Answer:
Step-by-step explanation:
The null hypothesis is usually the default statement. The alternative is the opposite of the null and usually tested against the null hypothesis
In this case study,
The null hypothesis in would be that the mean time between clicks of the second hand on a particular clock is 1 second. In symbolic form it would be u = 1
The alternative hypothesis would be that the mean time between clicks of the second hand on a particular clock is 1 not second. In symbolic form, it would be: u =/ 1
evaluate the following when x=3
[tex]y = - 3 \times 4^{x} [/tex]
evaluate the following when x=-2
[tex]f(x) = 6 \times ( \frac{1}{3} )^{x} [/tex]
evaluate the following when x=4
[tex]f(x) = \frac{1}{4}\times {2}^{x} [/tex]
(help me with this please)
Answer:
y=-192
Step-by-step explanation:
the petit chef co has 11.7 percent coupon bonds on the market with elven years left to maturtiy. The bonds make annuly payments and have a par value of 1000. If the bonds curtently sell for 1153.60 what is tje ytm
Answer:
9.40%
Step-by-step explanation:
Given:
Annual coupon rate = 11%
Time left to maturity = 11 years
Par value of bond = 1000
Present value of bond = 1153.60
Required: Find Yeild to Maturity (YTM)
To find the yield to maturity, use the formula below:
YTM = [Annual coupon+(Face value-Present value)/time to maturity]/(Face value+Present value)/2
where annual coupon = 1000 * 11% = 110
Thus,
[tex]YTM = \frac{\frac{110+(1000-1139.59}{9}}{\frac{(1000+1139.59)}{2}}[/tex]
YTM = 9.40%
Therefore the approximate YTM is 9.40%
What is the radius of a circle that has a circumference of 3.14 meters?
Answer:
Hey there!
Circumference of a circle=0.5[tex]\pi[/tex]r
3.14=0.5[tex]\pi[/tex]r
1=0.5r
r=2
Hope this helps :)
Answer:
1/2 meter
Step-by-step explanation:
The circumference of a circle can be found using the following formula:
c= pi* 2r
We know that the circumference of the circle is 3.14 meters. Therefore, we can substitute 3.14 in for c.
3.14= pi* 2r
We want to find out what r, or the radius is. To do this, we must get r by itself.
First, divide both sides of the equation by pi, or 3.14. We divide because 2r is being multiplied by pi, and division is the inverse of multiplication.
3.14= pi* 2r
3.14/3.14=3.14* 2r/3.14
3.14/3.14=2r
1=2r
Next, divide both sides by 2. We divide because 2 and r are being multiplied, and the inverse of division is multiplication.
1/2=2r/2
1/2=r
0.5=r
The radius of the circle is 1/2 or 0.5 meters.
need help thankssssss
Answer:
301.44
Step-by-step explanation:
V=π r² h
V=π (4)² (12)
V= 603.19
divide by 2 to find half full: ≈ 301
301.44
6x-5<2x+11. plz helpppppp
Answer:
x < 4 or x = ( -∞, 4)
Step-by-step explanation:
6x - 5 < 2x + 116x - 2x < 11 + 54x < 16 x < 16/4x < 4or
x = ( -∞, 4)
[tex]\text{Solve the inequality for x:}\\\\6x-5<2x+11\\\\\text{Subtract 2x from both sides}\\\\4x-5<11\\\\\text{Add 5 to both sides}\\\\4x<16\\\\\text{Divide both sides by 4}\\\\\boxed{x<4}[/tex]
√9m^2n^2 + 2√m^2n^2 - 3mn
Answer:
I think it is
Step-by-step explanation:
Answer:
5n√2m^ - 3mn
Step-by-step explanation:
A group of 59 randomly selected students have a mean score of 29.5 with a standard deviation of 5.2 on a placement test. What is the 95% confidence interval for the mean score, , of all students taking the test
Answer:
The 95% confidence interval for the mean score, , of all students taking the test is
[tex]28.37< L\ 30.63[/tex]
Step-by-step explanation:
From the question we are told that
The sample size is [tex]n = 59[/tex]
The mean score is [tex]\= x = 29.5[/tex]
The standard deviation [tex]\sigma = 5.2[/tex]
Generally the standard deviation of mean is mathematically represented as
[tex]\sigma _{\= x} = \frac{\sigma }{\sqrt{n} }[/tex]
substituting values
[tex]\sigma _{\= x} = \frac{5.2 }{\sqrt{59} }[/tex]
[tex]\sigma _{\= x} = 0.677[/tex]
The degree of freedom is mathematically represented as
[tex]df = n - 1[/tex]
substituting values
[tex]df = 59 -1[/tex]
[tex]df = 58[/tex]
Given that the confidence interval is 95% then the level of significance is mathematically represented as
[tex]\alpha = 100 -95[/tex]
[tex]\alpha =[/tex]5%
[tex]\alpha = 0.05[/tex]
