Given a 32.0 V battery and 20.00 and 72.00 resistors, find the current (in A) and power (in W) for each when connected in series.

Answers

Answer 1

The answer is power dissipated across the resistor with resistance R1 is 2.42 W, and the power dissipated across the resistor with resistance R2 is 8.62 W.

Potential difference V = 32V Resistance R1 = 20.00Ω Resistance R2 = 72.00Ω. The two resistors are connected in series. Total resistance in the circuit is given by R = R1 + R2 = 20.00 Ω + 72.00 Ω = 92.00 Ω

Current I in the circuit can be calculated as, I = V/R= 32V/92.00 Ω= 0.348A

Power P dissipated across the resistor can be calculated as P = I²R= 0.348² × 20.00 Ω = 2.42 W

The power dissipated across the resistor with resistance R2 is, P2 = I²R2= 0.348² × 72.00 Ω = 8.62 W

Therefore, the current through the circuit is 0.348 A.

The power dissipated across the resistor with resistance R1 is 2.42 W, and the power dissipated across the resistor with resistance R2 is 8.62 W.

Explore more on series resistors: https://brainly.com/question/19865219

#SPJ11


Related Questions

Three 1.60Ω resistors are connected in series to a 19.0 V battery. What is the equivalent resistance (in Ω ) of the circuit?

Answers

The equivalent resistance of the circuit is 4.80Ω.

When resistors are connected in series, their resistances add up to give the equivalent resistance of the circuit.

In this case, three 1.60Ω resistors are connected in series.

To find the equivalent resistance, we simply sum the individual resistances:

Equivalent Resistance = 1.60Ω + 1.60Ω + 1.60Ω

Equivalent Resistance = 4.80Ω

Therefore, the equivalent resistance of the circuit is 4.80Ω.

When resistors are connected in series, the total resistance increases because the current flowing through each resistor is the same, and the voltage drop across each resistor adds up.

The total voltage supplied by the battery is shared across the resistors, leading to a higher overall resistance.

It's important to note that the equivalent resistance is the total resistance of the series combination.

It represents the resistance that a single resistor would need to have in order to produce the same overall effect as the series combination of resistors when connected to the same voltage source.

Learn more about resistance from the given link

https://brainly.com/question/13606415

#SPJ11

A 0.0255-kg bullet is accelerated from rest to a speed of 530 m/s in a 2.75-kg rifle. The pain of the rifle’s kick is much worse if you hold the gun loosely a few centimeters from your shoulder rather than holding it tightly against your shoulder. For this problem, use a coordinate system in which the bullet is moving in the positive direction.
(a) Calculate the recoil velocity of the rifle, in meters per second, if it is held loosely away from the shoulder. ANS: -4.91 m/s
(b) How much kinetic energy, in joules, does the rifle gain? ANS: 33.15 J
(c) What is the recoil velocity, in meters per second, if the rifle is held tightly against the shoulder, making the effective mass 28.0 kg? ANS: -0.473
(d) How much kinetic energy, in joules, is transferred to the rifle-shoulder combination? The pain is related to the amount of kinetic energy, which is significantly less in this latter situation.

Answers

(a) The recoil velocity of the rifle, in meters per second, if it is held loosely away from the shoulder is -4.91 m/s.

(b) The kinetic energy gained by the rifle is 33.15 J.

(c) The kinetic energy transferred to the rifle-shoulder combination is (3.46 - 0) J = 3.46 J.

(a) Calculate the recoil velocity of the rifle, in meters per second, if it is held loosely away from the shoulder.

Given:

Mass of bullet, m1 = 0.0255 kg

Mass of rifle, m2 = 2.75 kg

Speed of bullet, v1 = 530 m/s

Initial velocity of bullet, u1 = 0 m/s

Initial velocity of rifle, u2 = 0 m/s

Final velocity of rifle, v2 = ?

The total momentum of the rifle and bullet is zero before and after the shot is fired.

Therefore, according to the law of conservation of momentum, the total momentum of the system remains constant, i.e.,

(m1 + m2) u2

= m1 v1 + m2 v2⇒

v2 = [(m1 + m2) u2 - m1 v1]/m2

The negative sign indicates that the direction of the recoil velocity is opposite to the direction of the bullet's velocity.

Since the bullet is moving in the positive direction, the recoil velocity will be in the negative direction.

v2 = [(0.0255 + 2.75) × 0 - 0.0255 × 530]/2.75v2

    = -4.91 m/s

Therefore, the recoil velocity of the rifle, in meters per second, if it is held loosely away from the shoulder is -4.91 m/s.

(b) How much kinetic energy, in joules, does the rifle gain?

Given:

Mass of bullet, m1 = 0.0255 kg

Mass of rifle, m2 = 2.75 kg

Speed of bullet, v1 = 530 m/s

Initial velocity of bullet, u1 = 0 m/s

Initial velocity of rifle, u2 = 0 m/s

Final velocity of rifle, v2 = -4.91 m/s

Kinetic energy is given by the formula:

K = 1/2 mv²

Kinetic energy of the rifle before the shot is fired, K1 = 1/2 × 2.75 × 0² = 0 J

Kinetic energy of the rifle after the shot is fired, K2 = 1/2 × 2.75 × (-4.91)² = 33.15 J

Therefore, the kinetic energy gained by the rifle is 33.15 J.

(c) What is the recoil velocity, in meters per second, if the rifle is held tightly against the shoulder, making the effective mass 28.0 kg?

Given:

Mass of bullet, m1 = 0.0255 kg

Mass of rifle, m2 = 28.0 kg

Speed of bullet, v1 = 530 m/s

Initial velocity of bullet, u1 = 0 m/s

Initial velocity of rifle, u2 = 0 m/s

Final velocity of rifle, v2 = ?

Effective mass, M = m1 + m2

                              = 0.0255 + 28.0

                              = 28.0255 kg

Using the law of conservation of momentum,(m1 + m2) u2 = m1 v1 + m2 v2⇒

v2 = [(m1 + m2) u2 - m1 v1]/m2

v2 = [(0.0255 + 28.0) × 0 - 0.0255 × 530]/28.0v2 = -0.473 m/s

Therefore, the recoil velocity, in meters per second, if the rifle is held tightly against the shoulder is -0.473 m/s.

(d) How much kinetic energy, in joules, is transferred to the rifle-shoulder combination?

Given:

Mass of bullet, m1 = 0.0255 kg

Mass of rifle, m2 = 28.0 kg

Speed of bullet, v1 = 530 m/s

Initial velocity of bullet, u1 = 0 m/s

Initial velocity of rifle, u2 = 0 m/s

Final velocity of rifle, v2 = -0.473 m/s

Effective mass, M = m1 + m2

                             = 0.0255 + 28.0

                             = 28.0255 kg

Using the law of conservation of momentum,(m1 + m2) u2 = m1 v1 + m2 v2⇒

v2 = [(m1 + m2) u2 - m1 v1]/m2

v2 = [(0.0255 + 28.0) × 0 - 0.0255 × 530]/28.0

v2 = -0.473 m/s

Kinetic energy is given by the formula:

K = 1/2 mv²Kinetic energy of the rifle-shoulder combination before the shot is fired, K1 = 1/2 × M × 0² = 0 J

Kinetic energy of the rifle-shoulder combination after the shot is fired, K2 = 1/2 × M × (-0.473)² = 3.46 J

Therefore, the kinetic energy transferred to the rifle-shoulder combination is (3.46 - 0) J = 3.46 J.

Learn more about kinetic energy from this link:

https://brainly.com/question/8101588

#SPJ11

C 2.70l capacitor is charged to 803 V and a C-0.00 P copacilor is charged to 650 V These capacitors are then disconnected from their batteries. Next the positive plates are connected to each other and the negative plates are connected to each other. Part A What will be the potential difference across each? (hint charges conserved Enter your answers numerically separated by a comma VAX ? V.V Submit Bequest Answer Part B What will be the charge on each Enter your answers numerically separated by a comm VO AL 4 + Qi Qi- Submit A ? V C Sessanta

Answers

Part A: The potential difference across each capacitor is 153 V.

