provided in the question, so we cannot determine the specific value of the integral. However, we can still provide a general expression for the integral:

[tex]\int_{0}^{1}\int_{0}^{y^2}\int_{0}^{1-y}f(x,y,z)dz dy dx[/tex]

In summary, we have a triple integral where we integrate a function f(x,y,z) with respect to 'z', then 'y', and finally 'x', while considering the given limits of integration.

To know more about integral here

https://brainly.com/question/18125359

#SPJ4

Complete Question:

The integral [tex]\int_{0}^{1}\int_{0}^{y^2}\int_{0}^{1-y}f(x,y,z)dz dy dx[/tex] equals

Hi, please help me with this question. I would like an explanation of how its done, the formula that is used, etc.
The largest of 123 consecutive integers is 307. What is the smallest?

Answers

Therefore, the smallest of the 123 consecutive integers is 185.

To find the smallest of 123 consecutive integers when the largest is given, we can use the formula:

Smallest = Largest - (Number of Integers - 1)

In this case, the largest integer is 307, and we have 123 consecutive integers. Plugging these values into the formula, we get:

Smallest = 307 - (123 - 1)

= 307 - 122

= 185

To know more about integers,

https://brainly.com/question/15015575

#SPJ11

The function f(c) = 7.25 + 2.65c represents the cost of Mr. Franklin to attend a buffet with c members of her grandchildren. What is the y-intercept and slope of this function?

Answers

Answer:

Step-by-step explanation:

the slope and y-intercept are already mentioned in the equation itself.

the slope is 72.65

the y-intercept is 7.25

Suppose someone wants to accumulate $ 55,000 for a college fund over the next 15 years. Determine whether the following imestment plans will allow the person to reach the goal. Assume the compo

Answers

Without knowing the details of the investment plans, such as the interest rate, the frequency of compounding, and any fees or taxes associated with the investment, it is not possible to determine whether the plans will allow the person to accumulate $55,000 over the next 15 years.

To determine whether an investment plan will allow a person to accumulate $55,000 over the next 15 years, we need to calculate the future value of the investment using compound interest. The future value is the amount that the investment will be worth at the end of the 15-year period, given a certain interest rate and the frequency of compounding.

The formula for calculating the future value of an investment with compound interest is:

FV = P * (1 + r/n)^(n*t)

where FV is the future value, P is the principal (or initial investment), r is the annual interest rate (expressed as a decimal), n is the number of times the interest is compounded per year, and t is the number of years.

To determine whether an investment plan will allow the person to accumulate $55,000 over the next 15 years, we need to find an investment plan that will yield a future value of $55,000 when the principal, interest rate, frequency of compounding, and time are plugged into the formula. If the investment plan meets this requirement, then it will allow the person to reach the goal of accumulating $55,000 for a college fund over the next 15 years.

Without knowing the details of the investment plans, such as the interest rate, the frequency of compounding, and any fees or taxes associated with the investment, it is not possible to determine whether the plans will allow the person to accumulate $55,000 over the next 15 years.

Learn more about "compound interest" : https://brainly.com/question/28020457

#SPJ11

What is ABC in Pythagorean Theorem?

Answers

The ABC in the Pythagorean Theorem refers to the sides of a right triangle.

The theorem states that in a right triangle, the square of the length of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the other two sides. The formula is written as a^2 + b^2 = c^2, where "a" and "b" are the lengths of the legs of the triangle, and "c" is the length of the hypotenuse.

For example, let's consider a right triangle with side lengths of 3 units and 4 units. We can use the Pythagorean Theorem to find the length of the hypotenuse.

a^2 + b^2 = c^2
3^2 + 4^2 = c^2
9 + 16 = c^2
25 = c^2

Taking the square root of both sides, we find that c = 5. So, in this case, the ABC in the Pythagorean Theorem represents a = 3, b = 4, and c = 5.

In summary, the ABC in the Pythagorean Theorem refers to the sides of a right triangle, where a and b are the lengths of the legs, and c is the length of the hypotenuse. The theorem allows us to calculate the length of one side when we know the lengths of the other two sides.