Now the critical value at this significance level and degree of freedom is
[tex]t_{df , \alpha } = t_{58, 0.05 } = 1.672[/tex]
Obtained from the critical value table
So the the 95% confidence interval for the mean score, , of all students taking the test is mathematically represented as
[tex]\= x - t*(\sigma_{\= x}) < L\ \= x + t*(\sigma_{\= x})[/tex]
substituting value
[tex](29.5 - 1.672* 0.677) < L\ (29.5 + 1.672* 0.677)[/tex]
[tex]28.37< L\ 30.63[/tex]
1/2 of a right angle is a? answers: A. reflex angle B. obtuse angle C. acute angle D. straight angle
Answer:
C. acute angle
Step-by-step explanation:
As you know ,right angle is equal to 90 degrees so half of 90 degrees is 45 degree which is an acute angle (acute angles are the angles which are less than 90 degrees)
Hope this helps and pls mark as brainliest :)
Answer: acute
Step-by-step explanation:
An angle that is less than 90 degrees
A circular chicken house has an area of 40m². What length of chicken wire is required to fence the house without any wire left over?
Use this scenario for questions 16-20: A city council begins hosting music nights in the park. They want to understand the success of the program, so they record attendance on 4 different nights (n = 4). On average, the city saw an average attendance of 47 (s = 4.7). Other cities that have launched a similar program and have seen an average attendance of μ = 53 (σ = 4.2). Is the city attendance different from other cities that have launched these music programs (alpha = .05)? What would be the hypotheses for this test? (HINT: remember one-tailed and two-tailed tests!).
Answer:
Step-by-step explanation:
To identify the null hypothesis, the null hypothesis is the default statement while the alternative hypothesis is the opposite of the null and always tested against the null hypothesis.
The alternative hypothesis depending on the case study can give rise to a one-tailed or a two-tailed test. The one tailed test includes either less than or greater than option and not both while the two tailed test involves both.
In this case study,
the null hypothesis is u1 (representing the city in particular) = u2 (representing other cities)
The alternative hypothesis is u1 (representing the city in particular) =/ u2 (representing other cities).
This, this test due to its not equal to sign is a two tailed test, the two results might differ maybe with one higher than the other, or lower than the other.
What is the density of a brownie the shape of a cube weighing 15 grams measuring 5 cm on a side?
Answer:
0.12 g/cm³
Step-by-step explanation:
Density is the ratio of mass to volume. The volume of the brownie is the cube of its side dimension:
V = s³ = (5 cm)³ = 125 cm³
Then the density is ...
ρ = M/V = (15 g)/(125 cm³) = 0.12 g/cm³
The density of the brownie is 0.12 g/cm³.
Can you draw the reflection Across the y-axis of the attached image.
Answer:
see graph
Step-by-step explanation:
A reflection across the y-axis means the point is equal but opposite distance from the y-axis. This has no change on the y-value of the point, because no matter the y-value, the point will still be the same distance from the y-axis. Long story short, if you're reflecting across the y-axis, change the sign of the x-coordinate. If you're reflecting across the x- axis, change the sign of the y-coordinate.
Assume that a sample is used to estimate a population proportion p. Find the margin of error E that corresponds to the given statistics and confidence level. Round the margin of error to four decimal places. 95% confidence; n = 349, x = 42
Answer:
0.5705Step-by-step explanation:
Margin of error is expressed as M.E = [tex]z * \sqrt{\frac{\sigma}{n} }[/tex] where;
z is the z score at 95% confidence
[tex]\sigma[/tex] is the standard deviation
n is the sample size
Given n = 349, [tex]\sigma = 42[/tex] and z score at 95% confidence = 1.645
Substituting this values into the formula above we will have;
M.E = [tex]1.645*\sqrt{\frac{42}{349} }[/tex]
[tex]M.E = 1.645*\sqrt{0.1203} \\\\M.E = 1.645*0.3468\\\\M.E = 0.5705 (to\ four\ dp)[/tex]
A point P has coordinates (-5, 4). What are its new coordinates after reflecting
point Pover the y-axis?