Part B:  The charge on the 2.70 μF capacitor is 2.17 mC and the charge on the 0.00 pF capacitor is 0 C.

Part A:

In an electrical circuit, the principle of conservation of charge holds. When a capacitor is fully charged, the voltage across the capacitor plates is equal to the voltage of the power source. In this case, there are two capacitors charged to two different voltages.

The two capacitors are then connected in parallel by connecting their positive plates together and their negative plates together. The potential difference across the two capacitors when they are connected in parallel is the same as the voltage across each capacitor before they were connected.

Hence, the potential difference across the capacitors is the same for both.

Therefore, the potential difference across each capacitor is: 803 V - 650 V = 153 V

Part B:

For each capacitor, the charge can be calculated using the equation, Q = CV, where Q is the charge on the capacitor, C is the capacitance of the capacitor, and V is the voltage across the capacitor.

For the 2.70 μF capacitor, Q = CV = (2.70 × 10⁻⁶ F)(803 V) = 0.0021731

C ≈ 2.17 mC

For the 0.00 pF capacitor, Q = CV = (0.00 × 10⁻¹² F)(650 V) = 0 C

Thus, the charge on the 2.70 μF capacitor is 2.17 mC and the charge on the 0.00 pF capacitor is 0 C.

To learn about capacitors here:

https://brainly.com/question/30529897

#SPJ11

An electron has a total energy of 2.13 times its rest
energy.
What is the momentum of this electron? (in keVc)

Answers

By using the relativistic energy-momentum relationship and substituting the given total energy ratio, the momentum of the electron is  

pc = √(3.5369m²c⁴).

To determine the momentum of the electron, we need to use the relativistic energy-momentum relationship, which states that the total energy (E) of a particle is related to its momentum (p) and rest energy (E₀) by the equation E = √((pc)² + (E₀c²)), where c is the speed of light.

The total energy of the electron is 2.13 times its rest energy, we can write the equation as E = 2.13E₀.

Substituting this into the energy-momentum relationship, we have

2.13E₀ = √((pc)² + (E₀c²)).

Simplifying the equation, we get

(2.13E₀)² = (pc)² + (E₀c²).

Since the rest energy of an electron is E₀ = mc², where m is the electron's mass, we can rewrite the equation as (2.13mc²)² = (pc)² + (mc²)².

Expanding and rearranging, we find

(4.5369m²c⁴) - (m²c⁴) = (pc)².

Simplifying further, we get

(3.5369m²c⁴) = (pc)².

Taking the square root of both sides, we have

pc = √(3.5369m²c⁴).

Therefore, the momentum of the electron is √(3.5369m²c⁴).

To know more about momentum refer here:

https://brainly.com/question/30677308

#SPJ11

5. Viewing a 645 nm red light through a narrow slit cut into a piece of paper yields a series of bright and dark fringes. You estimate that five dark fringes appear in a space of 1.0 mm. If the paper is 32 cm from your eye, calculate the width of the slit. T/I (5)

Answers

The estimated width of the slit is approximately 10.08 micrometers.

To calculate the width of the slit, we can use the formula for the spacing between fringes in a single-slit diffraction pattern:

d * sin(θ) = m * λ,

where d is the width of the slit, θ is the angle between the central maximum and the mth dark fringe, m is the order of the fringe, and λ is the wavelength of light.In this case, we are given that five dark fringes appear in a space of 1.0 mm, which corresponds to m = 5. The wavelength of the red light is 645 nm, or [tex]645 × 10^-9[/tex]m.

Since we are observing the fringes from a distance of 32 cm (0.32 m) from the paper, we can consider θ to be small and use the small-angle approximation:

sin(θ) ≈ θ.

Rearranging the formula, we have:

d = (m * λ) / θ.

The width of the slit, d, can be calculated by substituting the values:

d = (5 * 645 × [tex]10^-9[/tex] m) / (1.0 mm / 0.32 m) ≈ 10.08 μm.

To know more about slit refer to-

https://brainly.com/question/32192263

#SPJ11

Problem mos teple have (2.000 1.00 Listamentum his particle points (A) 20+ 0.20 2008 + 100 (96200 + 2007 D) (0.0208 +0.010729 32. Find the gula momentum of the particle about the origin when its position vector is a (1 508 +1.50pm 2 points) (A) (0.15k)kg-mals (B) (-0.15k)kg-m/s ((1.50k)kg-m/s D) (15.0k)kg-m/s

Answers

The correct answer is (A) (0.15k)kg-m/s.

The angular momentum of a particle about the origin is given by:

L = r × p

Where, r is the position vector of the particle, p is the particle's linear momentum, and × is the cross product.

In this case, the position vector is given as:

r = (1.50i + 1.50j) m

The linear momentum of the particle is given as:

p = mv = (1.50 kg)(5.00 m/s) = 7.50 kg m/s

The cross product of r and p can be calculated as follows:

L = r × p = (1.50i + 1.50j) × (7.50k) = 0.15k kg m/s

Therefore, the angular momentum of the particle about the origin is (0.15k) kg m/s. So the answer is (A).

To learn more about angular momentum click here; brainly.com/question/30338094

#SPJ11

A silver wire has a length of 23.0 m and a resistance of 4.40 at 20.0C. Assuming a circular cross section, what is the wire diameter (in mm)? The reactivity of silver at 10.0 C is 1.59 x 10^-6 omega x m

Answers

The diameter of the wire is 0.47 mm.

The resistance of a wire is given by the following formula

R = ρl/A`

here:

* R is the resistance in ohms

* ρ is the resistivity in Ω⋅m

* l is the length in meters

* A is the cross-sectional area in meters^2

The cross-sectional area of a circular wire is given by the following formula:

A = πr^2

where:

* r is the radius in meter

Plugging in the known values, we get:

4.40 Ω = 1.59 × 10^-6 Ω⋅m * 23.0 m / πr^2

r^2 = (4.40 Ω * π) / (1.59 × 10^-6 Ω⋅m * 23.0 m)

r = 0.0089 m

d = 2 * r = 0.0178 m = 0.47 mm

The diameter of the wire is 0.47 mm.

Learn more about diameter with the given link,

https://brainly.com/question/28162977

#SPJ11

1) A blue light source is pointing at you and, intrigued by this spectral light, you walk towards it. As you start to move towards the source, the frequency of the light __________ compared to when you were stationary.
Decreases
Stays the same
Increases
Fluctuates in an unpredictable pattern
Becomes dimmer
2)An electric motor and an electric generator are essentially the same thing: a loop of wire turning in a magnetic field. The distinction between them is how the current induced in the motion is used in each system. Describe the distinction and how the induced current affects each system.

Answers

The frequency of the light increases as you move towards the blue light source. As you walk towards the blue light source, the distance between you and the source decreases.

This causes the wavelengths of the light waves to appear compressed, resulting in an increase in frequency. Since the frequency of light is directly related to its color, the light appears bluer as you approach the source. The observed increase in frequency is a result of the Doppler effect. This phenomenon occurs when there is relative motion between the source of waves and the observer. In the case of light, as the observer moves towards the source, the distance between them decreases, causing the waves to be "squeezed" together. This compression of the wavelengths leads to an increase in frequency, which corresponds to a bluer color in the case of visible light. The Doppler effect is a fundamental principle that applies to various wave phenomena and has practical applications in fields such as astronomy, meteorology, and sound engineering. It helps explain the shifts in frequency and wavelength that occur due to relative motion and provides insights into the behavior of waves in different contexts.