Learn more about Pythagorean Theorem from the link given below:

brainly.com/question/14930619

#SPJ11

given a function f : a → b and subsets w, x ⊆ a, then f (w ∩ x) = f (w)∩ f (x) is false in general. produce a counterexample.

Answers

Therefore, f(w ∩ x) = {0} ≠ f(w) ∩ f(x), which shows that the statement f(w ∩ x) = f(w) ∩ f(x) is false in general.

Let's consider the function f: R -> R defined by f(x) = x^2 and the subsets w = {-1, 0} and x = {0, 1} of the domain R.

f(w) = {1, 0} and f(x) = {0, 1}, so f(w) ∩ f(x) = {0}.

On the other hand, w ∩ x = {0}, and f(w ∩ x) = f({0}) = {0}.

To know more about statement,

https://brainly.com/question/31502625

#SPJ11

The magnitude of an earthquake can be modeled by the foula R=log( I0=I ), where I0=1, What is the magnitude of an earthquake that is 4×10 ^7
times as intense as a zero-level earthquake? Round your answer to the nearest hundredth.

Answers

The magnitude of the earthquake that is 4×10^7 times as intense as a zero-level earthquake is approximately 7.60.

The magnitude of an earthquake can be modeled by the formula,

R = log(I0/I), where I0 = 1 and I is the intensity of the earthquake.

The magnitude of an earthquake that is 4×[tex]10^7[/tex] times as intense as a zero-level earthquake can be found by substituting the value of I in the formula and solving for R.

R = log(I0/I) = log(1/(4×[tex]10^7[/tex]))

R = log(1) - log(4×[tex]10^7[/tex])

R = 0 - log(4×[tex]10^7[/tex])

R = log(I/I0) = log((4 × [tex]10^7[/tex]))/1)

= log(4 × [tex]10^7[/tex]))

= log(4) + log([tex]10^7[/tex]))

Now, using logarithmic properties, we can simplify further:

R = log(4) + log([tex]10^7[/tex])) = log(4) + 7

R = -log(4) - log([tex]10^7[/tex])

R = -0.602 - 7

R = -7.602

Therefore, the magnitude of the earthquake is approximately 7.60 when rounded to the nearest hundredth.

Thus, the magnitude of an earthquake that is 4 × [tex]10^7[/tex] times as intense as a zero-level earthquake is 7.60 (rounded to the nearest hundredth).

For more related questions on magnitude:

https://brainly.com/question/30338445

#SPJ8

Which of the following gives the equation of a circle of radius 22 and center at the point (-1,2)(-1,2)?

Answers

Step-by-step explanation:

Equation of a circle is

[tex](x - h) {}^{2} + (y - k) {}^{2} = {r}^{2} [/tex]

where (h,k) is the center

and the radius is r.

Here the center is (-1,2) and the radius is 22

[tex](x + 1) {}^{2} + (y - 2) {}^{2} = 484[/tex]

an airline knows from experience that the distribution of the number of suitcases that get lost each week on a certain route is approximately normal with and . what is the probability that during a given week the airline will lose less than suitcases?

Answers

conclusion, without knowing the values for the mean and standard deviation of the distribution, we cannot calculate the probability that the airline will lose less than a certain number of suitcases during a given week.

The question asks for the probability that the airline will lose less than a certain number of suitcases during a given week.

To find this probability, we need to use the information provided about the normal distribution.

First, let's identify the mean and standard deviation of the distribution.

The question states that the distribution is approximately normal with a mean (μ) and a standard deviation (σ).

However, the values for μ and σ are not given in the question.

To find the probability that the airline will lose less than a certain number of suitcases, we need to use the cumulative distribution function (CDF) of the normal distribution.

This function gives us the probability of getting a value less than a specified value.

We can use statistical tables or a calculator to find the CDF. We need to input the specified value, the mean, and the standard deviation.