A. (-5, -4)
B. (-5, 4)
C. (5, 4)
D. (5, -4)
Answer:
C(5, 4)
Step-by-step explanation:
The rule for a reflection over the y -axis is (x,y)→(−x,y) .
Answer:
(5, 4)
Step-by-step explanation:
when you reflect off the y-axis, you switch (x,y) to (-x,y)
So
(-5, 4) --> (5, 4)
Hope this helps,
Feel free to ask more questions if I need to explain more.
What is the formula for the area A of a trapezoid with parallel sides of length B and D, nonparallel sides of length A and C and height H?
A. A = 1/2h (a+c)
B. A = 1/2h (b + d)
C. A = a+b + c + d
D. A= abcd
E. A = 1/2h (a+b+c+d)
Answer:
[tex](B) \dfrac12H (B+D)[/tex]
Step-by-step explanation:
[tex]\text{Area of a trapezoid }= \dfrac12 ($Sum of the parallel sides) \times $Height\\Parallel Sides = B and D\\Height =H\\Therefore:\\\text{Area of the trapezoid }= \dfrac12 (B+D) H[/tex]
The correct option is B.
solve the rational equation 5/x = 4x+1/x^2
Answer:
x = 1
Step-by-step explanation:
Set up the rational expression with the same denominator over the entire equation.
Since the expression on each side of the equation has the same denominator, the numerators must be equal
5x =4x+1
Move all terms containing x to the left side of the equation.
Hope this can help you
You change oil every 6000 miles and drive 2000 miles a month; how many times a year do you change oil?
Answer:
you would change it 4 times a year
Step-by-step explanation:
if there is 12 months in a year and 3 mounths equal 6000 then divide 12/3=4
HELP!!! Evaluate 8^P7
The correct answer is B. 40,320
Explanation:
In mathematics, a permutation refers to all the possible ways of arranging objects or elements in a set, while still considering an order. For example, you can calculate all the possible ways 5 athletes can end in a race as one athlete cannot have both the first and third place. The expression [tex]{8}[/tex][tex]P_{7}[/tex] shows a permutation because the P indicates the expression refers to a permutation. Additionally, this can be solved by using the formula [tex]{n}[/tex][tex]P_{r}[/tex] =[tex]\frac{n!}{(n-r)!}[/tex]. This means, in the expression presented n = 8 while r = 7. Also, the symbol (!) indicates the number should be multiplied using all whole numbers minor to the given number until you get to 1, which is known as factorial functions. The process is shown below:
[tex]{n}[/tex][tex]P_{r}[/tex] =[tex]\frac{n!}{(n-r)!}[/tex] [tex]{8}[/tex][tex]P_{7}[/tex] = [tex]\frac{8!}{(8-7) !}[/tex][tex]{8}[/tex][tex]P_{7}[/tex] = [tex]\frac{8!}{1!}[/tex][tex]{8}[/tex][tex]P_{7}[/tex] = [tex]\frac{8 x 7 x 6 x 5 x 4 x 3 x 2 x 1}{1}[/tex] or 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1 / 1
[tex]{8}[/tex][tex]P_{7}[/tex] = 40320
the perimeter of a square flower bed is 100 feet. what is the area of the flower bed in sqaure feet
Answer:
A =625 ft^2
Step-by-step explanation:
The perimeter of a square is
P = 4s where s is the side length
100 =4s
Divide each side by 4
100/4 = 4s/4
25 = s
A = s^2 for a square
A = 25^2
A =625
3 is what percentage of 12?
Answer:
25%
Step-by-step explanation:
First you have the fraction of 3/12 and need to turn it into a decimal. So to do that you divide 3 by 12 = 0.25. So your percent is 25%
What is the answer of 4=y-4
Answer:
y = 8Step-by-step explanation:
4 = y - 4
Group the constants at the left side of the equation
That's
4 + 4 = y
Add the constants
y = 8Hope this helps you
Answer:
y=8
Step-by-step explanation:
To solve this equation, we need to find out what y is.