To learn more about frequency of the light, Click here:

https://brainly.com/question/10732947

#SPJ11

reposo. Carro M(Kg) Vinicial(m/s) Vfinal (m/s) 1 0 0.522 0.37 2 0.522 0 0.38 Photogate 1 Photogate 2 [[ m2

Answers

The velocity of the object when it was in motion is -1.37 m/s.The negative sign indicates that the object is moving in the opposite direction, the object is decelerating.

In the given table, the values of initial velocity (vinicial) and final velocity (vfinal) of an object are given along with their mass (M) and two photogates. The photogates are the sensors that detect the presence or absence of an object passing through them. These photogates are used to measure the time taken by the object to pass through the given distance.

Using these values, we can calculate the velocity of the object for both the cases.Case 1: When the object is at restInitially, the object is at rest. Hence, the initial velocity is zero. The final velocity of the object is given as 0.522 m/s. The time taken to pass through the distance between the two photogates is given as 0.37 seconds.Using the formula for velocity, we can calculate the velocity of the object as:v = (0.522 - 0)/0.37v = 1.41 m/s

Therefore, the velocity of the object when it was at rest is 1.41 m/s.Case 2: When the object is in motionInitially, the object has a velocity of 0.522 m/s. The final velocity of the object is zero. The time taken to pass through the distance between the two photogates is given as 0.38 seconds.Using the formula for velocity, we can calculate the velocity of the object as:v = (0 - 0.522)/0.38v = -1.37 m/s.

To know more about photogates visit :

https://brainly.com/question/28202226

#SPJ11

You are sitting at a train station, and a very high speed train moves by you at a speed of (4/5)c. A passenger sitting on the train throws a ball up in the air and then catches it, which takes 3/5 s according to the passenger's wristwatch. How long does this take according to you? O 9/25 s O 1 s O 3/4 s O 1/2 s O 4/5 s

Answers

According to you, the time taken for the passenger to throw the ball up and catch it is 9/25 s (Option A).

To calculate the time dilation experienced by the passenger on the moving train, we can use the time dilation formula:

Δt' = Δt / γ

Where:

Δt' is the time measured by the passenger on the train

Δt is the time measured by an observer at rest (you, in this case)

γ is the Lorentz factor, which is given by γ = 1 / √(1 - v²/c²), where v is the velocity of the train and c is the speed of light

Given:

v = (4/5)c (velocity of the train)

Δt' = 3/5 s (time measured by the passenger)

First, we can calculate the Lorentz factor γ:

γ = 1 / √(1 - v²/c²)

γ = 1 / √(1 - (4/5)²)

γ = 1 / √(1 - 16/25)

γ = 1 / √(9/25)

γ = 1 / (3/5)

γ = 5/3

Now, we can calculate the time measured by you, the observer:

Δt = Δt' / γ

Δt = (3/5 s) / (5/3)

Δt = (3/5)(3/5)

Δt = 9/25 s

Therefore, according to you, the time taken for the passenger to throw the ball up and catch it is 9/25 s (Option A).

Read more about Time Dilation here: https://brainly.com/question/3747871

#SPJ11

NASA has placed a helicopter on Mars. You can find videos of the helicopter (1) rising off of the red soil of Mars and (2) hovering some distance above the surface. In order to do this, what must the helicopter overcome? Note: In this case, the word "overcome" means to "work against" or to "fight" in a way that makes an action possible. If I am walking in a wind storm, I must overcome the wind to move in the direction the wind is coming from. In order to remove a magnet from a refrigerator, I must overcome the magnetic force that holds it in place. a To lift off from the soil, does the helicopter need to overcome weight or inertia or both? To hover above the surface, does it need to overcome weight or inertia or both? To hover above the surface, it must overcome both weight and inertia. To lift off from the surface, it must overcome only weight. To lift off from the surface, it must overcome only inertia. To lift off from the surface, it must overcome both weight and inertia. To hover above the surface, it must overcome only inertia. To hover above the surface, it must overcome only weight.

Answers

To lift off from the surface, the helicopter must overcome both weight and inertia. To hover above the surface, it must overcome only weight.

Why is should weight and inertia be overcome?

Weight: The helicopter's weight is the force of gravity pulling it down. The helicopter's blades create lift, which is an upward force that counteracts the force of gravity. The helicopter must generate enough lift to overcome its weight in order to lift off.

Inertia: Inertia is the tendency of an object to resist change in motion. When the helicopter is sitting on the ground, it has inertia. The helicopter's rotors must generate enough thrust to overcome the helicopter's inertia in order to lift off.

Hovering: When the helicopter is hovering, it is not moving up or down. This means that the helicopter's weight and lift are equal. The helicopter's rotors must continue to generate lift in order to counteract the force of gravity and keep the helicopter hovering in place.

Find out more on weight and inertia here: https://brainly.com/question/30804177

#SPJ4

A loop with radius r = 20cm is initially oriented perpendicular
to 1.2T magnetic field. If the loop is rotated 90o in 0.2s. Find
the induced voltage in the loop.

Answers

The induced voltage is 3.77V.

Here are the given:

Radius of the loop: r = 20cm = 0.2m

Initial magnetic field: B_i = 1.2T

Angular displacement: 90°

Time taken: t = 0.2s

To find the induced voltage, we can use the following formula:

V_ind = -N * (dPhi/dt)

where:

V_ind is the induced voltage

N is the number of turns (1 in this case)

dPhi/dt is the rate of change of the magnetic flux

The rate of change of the magnetic flux can be calculated using the following formula:

dPhi/dt = B_i * A * sin(theta)

where:

B_i is the initial magnetic field

A is the area of the loop

theta is the angle between the magnetic field and the normal to the loop

The area of the loop can be calculated using the following formula:

A = pi * r^2

Plugging in the known values, we get:

V_ind = -N * (dPhi/dt) = -1 * (B_i * A * sin(theta) / t) = -1 * (1.2T * pi * (0.2m)^2 * sin(90°) / 0.2s) = 3.77V

Therefore, the induced voltage is 3.77V.

Learn more about voltage with the given link,

https://brainly.com/question/1176850

#SPJ11

Cell Membranes and Dielectrics Many cells in the body have a cell membrane whose inner and outer surfaces carry opposite charges, just like the plates of a parallel-plate capacitor. Suppose a typical cell membrane has a thickness of 8.8×10−9 m , and its inner and outer surfaces carry charge densities of -6.3×10−4 C/m2 and +6.3×10−4 C/m2 , respectively. In addition, assume that the material in the cell membrane has a dielectric constant of 5.4.
1. Find the magnitude of the electric field within the cell membrane.
E = ______ N/C
2. Calculate the potential difference between the inner and outer walls of the membrane.
|ΔV| = ______ mV

Answers

1. The magnitude of the electric field within the cell membrane can be determined using the formula E = σ/ε, where E is the electric field, σ is the charge density, andε is the permittivity of free space.The permittivity of free spaceε is given byε = ε0 k, where ε0 is the permittivity of free space and k is the dielectric constant.

Thus, the electric field within the cell membrane is given by E = σ/ε0 kE = (6.3 × 10-4 C/m2) / [8.85 × 10-12 F/m (5.4)]E = 1.51 × 106 N/C2. The potential difference between the inner and outer walls of the membrane is given by|ΔV| = Edwhered is the thickness of the membrane.Substituting values,|ΔV| = (1.51 × 106 N/C)(8.8 × 10-9 m)|ΔV| = 13.3 mV (rounded to two significant figures) Answer:1. E = 1.51 × 106 N/C2. |ΔV| = 13.3 mV

Learn more about electric field:

brainly.com/question/19878202

#SPJ11

Question 23 1 pts Which of the following best describes the sizes of atoms? Atoms are so small that millions of them could fit across the period at the end of this sentence. Most atoms are about a millionth of a meter (1 micrometer) in diameter. Atoms are roughly the same size as typical bacteria. Atoms are too small to see by eye, but can be seen with a handheld magnifying glass.

