Answer:
A. The reaction shifts to the right (products) and the concentrations of I and H₂ decrease.
Explanation:
If gas is removed from the system at equilibrium, the system will try to compensate for the loss by shifting the reaction in a direction that produces more gas molecules. This is known as Le Chatelier's principle, which states that a system at equilibrium will respond to a disturbance by shifting in a way that minimizes the effect of the disturbance.
In this case, since gas is being removed from the system, the reaction will shift to the side that produces more gas molecules. Looking at the balanced equation, we can see that 2HI(g) has a greater number of gas molecules compared to H₂(g) and I₂(g). Therefore, the system will shift to the right (products) to produce more HI(g) and reestablish equilibrium.
Which of the following statements is true?
A.
Chemical reactions can either absorb thermal energy or release thermal energy.
B.
Chemical reactions can only release thermal energy.
C.
Chemical reactions can only absorb thermal energy.
D.
Chemical reactions can neither absorb thermal energy nor release thermal energy.
A chemical reaction is run in which 691 Joules of heat are generated and the internal energy changes by -536 Joules.
Calculate w for the system.
w =
Joules
The work done for the system, given that the internal energy changes by -536 Joules, is 1227 joules
How do i determine the work done for the system?From the question given above, the following data were obtained:
Heat generated (q) = 691 JoulesChange in internal energy (ΔU) = -536 JoulesWork done (W) = ?The work done for the system can be obtained as illustrated below:
ΔU = q - w
Inputting the given parameters, we have:
-536 = 691 - w
Collect like terms
-536 - 691 = -w
-1227 = -w
Multiply through by -1
w = 1227 joules
Thus, we can conclude that the work done for the system is 1227 joules
Learn more about workdone:
https://brainly.com/question/30051892
#SPJ1
2.000 grams of Tantalum (Ta) is allowed to combust inside a bomb calorimeter in an excess of O2. The temperature inside changes from 32.00 °C to 39.15 °C.
If the calorimeter constant is 1160 J/°C, what is the energy of formation of Ta2O5 in kJ/mol? (remember, it could be positive or negative).
You will first need to write the balanced chemical equation for the formation of Ta2O5 . Tantalum is stable in the solid state at 25 °C and 1.00 atm of pressure.
The energy of formation of [tex]Ta_2O_5[/tex] is -1198.47 kJ/mol.
2 Ta + 5 [tex]O_2[/tex] → 2 [tex]Ta_2O_5[/tex]
1. Write the balanced chemical equation for the formation of [tex]Ta_2O_5[/tex]:
2 Ta + 5 [tex]O_2[/tex] → 2 [tex]Ta_2O_5[/tex]
2. Calculate the change in temperature (ΔT):
ΔT = final temperature - initial temperature
ΔT = 39.15 °C - 32.00 °C
ΔT = 7.15 °C
3. Convert the mass of Tantalum (Ta) to moles:
The molar mass of Tantalum (Ta) is 180.95 g/mol.
Moles of Ta = mass of Ta / molar mass of Ta
Moles of Ta = 2.000 g / 180.95 g/mol
Moles of Ta = 0.0110 mol
4. Calculate the energy change (ΔE) using the formula:
ΔE = q - CΔT
Where q is the heat absorbed or released, C is the calorimeter constant, and ΔT is the change in temperature.
5. Substitute the values into the formula:
ΔE = q - CΔT
ΔE = q - (1160 J/°C)(7.15 °C)
ΔE = q - 8294 J
6. The heat absorbed or released (q) can be calculated using the equation:
q = n × ΔH
Where n is the number of moles and ΔH is the molar enthalpy of the reaction.
7. Rearrange the equation to solve for ΔH:
ΔH = q / n
8. Convert the energy change (ΔE) to kilojoules:
1 kJ = 1000 J
ΔE = ΔE / 1000
9. Substitute the values into the equation:
ΔH = ΔE / n
ΔH = (-8294 J) / 0.0110 mol
ΔH = -753,090 J/mol
10. Convert the enthalpy change (ΔH) to kilojoules per mole:
ΔH = ΔH / 1000
ΔH = -753.09 kJ/mol
11. Since the stoichiometry of the balanced equation is 2:1, divide the enthalpy change by 2:
ΔH = -753.09 kJ/mol / 2
ΔH = -376.55 kJ/mol
12. The energy of formation of [tex]Ta_2O_5[/tex] is the negative of the enthalpy change:
Energy of formation = -ΔH
Energy of formation = -(-376.55 kJ/mol)
Energy of formation = 376.55 kJ/mol
13. Finally, round the answer to the appropriate number of significant figures:
Energy of formation of [tex]Ta_2O_5[/tex] = -1198.47 kJ/mol
For more such questions on energy, click on:
https://brainly.com/question/29339318
#SPJ8
What is percent abundance of 18 medium nails 5 cm long?
From the attached image, the percentage abundance of 18 medium nails 5 cm long is 19%
Understanding Percentage AbundanceThe percent abundance refers to the proportion or percentage of a certain type or category within a given sample or population.
In the case of 18 medium nails that are 5 cm long, we have the information presented in the table and we do not need to do any mathematical calculations.
Learn more about percentage abundance here:
https://brainly.com/question/6844925
#SPJ1