4= y-4
Therefore, we must get y by itself on one side of the equation.
4 is being subtracted from y. The inverse of subtraction is addition. Add 4 to both sides of the equation.
4+4=y-4+4
4+4=y
8=y
y=8
Let's check our solution. Plug 8 back in for y.
4= y-4
4= 8-4
4=4
The equation above is true, so we know our answer is correct.
Biologists stock a lake with 160
160
fish, and estimate the carrying capacity of the lake to be 9100
9100
fish. The number of fish tripled in the first year.
(a) Assuming that the fish population satisfies logistic growth, the fish population can be modeled by:()=/[1+55.875−1.13506]
From the given information about this population, determine the constant
that completes the model.
Answer:
[tex]P ( t ) = \frac{9100.024}{1 + 55.875e^-^1^.^1^3^5^0^6^*^t}[/tex]
Step-by-step explanation:
Solution:-
- We are given a logistic growth model of the fish population cultured. The logistic growth of fish population is modeled by the following equation:
[tex]P ( t ) = \frac{c}{1 + 55.875e^-^ 1^.^1^3^5^0^6^t}[/tex]
Where, c: the constant to be evaluated.
- We are given the initial conditions for the model where at t = 0. The initial population was given to be:
t = 0 , Po = 160
N ( carrying capacity ) = 9100
- After a year, t = 1. The population was tripled from the initial value. That is P ( 1 ) = Po*3 = 160*3 = 480.
- We will use the given logistic model and set P ( 1 ) = 480 and determine the constant ( c ) as follows:
[tex]P ( 1 ) = \frac{c}{1 + 55.875e^-^ 1^.^1^3^5^0^6^*^1} = 480\\\\c = 480* [ 1 + 55.875e^-^ 1^.^1^3^5^0^6]\\\\c = 9100.024[/tex]
- The complete model can be written as:
[tex]P ( t ) = \frac{9100.024}{1 + 55.875e^-^1^.^1^3^5^0^6^*^t}[/tex]
please show on graph (with x and y coordinates) state where the function x^4-36x^2 is non-negative, increasing, concave up
Answer:
[tex] y'' =12x^2 -72=0[/tex]
And solving we got:
[tex] x=\pm \sqrt{\frac{72}{12}} =\pm \sqrt{6}[/tex]
We can find the sings of the second derivate on the following intervals:
[tex] (-\infty<x< -\sqrt{6}) , y'' = +[/tex] Concave up
[tex]x=-\sqrt{6}, y =-180[/tex] inflection point
[tex] (-\sqrt{6} <x< \sqrt{6}), y'' =-[/tex] Concave down
[tex]x=\sqrt{6}, y=-180[/tex] inflection point
[tex] (\sqrt{6}<x< \infty) , y'' = +[/tex] Concave up
Step-by-step explanation:
For this case we have the following function:
[tex] y= x^4 -36x^2[/tex]
We can find the first derivate and we got:
[tex] y' = 4x^3 -72x[/tex]
In order to find the concavity we can find the second derivate and we got:
[tex] y'' = 12x^2 -72[/tex]
We can set up this derivate equal to 0 and we got:
[tex] y'' =12x^2 -72=0[/tex]
And solving we got:
[tex] x=\pm \sqrt{\frac{72}{12}} =\pm \sqrt{6}[/tex]
We can find the sings of the second derivate on the following intervals:
[tex] (-\infty<x< -\sqrt{6}) , y'' = +[/tex] Concave up
[tex]x=-\sqrt{6}, y =-180[/tex] inflection point
[tex] (-\sqrt{6} <x< \sqrt{6}), y'' =-[/tex] Concave down
[tex]x=\sqrt{6}, y=-180[/tex] inflection point
[tex] (\sqrt{6}<x< \infty) , y'' = +[/tex] Concave up
Veda solves the following system of linear equations by elimination. What is the value of x in the solution of the system
of equations?
6+4x-2y=0
-3-7y=10x
Answer:
work shown and pictured
Answer:
x= -1 y = 1
Step-by-step explanation:
Find the surface area of the triangular prism (above) using its net (below).