Answers

The statement "Atoms are so small that millions of them could fit across the period at the end of this sentence" best describes the sizes of atoms

How is the size of an atom

Atoms are the fundamental building blocks of matter and are incredibly tiny They consist of a nucleus at the center made up of protons and neutrons with electrons orbiting around it The size of an atom is typically measured in terms of its diameter

They are said to be smallest pasrticles that make up matter. Hence we have to conclude that toms are so small that millions of them could fit across the period at the end of this sentence" best describes the sizes of atoms

Read more on atoms here https://brainly.com/question/17545314

#SPJ4

The wavefunction for a wave on a taut string of linear mass density u = 40 g/m is given by: y(xt) = 0.25 sin(5rt - rtx + ф), where x and y are in meters and t is in
seconds. The energy associated with three wavelengths on the wire is:

Answers

The energy associated with three wavelengths on the wire is approximately (option b.) 2.473 J.

To calculate the energy associated with three wavelengths on the wire, we need to use the formula for the energy density of a wave on a string:

E = (1/2) μ ω² A² λ,

where E is the energy, μ is the linear mass density, ω is the angular frequency, A is the amplitude, and λ is the wavelength.

In the given wave function, we have y(x,t) = 0.25 sin(5πt - πx + Ф). From this, we can extract the angular frequency and the amplitude:

Angular frequency:

ω = 5π rad/s

Amplitude:

A = 0.25 m

Since the given wave function does not explicitly mention the wavelength, we can determine it from the wave number (k) using the relationship k = 2π / λ:

k = π

Solving for the wavelength:

k = 2π / λ

π = 2π / λ

λ = 2 m

Now, we can substitute these values into the energy formula:

E = (1/2) μ ω²A² λ

= (1/2) × 0.04 kg/m × (5π rad/s)² × (0.25 m)² × 2 m

≈ 2.473 J

Therefore, the energy associated with three wavelengths on the wire is approximately 2.473 J, which corresponds to option b. E = 2.473 J.

The complete question should be:

The wavefunction for a wave on a taut string of linear mass density - 40 g/m is given by: y(x,t) = 0.25 sin(5πt - πx + Ф), where x and y are in meters and t is in seconds. The energy associated with three wavelengths on the wire is:

a. E = 3.08 J

b. E = 2.473 J

c. E = 1.23 J

d. E = 3.70 J

e. E = 1.853 J

To learn more about wavelengths, Visit:

https://brainly.com/question/24452579

#SPJ11

Question 43 1 pts In what form does water exist on the Moon? There is water ice in the bright regions of the lunar maria. There are shallow lakes of liquid water in the deepest craters. There are small pools of liquid water just beneath the surface. There is no water in any form on the Moon There is water ice in craters near the poles.

Answers

Water exists on the Moon in the form of water ice in craters near the poles.

Scientific studies and observations have provided evidence for the presence of water ice on the Moon. The lunar poles, specifically the permanently shadowed regions within craters, are known to harbor water ice.

These regions are characterized by extremely low temperatures and lack of sunlight, allowing ice to persist. The ice is believed to have originated from various sources, including cometary impacts and the solar wind, which carried hydrogen that could react with oxygen to form water molecules.

NASA's Lunar Reconnaissance Orbiter (LRO) mission and other spacecraft have provided valuable data on the presence of water ice. LRO's instruments, such as the Lunar Exploration Neutron Detector (LEND), have detected elevated levels of hydrogen at the poles, indicating the presence of water ice.

Additionally, the Lunar Crater Observation and Sensing Satellite (LCROSS) mission performed an impact experiment, confirming the presence of water ice in a permanently shadowed crater.

The discovery of water ice on the Moon has significant implications for future lunar exploration and potential resource utilization. It provides a potential source of water for sustaining human presence, producing rocket propellant, and supporting other activities.

However, it's important to note that while water ice exists in craters near the poles, it is not distributed across the entire lunar surface, and other regions of the Moon do not possess significant amounts of water in any form.

To know more about lunar poles refer here:

https://brainly.com/question/31037120#

#SPJ11

How do you specify the z component of an electrons total angular
momentum in units of h/2pi?

Answers

The z component of an electron's total angular momentum, denoted as Lz, can be specified in units of h/2π (Planck's constant divided by 2π) by using the formula: Lz = mℏ

where m is the quantum number representing the specific value of the z component and ℏ is h/2π (reduced Planck's constant). The quantum number m can take on integer or half-integer values (-ℓ, -ℓ+1, ..., ℓ-1, ℓ), where ℓ is the orbital angular momentum quantum number.

Each value of m corresponds to a specific energy level and orbital orientation of the electron within an atom.

To know more about angular momentum refer to-

https://brainly.com/question/29563080

#SPJ11

Displacement vector À points due east and has a magnitude of 1.49 km. Displacement vector B points due north and has a magnitude of 9.31 km. Displacement vector & points due west and has a magnitude of 6.63 km. Displacement vector # points due south and has a magnitude of 2.32 km. Find (a) the magnitude of the resultant vector À + B + © + D , and (b) its direction as a
positive angle relative to due west.

Answers

(a) The magnitude of the resultant vector À + B + & + # is approximately 8.67 km.

(b) The direction of the resultant vector, measured as a positive angle relative to due west, is approximately 128.2 degrees.

To find the magnitude and direction of the resultant vector, we can use vector addition.

Magnitude of vector À = 1.49 km (due east)

Magnitude of vector B = 9.31 km (due north)

Magnitude of vector & = 6.63 km (due west)

Magnitude of vector # = 2.32 km (due south)

(a) Magnitude of the resultant vector À + B + & + #:

To find the magnitude of the resultant vector, we can square each component, sum them, and take the square root:

Resultant magnitude = sqrt((Ax + Bx + &x + #x)^2 + (Ay + By + &y + #y)^2)

Here, Ax = 1.49 km (east), Ay = 0 km (no north/south component)

Bx = 0 km (no east/west component), By = 9.31 km (north)

&x = -6.63 km (west), &y = 0 km (no north/south component)

#x = 0 km (no east/west component), #y = -2.32 km (south)

Resultant magnitude = sqrt((1.49 km + 0 km - 6.63 km + 0 km)^2 + (0 km + 9.31 km + 0 km - 2.32 km)^2)

Resultant magnitude = sqrt((-5.14 km)^2 + (6.99 km)^2)

Resultant magnitude ≈ sqrt(26.4196 km^2 + 48.8601 km^2)

Resultant magnitude ≈ sqrt(75.2797 km^2)

Resultant magnitude ≈ 8.67 km

Therefore, the magnitude of the resultant vector À + B + & + # is approximately 8.67 km.

(b) Direction of the resultant vector:

To find the direction, we can calculate the angle with respect to due west.

Resultant angle = atan((Ay + By + &y + #y) / (Ax + Bx + &x + #x))

Resultant angle = atan((0 km + 9.31 km + 0 km - 2.32 km) / (1.49 km + 0 km - 6.63 km + 0 km))

Resultant angle = atan(6.99 km / -5.14 km)

Resultant angle ≈ -51.8 degrees

Since we are measuring the angle relative to due west, we take the positive angle, which is 180 degrees - 51.8 degrees.

Resultant angle ≈ 128.2 degrees

Therefore, the direction of the resultant vector À + B + & + #, measured as a positive angle relative to due west, is approximately 128.2 degrees.

Learn more about Displacement vectors at https://brainly.com/question/12006588

#SPJ11

(a) A sphere made of plastic has a density of 1.14 g/cm3 and a radius of 8.00 cm. It falls through air of density 1.20 kg/m3 and has a drag coefficient of 0.500. What is its terminal speed (in m/s)?
___________m/s
(b) From what height (in m) would the sphere have to be dropped to reach this speed if it fell without air resistance?
___________m

Answers

The terminal speed of the sphere is 17.71 m/s. It would have to be dropped from a height of 86.77 m to reach this speed if it fell without air resistance.

The terminal velocity of an object is the maximum velocity it can reach when falling through a fluid. It is reached when the drag force on the object is equal to the force of gravity.