However, since the values for μ and σ are not given, we cannot provide an exact probability.
Learn more about: deviation

https://brainly.com/question/475676

#SPJ11

Find the polar form for all values of (a) (1+i)³,
(b) (-1)1/5

Answers

Polar form is a way of representing complex numbers using their magnitude (or modulus) and argument (or angle).  The polar form of (1+i)³ is 2√2e^(i(3π/4)) and the polar form of (-1)^(1/5) is e^(iπ/5).

(a) To find the polar form of (1+i)³, we can first express (1+i) in polar form. Let's write it as r₁e^(iθ₁), where r₁ is the magnitude and θ₁ is the argument of (1+i). To find r₁ and θ₁, we use the formulas:

r₁ = √(1² + 1²) = √2,

θ₁ = arctan(1/1) = π/4.

Now, we can express (1+i)³ in polar form by using De Moivre's theorem, which states that (r₁e^(iθ₁))ⁿ = r₁ⁿe^(iθ₁ⁿ). Applying this to (1+i)³, we have:

(1+i)³ = (√2e^(iπ/4))³ = (√2)³e^(i(π/4)³) = 2√2e^(i(3π/4)).

Therefore, the polar form of (1+i)³ is 2√2e^(i(3π/4)).

(b) To find the polar form of (-1)^(1/5), we can express -1 in polar form. Let's write it as re^(iθ), where r is the magnitude and θ is the argument of -1. The magnitude is r = |-1| = 1, and the argument is θ = π.

Now, we can express (-1)^(1/5) in polar form by using the property that (-1)^(1/5) = r^(1/5)e^(iθ/5). Substituting the values, we have:

(-1)^(1/5) = 1^(1/5)e^(iπ/5) = e^(iπ/5).

Therefore, the polar form of (-1)^(1/5) is e^(iπ/5).

Learn more about De Moivre's theorem here : brainly.com/question/28999678

#SPJ11

Mr Cooper’ claroom had 5 table. There were 4 tudent at each table. Mr Garcia’ claroom had 3 more tudent than Mr Cooper’ claroom

Answers

Mr. Garcia's classroom had 23 students.

Let's denote the number of students in Mr. Cooper's classroom as C and the number of students in Mr. Garcia's classroom as G.

Given that Mr. Cooper's classroom had 5 tables with 4 students at each table, we can write:

C = 5 * 4 = 20

It is also given that Mr. Garcia's classroom had 3 more students than Mr. Cooper's classroom, so we can write:

G = C + 3

Substituting the value of C from the first equation into the second equation, we get:

G = 20 + 3 = 23

Therefore, Mr. Garcia's classroom had 23 students.

Learn more about Equation here:

https://brainly.com/question/29657983

#SPJ4

A root of x ∧
4−3x+1=0 needs to be found using the Newton-Raphson method. If the initial guess is 0 , the new estimate x1 after the first iteration is A: −3 B: 1/3 C. 3 D: −1/3

Answers

After the first iteration, the new estimate x₁ is 1/3. The correct answer is B: 1/3.

To find the new estimate x₁ using the Newton-Raphson method, we need to apply the following iteration formula:

x₁ = x₀ - f(x₀) / f'(x₀)

In this case, the given equation is x⁴ - 3x + 1 = 0. To find the root using the Newton-Raphson method, we need to find the derivative of the function, which is f'(x) = 4x³ - 3.

Given that the initial guess is x₀ = 0, we can substitute these values into the iteration formula:

x₁ = 0 - (0⁴ - 3(0) + 1) / (4(0)³ - 3)

= -1 / -3

= 1/3

Therefore, after the first iteration, the new estimate x₁ is 1/3.

The correct answer is B: 1/3.