Answer:
96 square units
Step-by-step explanation:
The surface area of the prism can be calculated using its net.
The net consists of 3 rectangles and 2 triangles.
The surface area = area of the 3 rectangles + area of the 2 triangles
Area of 3 rectangles:
Area of 2 rectangles having the same dimension = 2(L*B) = 2(7*3) = 2(21) = 42 squared units
Area of the middle triangle = L*B = 7*6 = 42 square units.
Area of the 3 triangles = 42 + 42 = 84 square units.
Area of the 2 triangles:
Area = 2(½*b*h) = 2(½*6*2) = 6*2
Area of the 2 triangles = 12 square units
Surface area of the triangular prism = 84 + 12 = 96 square units.
Answer:
It's 96 unit2
Step-by-step explanation:
I just do it in khan and it's correct
Which value is a solution to the inequality 9-y >12
I believe the value is negative 4. If not, well, try any negative below that, such as -5,6,7,8, etc.
Answer:
y is less than -3
Step-by-step explanation:
To do this you would just subtract 9 from both sides so you get -y is greater than 3. Since you cannot have y as a negative number you will divide -1 from both sides but when you do that you will have to flip the sign so you get y is less than -3.
PLEASE HELPPP ITS TIMED Consider the following functions. f(x) = x2 – 4 g(x) = x – 2 What is (f(x))(g(x))? a.(f(x))(g(x)) = x + 2; x ≠ 2 b.(f(x))(g(x)) = x + 2; all real numbers c.(f(x))(g(x)) = x3 – 2x2 – 4x + 8; x ≠ 2 d(f(x))(g(x)) = x3 – 2x2 – 4x + 8; all real numbers
Answer:
d(f(x))(g(x)) = x3 – 2x2 – 4x + 8; all real numbersStep-by-step explanation:
(f(x))(g(x)) = (x²- 4)*(x-2) =x³ - 2x² - 4x + 8Choice d. is correct
a.(f(x))(g(x)) = x + 2; x ≠ 2 incorrectb.(f(x))(g(x)) = x + 2; all real numbers incorrectc.(f(x))(g(x)) = x3 – 2x2 – 4x + 8; x ≠ 2 incorrectd(f(x))(g(x)) = x3 – 2x2 – 4x + 8; all real numberscorrectAnswer:
D
Step-by-step explanation:
The SAT scores have an average of 1200 with a standard deviation of 60. A sample of 36 scores is selected. a) What is the probability that the sample mean will be larger than 1224
Answer:
the probability that the sample mean will be larger than 1224 is 0.0082
Step-by-step explanation:
Given that:
The SAT scores have an average of 1200
with a standard deviation of 60
also; a sample of 36 scores is selected
The objective is to determine the probability that the sample mean will be larger than 1224
Assuming X to be the random variable that represents the SAT score of each student.
This implies that ;
[tex]S \sim N ( 1200,60)[/tex]
the probability that the sample mean will be larger than 1224 will now be:
[tex]P(\overline X > 1224) = P(\dfrac{\overline X - \mu }{\dfrac{\sigma}{\sqrt{n}} }> \dfrac{}{}\dfrac{1224- \mu }{\dfrac{\sigma}{\sqrt{n}} })[/tex]
[tex]P(\overline X > 1224) = P(Z > \dfrac{1224- 1200 }{\dfrac{60}{\sqrt{36}} })[/tex]
[tex]P(\overline X > 1224) = P(Z > \dfrac{24 }{\dfrac{60}{6} })[/tex]
[tex]P(\overline X > 1224) = P(Z > \dfrac{24 }{10} })[/tex]
[tex]P(\overline X > 1224) = P(Z > 2.4 })[/tex]
[tex]P(\overline X > 1224) =1 - P(Z \leq 2.4 })[/tex]
From Excel Table ; Using the formula (=NORMDIST(2.4))
P(\overline X > 1224) = 1 - 0.9918
P(\overline X > 1224) = 0.0082
Hence; the probability that the sample mean will be larger than 1224 is 0.0082
I have attached the file
Answer:
sorry i am not able to understood
Step-by-step explanation:
n
The nth term of a sequence is given by
T = -19n - 3.
(a) Which term of the sequence has a value
of -250?
b) Is-344 a term in the sequence? Why?
Answer:
a)13 b)no because at 18th term its -345