The drag force is proportional to the square of the velocity, so as the object falls faster, the drag force increases. Eventually, the drag force becomes equal to the force of gravity, and the object falls at a constant velocity.

The terminal velocity of the sphere can be calculated using the following formula:

v_t = sqrt((2 * m * g) / (C_d * A * rho_f))

where:

v_t is the terminal velocity in meters per second

m is the mass of the sphere in kilograms

g is the acceleration due to gravity (9.8 m/s^2)

C_d is the drag coefficient (0.500 in this case)

A is the cross-sectional area of the sphere in meters^2

rho_f is the density of the fluid (1.20 kg/m^3 in this case)

The mass of the sphere can be calculated using the following formula:

m = (4/3) * pi * r^3 * rho

where:

m is the mass of the sphere in kilograms

pi is a mathematical constant (3.14)

r is the radius of the sphere in meters

rho is the density of the sphere in kilograms per cubic meter

The cross-sectional area of the sphere can be calculated using the following formula:

A = pi * r^2

Plugging in the known values, we get the following terminal velocity for the sphere:

v_t = sqrt((2 * (4/3) * pi * (8.00 cm)^3 * (1.14 g/cm^3) * 9.8 m/s^2) / (0.500 * pi * (8.00 cm)^2 * 1.20 kg/m^3)) = 17.71 m/s

The height from which the sphere would have to be dropped to reach this speed if it fell without air resistance can be calculated using the following formula:

h = (v_t^2 * 2 / g)

where:

h is the height in meters

v_t is the terminal velocity in meters per second

g is the acceleration due to gravity (9.8 m/s^2)

Plugging in the known values, we get the following height:

h = (17.71 m/s)^2 * 2 / 9.8 m/s^2 = 86.77 m

To learn more about terminal speed click here: brainly.com/question/30556510

#SPJ11

A copper wire is 10.00 m long and has a cross-sectional area of 1.00×10 −4
m 2
. This wire forms a one turn loop in the shape of square and is then connocted to a buttery that apples a potential difference of 0.200 V. If the locp is placed in a uniform mognetic feld of magnitude 0.400 T, what is the maximum torque that can act on it?

Answers

The maximum torque that can act on the loop is approximately 47,058.8 N·m.

To calculate the maximum torque acting on the loop, we can use the formula:

Torque = N * B * A * I * sin(θ)

where N is the number of turns in the loop, B is the magnetic field strength, A is the area of the loop, I is the current flowing through the loop, and θ is the angle between the magnetic field and the normal vector of the loop.

In this case, the loop has one turn (N = 1), the magnetic field strength is 0.400 T, the area of the loop is (10.00 m)² = 100.00 m², and the potential difference applied by the battery is 0.200 V.

To find the current flowing through the loop, we can use Ohm's law:

I = V / R

where V is the potential difference and R is the resistance of the loop.

The resistance of the loop can be calculated using the formula:

R = ρ * (L / A)

where ρ is the resistivity of copper (approximately 1.7 x 10^-8 Ω·m), L is the length of the loop, and A is the cross-sectional area of the loop.

Substituting the given values:

R = (1.7 x 10^-8 Ω·m) * (10.00 m / 1.00 x 10^-4 m²)

R ≈ 1.7 x 10^-4 Ω

Now, we can calculate the current:

I = V / R

I = 0.200 V / (1.7 x 10^-4 Ω)

I ≈ 1176.47 A

Substituting all the values into the torque formula:

Torque = (1) * (0.400 T) * (100.00 m²) * (1176.47 A) * sin(90°)

Since the angle between the magnetic field and the normal vector of the loop is 90 degrees, sin(90°) = 1.

Torque ≈ 47,058.8 N·m

Therefore, The maximum torque that can act on the loop is approximately 47,058.8 N·m.

Learn more about torque here:

https://brainly.com/question/17512177

#SPJ11

How much charge does 5.5 billion (5,500,000,00) electrons produce? (a) -3.4x10°C (b) -8.8x10C (c)-1.0x10°C (d)-5.12x100c

Answers

The charge produced by 5.5 billion electrons is  (b)-8.8x10^(-10) C.

To calculate the charge produced by a certain number of electrons, we need to know the elementary charge, which is the charge carried by a single electron. The elementary charge is approximately 1.6x10^(-19) C.

Given that we have 5.5 billion electrons, we can calculate the total charge by multiplying the number of electrons by the elementary charge:

Total charge = Number of electrons × Elementary charge

Total charge = 5.5 billion × (1.6x10^(-19) C)

Simplifying this calculation, we have:

Total charge = 5.5x10^9 × (1.6x10^(-19) C)

Multiplying these numbers together, we get:

Total charge = 8.8x10^(-10) C

Therefore, the charge produced by 5.5 billion electrons is -8.8x10^(-10) C. Option b is the answer.

To learn more about electrons click here:

brainly.com/question/12001116

#SPJ11

The cars of a long coated by pulling them wider a happerom which also the of 10000 kg that the engine store op meg under the hopperendom Express your answering the significant figures

Answers

The given problem statement mentions a car with a long coat that is expanded by pulling them wider with a hopper weighing 10000 kg. Here, the car is pulled with the hopper, which increases the weight of the system.

The significant figures refer to the meaningful digits present in a given numerical value. The significant digits in any given number are the numbers that are not zero, and when they occur between non-zero digits, they carry significance. For example, 2.3 has two significant figures, and 120.03 has five significant figures.

In multiplication and division, the significant figures of the answer are the same as the least significant figures of the values in the equation. In this problem, we are not given any numerical values except the weight of the hopper. Thus, there is no significance of figures in this problem statement. Therefore, we cannot express our answer in significant figures as there are no numerical values given except for the weight of the hopper.

To know more about hopper visit:

https://brainly.com/question/30777831

#SPJ11

On a horizontal table, a 12 kg mass is attached to a spring strength given by k = 200 N/ke, and the spring is compressed 4.0 metres. (e. it starts from 40 m, taking the position of the mass when the spring is fully relaxed as 0.0) When released the spring imparts to the mass a certain velocity a) The friction that the mass experiences as it slides is 60 N. What is the velocity when the spring has half- relaxed? (ie. when it is at -2,0 m.) b) What is the velocity of the mass when the spring is fully relaxed (x=00)? c) What is the velocity when it has overshot and travelled to the point x = 20 metres? 1) Where does the mass come to a stop? e) What is the position at which it reaches the maximum velocity, and what is that velocity?

Answers

The position at which the object reaches maximum velocity is x = 0.0 m, and the velocity at this point is zero. The object comes to a stop when it has overshot and reached x = 20.0 m, it doesn't reach a positive velocity. We'll use the principles of conservation of energy and Newton's laws of motion.

Mass of the object (m) = 12 kg

Spring constant (k) = 200 N/m

Initial compression of the spring  = 4.0 m

Frictional force = 60 N

(a) Velocity when the spring has half-relaxed (x = -2.0 m):

First, let's find the potential energy stored in the spring at half-relaxed position:

Potential energy (PE) = (1/2) * k * [tex](x_{initial/2)^2[/tex]

PE = (1/2) * 200 N/m * (4.0 m/2)^2

PE = 200 J

Next, let's consider the work done against friction to find the kinetic energy at this position:

Work done against friction [tex](W_{friction) }= F_{friction[/tex] * d

[tex]W_{friction[/tex]= 60 N * (-6.0 m) [Negative sign because the displacement is opposite to the frictional force]

[tex]W_{friction[/tex]= -360 J

The total mechanical energy of the system is the sum of the potential energy and the work done against friction:

[tex]E_{total[/tex] = PE + [tex]W_{friction[/tex]

         = 200 J - 360 J

         = -160 J [Negative sign indicates the loss of mechanical energy due to friction]

The total mechanical energy is conserved, so the kinetic energy (KE) at half-relaxed position is equal to the total mechanical energy:

KE = -160 J

Using the formula for kinetic energy:

KE = (1/2) * m *[tex]v^2[/tex]

Solving for velocity (v):

[tex]v^2[/tex] = (2 * KE) / m

[tex]v^2[/tex] = (2 * (-160 J)) / 12 kg

[tex]v^2[/tex] = -26.67 [tex]m^2/s^2[/tex] [Negative sign due to loss of mechanical energy]

Since velocity cannot be negative, we can conclude that the object comes to a stop when the spring has half-relaxed (x = -2.0 m). It doesn't reach a positive velocity.