Know more about Newton-Raphson here:

https://brainly.com/question/31618240

#SPJ11

Can you give me the answer to this question

Answers

Answer:

a = 3.5

Step-by-step explanation:

[tex]\frac{4a+1}{2a-1}[/tex] = [tex]\frac{5}{2}[/tex] ( cross- multiply )

5(2a - 1) = 2(4a + 1) ← distribute parenthesis on both sides

10a - 5 = 8a + 2 ( subtract 8a from both sides )

2a - 5 = 2 ( add 5 to both sides )

2a = 7 ( divide both sides by 2 )

a = 3.5

uppose rRF=6%,rM=9%, and bi=1.5 a. What is ri, the required rate of return on Stock i? Round your answer to one decimal place. % b. 1. Now suppose rRF increases to 7%. The slope of the SML remains constant. How would this affect rM and ri ? I. Both rM and ri will increase by 1 percentage point. II. rM will remain the same and ri will increase by 1 percentage point. III. rM will increase by 1 percentage point and ri will remain the same. IV. Both rM and ri will decrease by 1 percentage point. V. Both rM and ri will remain the same. 2. Now suppose rRF decreases to 5%. The slope of the SML remains constant. How would this affect rM and r ? I. Both rM and ri will increase by 1 percentage point. II. Both rM and ri will remain the same.
III. Both rM and ri will decrease by 1 percentage point. IV. rM will decrease by 1 percentage point and ri will remain the same. V. rM will remain the same and ri will decrease by 1 percentage point. c. 1. Now assume that rRF remains at 6%, but rM increases to 10%. The slope of the SML does not remain constant. How would Round your answer to one decimal place. The new ri will be %.
2. Now assume that rRF remains at 6%, but rM falls to 8%. The slope of the SML does not remain constant. How would these changes affect ri? Round your answer to one decimal place. The new n will be %

Answers

a.10.5%

a. To calculate the required rate of return on Stock i (ri), we can use the Capital Asset Pricing Model (CAPM):

ri = rRF + bi * (rM - rRF),

where rRF is the risk-free rate, rM is the market return, and bi is the beta coefficient of Stock i.

Given:

rRF = 6%,

rM = 9%,

bi = 1.5.

Plugging in the values into the formula:

ri = 6% + 1.5 * (9% - 6%)

ri = 6% + 1.5 * 3%

ri = 6% + 4.5%

ri = 10.5%

Therefore, the required rate of return on Stock i is 10.5%.

b.1. When rRF increases to 7%, the slope of the Security Market Line (SML) remains constant. In this case, both rM and ri will increase by 1 percentage point.

The correct answer is: I. Both rM and ri will increase by 1 percentage point.

b.2. When rRF decreases to 5%, the slope of the SML remains constant. In this case, both rM and ri will remain the same.

The correct answer is: II. Both rM and ri will remain the same.

c.1. When rRF remains at 6%, but rM increases to 10%, and the slope of the SML does not remain constant, we need more information to determine the new ri.

c.2. When rRF remains at 6%, but rM falls to 8%, and the slope of the SML does not remain constant, we need more information to determine the new ri.

To know more about Stock refer here:

https://brainly.com/question/31940696#

#SPJ11

Each matrix is nonsingular. Find the inverse of the matrix. Be sure to check your answer. [[-2,4],[4,-4]] [[(1)/(2),(1)/(2)],[(1)/(2),(1)/(4)]] [[(1)/(2),(1)/(4)],[(1)/(2),(1)/(4)]] [[-(1)/(2),(1)/(4)],[(1)/(2),-(1)/(4)]] [[(1)/(2),-(1)/(2)],[-(1)/(2),(1)/(4)]]

Answers

[(1/2, -1/2) is a singular matrix and the inverse of it does not exist,

Nonsingular matrix is defined as a square matrix with a non-zero determinant. If the determinant is zero, the matrix is singular and if it's non-zero the matrix is nonsingular. Given matrix are nonsingular.

1. A = [-2, 4; 4, -4]

The determinant of matrix A can be found as follows:

det(A) = -2 (-4) - 4 (4) = -8A^-1 = adj(A) / det(A)

where adj(A) denotes the adjoint of matrix A.

adj(A) = [-4, -4; -4, -2]

Therefore, A^-1 = 1/8 [-4, -4; -4, -2]

Let's check the answer: AA^-1 = [-2, 4; 4, -4][1/8 [-4, -4; -4, -2]]

                                                 = [1/2, 1/2; 1/2, 1/4]A^-1 A

                                                 = [1/8 [-4, -4; -4, -2]][-2, 4; 4, -4]

                                                = [1/2, 1/2; 1/2, 1/4]

Thus, the answer is correct.

2. [[(1)/(2),(1)/(2)],[(1)/(2),(1)/(4)]]

          B = [(1/2, 1/2);

(1/2, 1/4)]det(B) = 1/4 - 1/4

                       = 0

Therefore, B is a singular matrix and the inverse of B does not exist.

3. [[(1)/(2),(1)/(4)],[(1)/(2),(1)/(4)]] :

C = [(1/2, 1/4);

(1/2, 1/4)]det(C) = 1/8 - 1/8

                        = 0

Therefore, C is a singular matrix and the inverse of C does not exist.

4. [[-(1)/(2),(1)/(4)],[(1)/(2),-(1)/(4)]] :

D = [(-1/2, 1/4);

(1/2, -1/4)]det(D) = -1/8 - 1/8

                          = -1/4D^-1 = adj(D) / det(D)

where adj(D) denotes the adjoint of matrix D.

adj(D) = [-1/4, 1/4; -1/2, -1/2]

Therefore, D^-1 = -4/[-1/4, 1/4; -1/2, -1/2] = [(1/2, 1/2);

(1/2, -1/2)DD^-1 = [(-1/2, 1/4)

(1/2, -1/4)][(1/2, 1/2);

(1/2, -1/2)] = [(1/4 + 1/4), (1/4 - 1/4);

(-1/4 + 1/4), (-1/4 - 1/4)] = [(1/2, 0);

(0, -1/2)]D^-1 D = [(1/2, 1/2);

(1/2, -1/2)][(-1/2, 1/4);

(1/2, -1/4)] = [(0, 1/8);

                  =(0, 1/8)]

Thus, the answer is correct 5. [[(1)/(2),-(1)/(2)],[-(1)/(2),(1)/(4)]] :E = [(1/2, -1/2); (-1/2, 1/4)]det(E) = 1/8 - 1/8 = 0 Therefore, E is a singular matrix and the inverse of E does not exist

To know more about inverse here:

https://brainly.com/question/3831584

#SPJ11

Write Equations of a Line in Space Find a vector parallel to the line defined by the parametric equations ⎩x(t)=−3+6t
⎨y(t)=−5+5t
⎧z(t)=5−6t
Additionally, find a point on the line. Parallel vector (in angle bracket notation): Point:

Answers

The Parallel vector (in angle bracket notation): $\begin{pmatrix}6\\5\\-6\end{pmatrix}$Point: $(-3,-5,5)$[/tex]

The given parametric equations define a line in the 3-dimensional space.

To write the equations of a line in space, we need a point on the line and a vector parallel to the line.

Vector parallel to the line:

We note that the coefficients of t in the parametric equations give the components of the vector parallel to the line.

So, the parallel vector to the line is given by

[tex]$\begin{pmatrix}6\\5\\-6\end{pmatrix}$[/tex]

Point on the line:

To get a point on the line, we can substitute any value of t in the given parametric equations.

Let's take [tex]$t=0$[/tex].

Then, we get [tex]$x(0)=-3+6(0)=-3$ $y(0)=-5+5(0)=-5$ $z(0)=5-6(0)=5$[/tex]

So, a point on the line is [tex]$(-3,-5,5)$[/tex].

Therefore, the equation of the line in space is given by:[tex]$\begin{pmatrix}x\\y\\z\end{pmatrix}=\begin{pmatrix}-3\\-5\\5\end{pmatrix}+t\begin{pmatrix}6\\5\\-6\end{pmatrix}$Parallel vector (in angle bracket notation): $\begin{pmatrix}6\\5\\-6\end{pmatrix}$Point: $(-3,-5,5)$[/tex]

For more related questions on Parallel vector:

https://brainly.com/question/31140426

#SPJ8

Write balanced chemical equations for each of the acid-base reactions described below. a) Aqueous solutions of {HClO}_{4} and {LiOH} are mixed b) Aqueous {NaOH}

Answers

one mole of NaOH dissociates into one mole of Na⁺ ions and one mole of OH⁻ ions in aqueous solution.