(b) At the fully relaxed position, the potential energy of the spring is zero. Therefore, all the initial potential energy is converted into kinetic energy.

PE = 0 J

KE  = -160 J [Conservation of mechanical energy]

Using the formula for kinetic energy:

KE = (1/2) * m * [tex]v^2[/tex]

Solving for velocity (v):

[tex]v^2[/tex]= (2 * KE) / m

[tex]v^2[/tex]= (2 * (-160 J)) / 12 kg

[tex]v^2 = -26.67 m^2/s^2[/tex] [Negative sign due to loss of mechanical energy]

Again, since velocity cannot be negative, we can conclude that the object comes to a stop when the spring is fully relaxed (x = 0.0 m). It doesn't reach a positive velocity.

(c) At this position, the object has moved beyond the equilibrium position. The potential energy is zero, and the total mechanical energy is entirely converted into kinetic energy.

PE = 0 J

KE = -160 J [Conservation of mechanical energy]

Using the formula for kinetic energy:

KE = (1/2) * m *[tex]v^2[/tex]

Solving for velocity (v):

v^2[tex]v^2[/tex]= (2 * KE) / m

= (2 * (-160 J)) / 12 kg

= -26.67 m^2/s^2 [Negative sign due to loss of mechanical energy]

Similar to the previous cases, the object comes to a stop when it has overshot and reached x = 20.0 m. It doesn't reach a positive velocity.

(d) From the previous analysis, we found that the mass comes to a stop at x = -2.0 m, x = 0.0 m, and x = 20.0 m. These are the positions where the velocity becomes zero.

(e) The maximum velocity occurs at the equilibrium position (x = 0.0 m) since the object experiences no net force and is free from friction.

Therefore, the position at which the object reaches maximum velocity is x = 0.0 m, and the velocity at this point is zero.

Learn more about velocity here:

https://brainly.com/question/30559316

#SPJ11

6. An electron beam is passed through crossed electric and magnetic fields. The force that each field exerts on the electrons is balanced by the force of the other field. The electric field strength is 375 N/C, and the magnetic field strength is 0.125 T. What is the speed of the electrons that pass through these fields undeflected? Enter your answer 7. Why do ions in a mass spectrometer first have to be passed through crossed electric and magnetic fields before being passed only through a magnetic field? Enter your answer

Answers

The speed of the electrons that pass through crossed electric and magnetic fields undeflected is 3 × 10^6 m/s.

To explain why ions in a mass spectrometer first have to be passed through crossed electric and magnetic fields before being passed only through a magnetic field, one would have to understand how mass spectrometers work.

A mass spectrometer is an instrument that scientists use to determine the mass and concentration of individual molecules in a sample. The mass spectrometer accomplishes this by ionizing a sample, and then using an electric and magnetic field to separate the ions based on their mass-to-charge ratio.

Ions in a mass spectrometer first have to be passed through crossed electric and magnetic fields before being passed only through a magnetic field because passing the ions through crossed electric and magnetic fields serves to ionize the sample.

The electric field ionizes the sample, while the magnetic field serves to deflect the ions, causing them to move in a circular path. This deflection is proportional to the mass-to-charge ratio of the ions.

After the ions have been separated based on their mass-to-charge ratio, they can be passed through a magnetic field alone. The magnetic field serves to deflect the ions even further, allowing them to be separated even more accurately.

To know more about speed of the electrons, visit:

https://brainly.com/question/31948190

#SPJ11

A wire whose resistance is R = 98 is cut into 5 equally long
pieces, which are then connected in parallel. What is the
resistance of the parallel combination?

Answers

Therefore, the resistance of the parallel combination of the 5 equally long pieces of wire is 19.6 ohms.

When resistors are connected in parallel, the total resistance can be calculated using the formula:

1/R(total) = 1/R₁ + 1/R₂ + 1/R₃ + ... + 1/Rn

In this case, the wire is cut into 5 equally long pieces, and each piece will have the same resistance. Let's denote the resistance of each piece as R(piece).

Since the pieces are connected in parallel, we can rewrite the formula as:

1/R(total) = 1/R(piece) + 1/R(piece) + 1/R(piece) + 1/R(piece) + 1/R(piece)

Simplifying further:

1/R(total) = 5/R(piece)

To find the resistance of the parallel combination (R(total)), we can rearrange the equation:

R(total) = R(piece)/5

Given that the resistance of each piece is R = 98, we substitute this value into the equation:

R(total) = 98/5

Calculating the value:

R(total) = 19.6

Therefore, the resistance of the parallel combination of the 5 equally long pieces of wire is 19.6 ohms.

To know more about resistance:

https://brainly.com/question/14243681

#SPJ4

Ancient pyramid builders are balancing a uniform rectangular stone slab of weight w, Part A tipped at an angle θ above the horizontal using a rope 1 The rope is held by five workers who share the force equally. If θ=14.0 ∘
, what force does each worker exert on the rope? Express your answer in terms of w (the weight of the slab). X Incorrect; Try Again; 4 attempts remaining Part B As θ increases, does each worker have to exert more or less force than in pa Figure Part C At what angle do the workers need to exert no force to balance the slab? Express your answer in degrees. θ * Incorrect; Try Again; 2 attempts remaining

Answers

The force that each worker exerts on the rope is 0.012w, where w is the weight of the slab. As θ increases, the force that each worker exerts decreases. At an angle of 45 degrees, the workers need to exert no force to balance the slab. Beyond this angle, the slab will tip over.

The force that each worker exerts on the rope is equal to the weight of the slab divided by the number of workers. This is because the force of each worker must be equal and opposite to the force of the other workers in order to keep the slab balanced.

The weight of the slab is w, and the number of workers is 5. Therefore, the force that each worker exerts is:

F = w / 5

The angle θ is the angle between the rope and the horizontal. As θ increases, the moment arm of the weight of the slab decreases. This is because the weight of the slab is acting perpendicular to the surface of the slab, and the surface of the slab is tilted at an angle.

The moment arm of the force exerted by the workers is the distance between the rope and the center of mass of the slab. This distance does not change as θ increases. Therefore, as θ increases, the torque exerted by the weight of the slab decreases.

In order to keep the slab balanced, the torque exerted by the workers must also decrease. This means that the force exerted by each worker must decrease.

At an angle of 45 degrees, the moment arm of the weight of the slab is zero. This means that the torque exerted by the weight of the slab is also zero. In order to keep the slab balanced, the torque exerted by the workers must also be zero. This means that the force exerted by each worker must be zero.

Beyond an angle of 45 degrees, the torque exerted by the weight of the slab will be greater than the torque exerted by the workers. This means that the slab will tip over.

To learn more about force here brainly.com/question/30507236

#SPJ11

A ray of light travels through a medium n1 and strikes a surface of a second medium, n2. The light that is transmitted to the medium n2 is deflected. This forms an angle smaller than its original direction, approaching the normal. We can conclude that medium 2 is more dense than medium 1.
Select one:
True
False

Answers

The conclusion that medium 2 is dense than medium 1 based solely on the fact that the transmitted light is deflected towards the normal is incorrect. This statement is false.

The phenomenon being described is known as refraction, which occurs when light travels from one medium to another with a different refractive index. The refractive index is a measure of how fast light travels in a particular medium. When light passes from a medium with a lower refractive index (n1) to a medium with a higher refractive index (n2), it slows down and changes direction.