a) Aqueous solutions of HClO₄ and LiOH are mixed:

The balanced chemical equation for the reaction between HClO₄ (perchloric acid) and LiOH (lithium hydroxide) is:

2 HClO₄ + 2 LiOH → 2 LiClO₄ + 2 H₂O

In this reaction, two moles of HClO₄ react with two moles of LiOH to produce two moles of LiClO₄ and two moles of water.

b) Aqueous NaOH:

The balanced chemical equation for the dissociation of NaOH (sodium hydroxide) in water is:

NaOH(aq) → Na⁺(aq) + OH⁻(aq)

In this reaction, one mole of NaOH dissociates into one mole of Na⁺ ions and one mole of OH⁻ ions in aqueous solution.

To know more about solutions refer here:

https://brainly.com/question/30665317#

#SPJ11

etermine the total solution using: a. Classical Method b. Laplace Transform Method D ^2 y(t)+8Dy(t)+16y(t)=2t ^3 y(0)=0;Dy(0)=1

Answers

A. The total solution (general solution) is the sum of the complementary and particular solutions:

y(t) = y_c(t) + y_p(t)

= c1 * e^(-4t) + c2 * t * e^(-4t) + (1/8)t^3 - (1/4)t^2

B. The total solution is given by:

y(t) = 2e^(-4t) + te^(-4t) + (1 - t^2)e^(-4t)

a. Classical Method:

The characteristic equation for the given differential equation is obtained by substituting y(t) = e^(rt) into the differential equation:

r^2 + 8r + 16 = 0

Solving this quadratic equation, we find two equal roots: r = -4.

Therefore, the complementary solution (homogeneous solution) is given by:

y_c(t) = c1 * e^(-4t) + c2 * t * e^(-4t)

To find the particular solution, we assume a particular form for y_p(t) based on the non-homogeneous term, which is a polynomial of degree 3. We take:

y_p(t) = At^3 + Bt^2 + Ct + D

Differentiating y_p(t) with respect to t, we have:

y'_p(t) = 3At^2 + 2Bt + C

y''_p(t) = 6At + 2B

Substituting these derivatives into the differential equation, we get:

(6At + 2B) + 8(3At^2 + 2Bt + C) + 16(At^3 + Bt^2 + Ct + D) = 2t^3

Simplifying this equation, we equate the coefficients of like powers of t:

16A = 2 (coefficient of t^3)

16B + 24A = 0 (coefficient of t^2)

8C + 24B = 0 (coefficient of t)

2B + 8D = 0 (constant term)

Solving these equations, we find A = 1/8, B = -1/4, C = 0, and D = 0.

Therefore, the particular solution is:

y_p(t) = (1/8)t^3 - (1/4)t^2

The total solution (general solution) is the sum of the complementary and particular solutions:

y(t) = y_c(t) + y_p(t)

= c1 * e^(-4t) + c2 * t * e^(-4t) + (1/8)t^3 - (1/4)t^2

b. Laplace Transform Method:

Taking the Laplace transform of the given differential equation, we have:

s^2Y(s) - sy(0) - y'(0) + 8sY(s) - 8y(0) + 16Y(s) = (2/s^4)

Applying the initial conditions y(0) = 0 and y'(0) = 1, and rearranging the equation, we get:

Y(s) = 2/(s^2 + 8s + 16) + s/(s^2 + 8s + 16) + (1 - s^2)/(s^2 + 8s + 16)

Factoring the denominator, we have:

Y(s) = 2/[(s + 4)^2] + s/[(s + 4)^2] + (1 - s^2)/[(s + 4)(s + 4)]

Using the partial fraction decomposition method, we can write the inverse Laplace transform of Y(s) as:

y(t) = 2e^(-4t) + te^(-4t) + (1 - t^2)e^(-4t)

Therefore, the total solution is given by:

y(t) = 2e^(-4t) + te^(-4t) + (1 - t^2)e^(-4t)

Learn more about  solution from

https://brainly.com/question/27894163

#SPJ11

What is the area of this rectangle? Rectangle with width 5. 1 cm and height 11. 2 cm. Responses 16. 3 cm2 16. 3 cm, 2 32. 6 cm2 32. 6 cm, 2 57. 12 cm2 57. 12 cm, 2 571. 2 cm2

Answers

The area of the rectangle is 57.12 cm^2.

The area of a rectangle is the product of its length or height and width. The formula for calculating the area of a rectangle is:

Area = Width x Height

In this problem, we are given the width of the rectangle as 5.1 cm and the height as 11.2 cm. To find the area, we substitute these values into the formula to get:

Area = 5.1 cm x 11.2 cm

Area = 57.12 cm^2

Therefore, the area of the rectangle is 57.12 square centimeters (cm^2).

Learn more about area  from

https://brainly.com/question/25292087

#SPJ11

Other Questions
larvae that are ready to settle detect chemicals produced by the sponges and this stimulates them to settle there. Solve using the simple interest formula I=Prt. a. Find I, when P=$4,900,r=0.04,t= 9/12I= Round to two decimal places b. Find P, when I=$20.75,r=0.0475,t= 86/365 P= Round to two decimal places PLEASE HELP QUICKLY!!!HI gas is removed from the systemat equilibrium below. How does thesystem adjust to reestablishequilibrium?51.8 kJ + H(g) + 1(g) = 2HI(g)A. The reaction shifts to the right (products) and the concentrationsof I, and H decrease.B. The reaction shifts to the left (reactants) and the concentrationsof H and I increase.C. The reaction shifts to the right (products) and the concentrationsof I, and H increase.D. The reaction shifts to the left (reactants) and the concentration ofHI increases. a constant-cost industry is one where ______ will not affect resource prices and production costs. Project Part 1B: Gap Analysis Plan and Risk Assessment Methodology: Students will create a gap analysis plan. They will also review two risk assessment methodologies and recommend one the company should use to perform a risk assessmentScenarioAfter the productive team meeting, Fullsofts chief technology officer (CTO) wants further analysis performed and a high-level plan created to mitigate future risks, threats, and vulnerabilities. As part of this request, you and your team members will create a plan for performing a gap analysis, and then research and select an appropriate risk assessment methodology to be used for future reviews of the Fullsoft IT environment.An IT gap analysis may be a formal investigation or an informal survey of an organization's overall IT security. The first step of a gap analysis is to compose clear objectives and goals concerning an organization's IT security. For each objective or goal, the person performing the analysis must gather information about the environment, determine the present status, and identify what must be changed to achieve goals. The analysis most often reveals gaps in security between "where you are" and "where you want to be."Two popular risk assessment methodologies are NIST SP 800-30 revision 1, Guide for Conducting Risk Assessments, and Operationally Critical Threat, Asset, and Vulnerability Evaluation (OCTAVE). Your focus will be on the OCTAVE Allegro version, which is a more concise version of OCTAVE. When reviewing the methodologies, consider the following:Which features or factors of each methodology are most important and relevant to Fullsoft?Which methodology is easier to follow?Which methodology appears to require fewer resources, such as time and staff, but still provides for a thorough assessment?Tasks:Create a high-level plan to perform a gap analysis.Review the following two risk assessment methodologies:NIST SP 800-30 rev. 1, Guide for Conducting Risk Assessments (formerly titled " Risk Management Guide for Information Technology Systems")Operationally Critical Threat, Asset, and Vulnerability Evaluation (OCTAVE), Allegro versionCreate a report that includes the gap analysis plan, a brief description of each risk assessment methodology, a recommendation for which methodology Fullsoft should follow, and a justification for your choice Health risks to beachgoers. According to a University of Florida veterinary researcher, the longer a beachgoer sits in wet sand or stays in the water, the higher the health risk (University of Florida News, Jan. 29, 2008). Using data collected at 3 Florida beaches, the researcher discovered the following: (1) 6 out of 1,000 people exposed to wet sand for a 10-minute period will acquire gastroenteritis; (2) 12 out of 100 people exposed to wet sand for two consecutive hours will acquire gastroenteritis; (3) 7 out of 1,000 people exposed to ocean water for a 10 -minute period will acquire gastroenteritis; and (4) 7 out of 100 people exposed to ocean water for a 70 -minute period will