The angle at which the light is deflected depends on the refractive indices of the two media and is described by Snell's law. According to Snell's law, when light travels from a less dense medium (lower refractive index) to a more dense medium (higher refractive index), it bends toward the normal. However, the denseness or density of the media itself cannot be directly inferred from the deflection angle.

To determine which medium is more dense, we would need additional information, such as the masses or volumes of the two media. Density is a measure of mass per unit volume, not directly related to the phenomenon of light refraction.

To learn more about refraction

https://brainly.com/question/27932095

#SPJ11

Required information A woman of mass 53.4 kg is standing in an elevator If the elevator maintains constant acceleration and is moving at 150 m's as it passes the fourth floor on its way down, what is its speed 4.00 s later? m/s

Answers

The elevator's speed 4.00 seconds later is approximately 189.2 m/s. To solve this problem, we can use the equations of motion under constant acceleration.

The woman's mass: m = 53.4 kg

Initial speed of the elevator: u = 150 m/s

Time interval: t = 4.00 s

We need to find the elevator's speed after 4.00 seconds later. Let's calculate it step by step.

First, we need to find the elevator's acceleration. Since the elevator maintains constant acceleration, we can assume it remains constant throughout the motion.

Using the equation:

v = u + at

We can rearrange it to solve for acceleration:

a = (v - u) / t

Substituting the given values:

a = (v - 150 m/s) / 4.00 s

Next, we can use the equation of motion to find the final speed (v) after 4.00 seconds:

v = u + at

Substituting the values:

v = 150 m/s + a(4.00 s)

Now, we need to find the acceleration. The weight of the woman is the force acting on her, given by:

F = mg

Using the equation:

F = ma

We can rearrange it to solve for acceleration:

a = F / m

Substituting the given values:

a = (mg) / m

The mass cancels out:

a = g

We can use the acceleration due to gravity, g, which is approximately 9.8 m/s².

Substituting the value of g into the equation for v:

v = 150 m/s + (9.8 m/s²)(4.00 s)

Calculating the expression:

v = 150 m/s + 39.2 m/s

v = 189.2 m/s

Therefore, the elevator's speed 4.00 seconds later is approximately 189.2 m/s.

Learn more about speed here:

https://brainly.com/question/28224010

#SPJ11

1. The electric field in a region of space increases from 00 to 1700 N/C in 2.50 s What is the magnitude of the induced magnetic field B around a circular area with a diameter of 0.540 m oriented perpendicularly to the electric field?
b=____T
2.
Having become stranded in a remote wilderness area, you must live off the land while you wait for rescue. One morning, you attempt to spear a fish for breakfast.
You spot a fish in a shallow river. Your first instinct is to aim the spear where you see the image of the fish, at an angle phi=43.40∘ϕ=43.40∘ with respect to the vertical, as shown in the figure. However, you know from physics class that you should not throw the spear at the image of the fish, because the actual location of the fish is farther down than it appears, at a depth of H=0.9500 m.H=0.9500 m. This means you must decrease the angle at which you throw the spear. This slight decrease in the angle is represented as α in the figure.
If you throw the spear from a height ℎ=1.150 mh=1.150 m above the water, calculate the angle decrease α . Assume that the index of refraction is 1.0001.000 for air and 1.3301.330 for water.
a= ___ degrees

Answers

Given data: Initial electric field, E = 0 N/CFinal electric field, E' = 1700 N/C Increase in electric field, ΔE = E' - E = 1700 - 0 = 1700 N/CTime taken, t = 2.50 s.

The magnitude of the induced magnetic field B around a circular area with a diameter of 0.540 m oriented perpendicularly to the electric field can be calculated using the formula: B = μ0I/2rHere, r = d/2 = 0.270 m (radius of the circular area)We know that, ∆φ/∆t = E' = 1700 N/C, where ∆φ is the magnetic flux The magnetic flux, ∆φ = Bπr^2Therefore, Bπr^2/∆t = E' ⇒ B = E'∆t/πr^2μ0B = E'∆t/πr^2μ0 = (1700 N/C)(2.50 s)/(π(0.270 m)^2)(4π×10^-7 T· m/A)≈ 4.28×10^-5 T Therefore, b = 4.28 x 10^-5 T2.

In the given problem, the angle of incidence is φ = 43.40°, depth of the fish is H = 0.9500 m, and height of the thrower is h = 1.150 m. The angle decrease α needs to be calculated. Using Snell's law, we can write: n1 sin φ = n2 sin θwhere n1 and n2 are the refractive indices of the first medium (air) and the second medium (water), respectively, and θ is the angle of refraction. Using the given data, we get:sin θ = (n1 / n2) sin φ = (1.000 / 1.330) sin 43.40° ≈ 0.5234θ ≈ 31.05°From the figure, we can write:tan α = H / (h - H) = 0.9500 m / (1.150 m - 0.9500 m) = 1.9α ≈ 63.43°Therefore, the angle decrease α is approximately 63.43°.So, a = 63.43 degrees.

To know more about electric visit:

https://brainly.com/question/31173598

#SPJ11

4. Parallel (6 points) Two long, parallel wires, Ax = 0.012 m apart, extend in the y direction, as shown in the figure below. Wire 1 carries a current I, = 54 A in the y direction. (a) (3 points) In order for the wires to attract each other with a force per unit length of 0.029 N/m, what must be the current in wire 2? Be sure to include the direction of the current in your answer. (b) (3 points) Now, suppose wire 2 has a current 1, = 41 A in the y direction. What is the magnetic field half way from wire 1 to wire 2? Be sure to specify both the magnitude and the direction of the magnetic field. (c) (Extra Credit - 3 points) Suppose the current in wire 2 is still 1, = 41 A in the y direction, at what location between the wires does the magnetic field have a magnitude of 3.2 x 10-4T? AX L 11 12

Answers

The current in wire 2 is approximately 1.29 × 10⁻⁵ A in the y direction.

The magnetic field halfway between wire 1 and wire 2 is approximately 2.17 × 10⁻⁵ T in the y direction.

The location between the wires where the magnetic field has a magnitude of 3.2 × 10⁻⁴ T is approximately 0.064 m from wire 1.

(a) To find the current in wire 2, we equate the force per unit length between the wires to the magnetic field generated by wire 2. The formula is

F = μ₀I₁I₂/2πd, where

F is the force per unit length,

μ₀ is the permeability of free space (approximately 4π × 10⁻⁷ T·m/A),

I₁ is the current in wire 1 (54 A),

I₂ is the current in wire 2 (to be determined), and

d is the distance between the wires (0.012 m).

Plugging in the values, we can solve for I₂:

0.029 N/m = (4π × 10⁻⁷ T·m/A) * (54 A) * I₂ / (2π * 0.012 m)

0.029 N/m = (54 A * I₂) / (2 * 0.012 m)

0.029 N/m = 2250 A * I₂

I₂ = 0.029 N/m / 2250 A

I₂ ≈ 1.29 × 10⁻⁵ A

Therefore, the current in wire 2 is approximately 1.29 × 10⁻⁵A in the y direction.

(b) The magnetic field halfway between wire 1 and wire 2 can be calculated using the formula

B = (μ₀I) / (2πr), where

B is the magnetic field,

μ₀ is the permeability of free space,

I is the current in the wire, and

r is the distance from the wire.

Halfway between the wires, the distance from wire 1 is A/2 (A = 0.012 m).

Plugging in the values, we can determine the magnitude and direction of the magnetic field:

B = (4π × 10⁻⁷ T·m/A * 41 A) / (2π * (0.012 m / 2))

B = (4π × 10⁻⁷ T·m/A * 41 A) / (2π * 0.006 m)

B ≈ 2.17 × 10⁻⁵ T

Therefore, the magnetic field halfway between wire 1 and wire 2 is approximately 2.17 × 10⁻⁵ T in the y direction.

(c) To find the location between the wires where the magnetic field has a magnitude of 3.2 × 10⁻⁴ T, we rearrange the formula

B = (μ₀I) / (2πr) and solve for r:

r = (μ₀I) / (2πB)

r = (4π × 10⁻⁷ T·m/A * 41 A) / (2π * 3.2 × 10⁻⁴ T)

r ≈ 0.064 m

Therefore, the location between the wires where the magnetic field has a magnitude of 3.2 × 10⁻⁴ T is approximately 0.064 m from wire 1.

Note: The directions mentioned (y direction) are based on the given information and may vary depending on the specific orientation of the wires.

To know more about magnetic field, click here-

brainly.com/question/12244454

#SPJ11

Other Questions
What is the solution of each matrix equation?a. [4 3 2 2] X = [- 5 2] A standing wave on a string is described by the wave function y(xt) - (3 mm) sin(4rtx\cos(30nt). The wave functions of the two waves that interfere to produce this standing wave pattern are: GERD is a gastrointestinal disease list several goals forfeeding a patient with such condition. Also, include recentresearchable topics for further learning in relation to nutritionalmodifications In a study, researchers have participants learn the locations of certain items on a screen while listening to either music or white noise. Afterwards, they record brain activity when the participants are trying to remember the locations of the items. This is an example ofa: a.nonexperimental study b.behavioral intervention c.correlation study d.somatic intervention Blake and Kaitlyn have been married for three years. While eating dinner one night, Kaitlyn tells Blake about a conflict she had that morning with a customer at her job whom she felt was being completely unreasonable. Blake responds by telling Kaitlyn what he thinks she should have done differently in her encounter with the difficult customer. After having this conversation with Blake, however, Kaitlyn feels worse, not better. Your task in this question is to explain why Kaitlyn feels worse after talking to Blake, first from the perspective of Tannen's genderlects theory and then from the perspective of face negotiation theory. How would each theory explain Kaitlyn's negative feelings? (10 points possible, 5 for each of the theories) YOUR ANSWER: How does A. Philip Randolphs push for racial equality and thedebate over Korematsu v. United States case relate to FranklinRoosevelts Four Freedoms?Do you see an irony here? Explain. Choose the correct grammatical form: Sofa: Carlos, nosotros gemelos. Recuerdas? [The Supernatural, Science, and Truth] Now I want to return to the idea of the supernatural and explain why it can never offer us a true explanation of the things we see in the world and universe around us. Indeed, to claim a supernatural explanation of something is not to explain it at all and, even worse, to rule out any possibility of its ever being explained. Why do I say that? Because anything 'supernatural' must by definition be beyond the reach of a natural explanation. It must be beyond the reach of science and the well-established, tried and tested scientific method that has been responsible for the huge advances in knowledge we have enjoyed over the last 400 years or so. To say that something happened supernaturally is not just to say 'We don't understand it' but to say 'We will never understand it, so don't even try.' Science takes exactly the opposite approach. Science thrives on its ability - so far - to explain everything, and uses that as the spur to go on asking questions, creating possible models and testing them, so that we make our way, inch by inch, closer to the truth. If something were to happen that went against our current understanding of reality, scientists would see that as a challenge to our present model, requiring us to abandon or at least change it. It is through such adjustments and subsequent testing that we approach closer and closer to what is true. ... The whole history of science shows us that things once thought to be the result of the supernatural - caused by gods (both happy and angry), demons, witches, spirits, curses and spells - actually do have natural explanations: explanations that we can understand and test and have confidence in. Dawkins, Richard. The Magic of Reality: How We Know What's Really True. Free Press: 2011. 21-2. Answer the questions in one or two sentences each. 1. What is the thesis of the article? 2. What is the writer's purpose in writing: to inform or to persuade? Why do you think so? 3. Are Dawkins' key terms defined in the article? What are his key terms?4. Does the article have an agenda or political purpose, or is it fairly neutral in its point of view? In other words, does the writer seem to have anything to gain by us understanding his article? 5. Has the writer omitted any information that might make his point more clear or convincing, as far as you can tell?6. Do you find any logical fallacies in the article? 7. Do you agree with his point? Why or why not? Remember: it's perfectly alright to agree with a writer. 75,75,80,86 mean median mode After readings, "The Growing Importance of Cost Accounting for Hospitals", describes the ways in which healthcare financial managers use financial resources and cost classifications to allocate indirect costs to direct costs when determining patient charges. Also, explain how utilization rates are related to volumes and revenue generation. Support your answer with scholarly resources PLEASE ANSWER ALL 4 QUESTIONS BELOW1) According to a top down perspective, language isaa string of sounds that form meaningful words that flow in a sequence defined by the rules of grammar.bnot differentiated from animal sounds or sounds of nature.cjust stimulation to the auditory cortex.dAll answers are correct.2) In his research on self-report of memory ability, He noted that absent mindedness clusters on the factor foraverbal/factual memory.bautobiographical/emotional memory.cprospective memory.dAll answers are correct.3) In the Myers-Briggs Types, which dimension relates to our orientation toward others and energy sources?aextraversion introversion.bsensing intuition.cthinking feeling.djudging perceiving.edecisive wavering.4) According to a top down perspective, music isaa purposeful and progressive organization of sounds from diverse sources.bdisorganized noise impacting the auditory cortex.cfatal to cats. x(6-x) in standard form Describe what is a Service Level Agreement and briefly describewhat Microsoft's SLA is for its business customers. Solid A and solid B aremathematically similar. The ratioof the volume of A to the volumeof B is 125: 64If the surface area of A is 400 cmwhat is the surface of B? 1) Describe the psychological effects of child sexualvictimization. What would you recommend in terms of both treatmentand prevention? The Seneca tell the story of Gaqka, whose name means what? Bear Crow Stands Alone O Kicking Bird Question 5 Saved Listen According to the textbook introduction, which of the following were popular forms of literature in early colonial America? O religious works travel literature (tales of voyages and exploration) poetry all of the above Question 6 Saved Listen Christopher Columbus kept a record of his exploratory travels, excerpts of which you read in Module B. For which country was he exploring? England Spain Italy O France Calculate the reaction rate when a conversion of 85% is reached andis known that the specific speed is 6.2 dm3 / mol s CHALLENGE ACTIVITY 18.9.3: Recursion Recursion The double factorial of an odd number n is given by: N!!nin-2in-4) (1) Ex: The double factorial of the number 9 is: 91-9x7x5x3x1-945 Write a recursive function called OddDoubleFactorial that accepts a scalar integer input, N, and outputs the double factorial of N. The input to the function will always be an odd integer value Each time the function assigns a value to the output variable, the value should be saved in 8-digit ASCII format to the data file recursion check dat. The -append option should be used so the file is not overwritten with each save. Ex: If the output variable is Result then, the command is save recursion check.dat Result -ascii-append The test suite will examine this file to check the stack and ensure the problem was solved using recursion Ex: > n = 9; >> answer = OddDoubleFactorial(n) produces This tool is provided by a third party Though your activity may be recorded, a page refresh may be needed to fill the banner answer= 945 and the data file recursion check.dat contains 1.0000000E+00 3.0000000e+00 1.5000000+01 1.05000000+02 9.4580088e+82 0/2 Function 1 function Result OddDoubleFactorial(n) save recursion check.dat Result -ascii-append end Computes the double factorial of n using recursion, assumes n is add Your code goes here N Code to call your function > 1 n = 9; 2 answer OddboubleFactorial(n) Save Assessment: Required information Sheena can row a boat at 200 mihin still water. She needs to cross a river that is 1.20 mi wide with a current flowing at 1.80 mi/h. Not having her calculator ready, she guesses that to go straight across, she should head upstream at an angle of 25.0" from the direction straight across the river. What is her speed with respect to the starting point on the bank? mih Conduct research on how Apple Inc. operates.Research the company creating a powerpoint that is 8-10 slides on the informal institutions that impact this companys international business.