acquire gastroenteritis. a. If a beachgoer spends 10 minutes in the wet sand, what is the probability that he or she will acquire gastroenteritis? b. If a beachgoer spends two hours in the wet sand, what is the probability that he or she will acquire gastroenteritis? c. If a beachgoer spends 10 minutes in the ocean water, what is the probability that he or she will acquire gastroenteritis? d. If a beachgoer spends 70 minutes in the ocean water, what is the probability that he or she will acquire gastroenteritis? T/F In Mac OS X, Sharing Only accounts can log on to the local Mac computer and access shared files and printers on other computers. congress has the right to establish courts to exercise jurisdiction over subjects that fall within its expressed right, according to the ______ decision. Older individuals high in _____ do not live as long as those who show _____.empathy; sympathymaterialism; spiritualismnegative affect; positive affectgenerosity; frugality What happens to 2-methyl propane, which product is formed ingreater quantity and why? in: a) Fluorination b) Brominationplease explain immature b cells that pass the self-tolerance test are identified by the coexpression of igm and igd. what process allows this to occur? Define the Plan-Do-Check-Act (PDCA) Cycle, and identify its advantages?In your opinion, are there any disadvantages? rolling a pair of dice and getting doubles or a sum of 8 find probability and if it is mutually exclusive QUESTION 1 (Data Exploration)Data exploration starts with inspecting the dimensionality, and structure of data, followed by descriptive statistics and various charts like pie charts, bar charts, histograms, and box plots. Exploration of multiple variables includes grouped distribution, grouped boxplots, scattered plots, and pairs plots. Advanced exploration presents some fancy visualization using 3D plots, level plots, contour plots, interactive plots, and parallel coordinates. Refer to Iris data and explore it by answering the following questions:i. Check dimension of data and name the variables (from left) using "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" "Species".ii. Explore Individual variables.a. Choose "Sepal.Length". Provide descriptive statistics (summary) which returns the minimum, maximum, mean, median, standard deviation, first quartile, third quartile and interquartile range, skewness and kurtosis. Interpret the output based on location measure (mean), dispersion measure (standard deviation), shape measure(skewness). b. Plot the histogram. Does the distribution of "Sepal.Length" is symmetrical?c. Plot pie chart for "Species".iii.Explore Multiple variables. Consider "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal. Width".a. Calculate covariance and correlation.b. Plot side-by-side box plot and whiskers, where it shows the median, first and third quartiles of a distribution and outliers (if present). Compare the distribution of four variables and observe the outlier.c. Plot a matrix of scatter plot. Explain about the correlation of variables.iv.For advanced exploration, choose "Sepal.Length" "Sepal. Width" "Petal. Width". Produce 3D scatterplot. Explain the plot. The managers of Movies Plus, a large movie theater, want to practice third-degree price discrimination. The managers have learned that college students have an own price elasticity of demand of 4.0 for tickets at Movies Plus and adults have an own price elasticity of 2.0. If the managers have correctly determined the third-degree profit-maximizing price for adults is $10, what is the third-degree profit-maximizing price to charge students? Select one: A. $5.50 B. $12.00 C. $6.67 D. $15.00 From Rogawsid 2 e settion 6.3, exercise 40. Find the volume of the soid oblained by rolating the region enclosed by the curves y=x^ 2,y=6x,x=0 about y=7. (Use symboic notation and fractons where needed) Volume = Quienes son los actores de la elfina? Direction: Determine the center and radius of the circle within the given equation in each item. Show your soluti on the space provided, then sketch its graph. x^(2)+y^(2)+6x+8y=-16 The owner of a used bookstore buys used comic books from customers for $0.60 each. The owner then resells the used comic books at a 250% markup. Suppose GDP last year in a closed economy was $3000, taxes were $200, government spending was $500, and consumption was $1400. What was privat saving? $1,400 $300 none of the listed answers are correct 51,100