The value of y in the figure is
35.134 degrees
How to determine the value of yThe value of y is worked using SOH CAH TOA
Sin = opposite / hypotenuse - SOH
Cos = adjacent / hypotenuse - CAH
Tan = opposite / adjacent - TOA
The figure shows a right angle triangle of
opposite = 19
adjacent = 27
The angle is calculated using tan, TOA let the angle be y
tan y= Opposite / Adjacent
tan y = 19 / 27
y = arc tan (19/27)
y = 35.134 degrees
Learn more about trigonometry here:
https://brainly.com/question/29402966
#SPJ1
you are a trainer . .you have developed a 5 week training course for 20 trainees that will cost $140,000. what is the cost per trainee
The cost per trainee for the 5-week training course is $7,000.
To find the cost per trainee, we divide the total cost of the training course by the number of trainees.
Total cost of the training course = $140,000
Number of trainees = 20
Cost per trainee = Total cost of the training course / Number of trainees
Cost per trainee = $140,000 / 20
Cost per trainee = $7,000
Therefore, the cost per trainee for the 5-week training course is $7,000.
for such more question on cost
https://brainly.com/question/25109150
#SPJ8
I need help please!!
Answer:
(r q)(-3) = -3
(q r)(-3) = -3
Step-by-step explanation:
let x = 1
q(1) = -1 +2 = 1
r(1) = 1² = 1
(r q)(-3) = ?
(1×1)(-3) = -3
(q r)(-3) = ?
(1×1)(-3) = -3
it is my first time taking my baby to the cinemas in Junes 2023, and the cinemas have sales because there are tons of kids' movies to be seen. For adults the ticket costs 70$ and for children it costs 30$, which tickets sell like 1000$ a day leading to 31000 a month. Calculate the number of tickets that were sold for adults and children in a day. A+C=1000 70+30=31000.
A+C=1000
70+30=31000
if we wanted to extend this discussion beypnd what has been shared so far, what additional question could we ask?
Step-by-step explanation:
If we wanted to extend the discussion beyond what has been shared so far, an additional question we could ask is:
"What is the ratio of adult tickets to children's tickets sold in a day?"
This question would provide insight into the distribution of ticket sales between adults and children and help us understand the demand for different movie genres or screenings among the audience.
Evaluate leaving your answer in a standard form 0.0048*0.81 /0.027*0.04
Step-by-step explanation:
When we simplify the expression, we get:
0.0048 * 0.81 / 0.027 * 0.04 = (0.0048 / 0.027) * (0.81 / 0.04)
Using a calculator to evaluate the two fractions separately, we get:
0.0048 / 0.027 ≈ 0.1778
0.81 / 0.04 = 20.25
Substituting these values back into the original expression, we get:
(0.0048 / 0.027) * (0.81 / 0.04) ≈ 0.1778 * 20.25
Multiplying these two values together, we get:
0.1778 * 20.25 ≈ 3.59715
To express the answer in standard form, we need to write it as a number between 1 and 10 multiplied by a power of 10. We can do this by moving the decimal point three places to the left, since there are three digits to the right of the decimal point:
3.59715 ≈ 3.59715 × 10^(-3)
Therefore, the final answer in standard form is approximately 3.59715 × 10^(-3).
anna rolled a pair of number cubes what is the probability of getting even number on both sides PLSSS HELP ME
It is best to draw a table of outcomes and list all the possible outcomes when you roll a pair of numbered cubes. As follows:
1 2 3 4 5 6
1 ( 1 , 1 ) ( 1 , 2 ) ( 1 , 3 ) ( 1 , 4 ) ( 1 , 5 ) ( 1 , 6 )
2 ( 2 , 1 ) ( 2, 2 ) ( 2 , 3 ) ( 2 , 4 ) ( 2 , 5 ) ( 2 , 6 )
3 ( 3 , 1 ) ( 3 , 2 ) ( 3 , 3 ) ( 3 , 4 ) ( 3 , 5 ) ( 3 , 6 )
4 ( 4 , 1 ) ( 4 , 2 ) ( 4 , 3 ) ( 4 , 4 ) ( 4 , 5 ) ( 4 , 6 )
5 ( 5 , 1 ) ( 5 , 2 ) ( 5 , 3 ) ( 5 , 4 ) ( 5 , 5 ) ( 5 , 6 )
6 ( 6 , 1 ) ( 6 , 2 ) ( 6 , 3 ) ( 6 , 4 ) ( 6 , 5 ) ( 6 , 6 )
- Each cube has 6 faces, Hence, 6 numbers for each are expressed as row and column for first and second cube respectively.
- Now locate and highlight all the even pairs shown in bold.
- The total number of even pairs outcomes are = 9.
- The total possibilities are = 36.
- The probability of getting even pairs as favorable outcome can be expressed as:
P ( Even pairs ) = Favorable outcomes / Total outcomes
P ( Even pairs ) = 9 / 36
P ( Even pairs ) = 1 / 4.
- So the probability of getting an even pair when a pair of number cubes are rolled is 1/4
Which system of linear inequalities is represented by the graph?
y > x – 2 and y < x + 1
y < x – 2 and y > x + 1
y < x – 2 and y > x + 1
y > x – 2 and y < x + 1
Answer:
The system of linear inequalities represented by the graph is:
y > x - 2 and y < x + 1
This system of inequalities indicates that y is greater than x - 2, which represents the upper boundary of the shaded region in the graph. Additionally, y is less than x + 1, which represents the lower boundary of the shaded region. The intersection of these two conditions is the region between the lines, satisfying both inequalities.
Determine if (4,1) is a solution for the system of equations. Explain answer
y = -x + 5
y = 2x - 7
Answer:
Step-by-step explanation:
To determine if the point (4,1) is a solution for the system of equations, we need to substitute the values of x and y from the point into both equations and check if the equations hold true.
For the first equation, y = -x + 5, we substitute x = 4 and y = 1:
1 = -(4) + 5
1 = -4 + 5
1 = 1
The equation holds true for the first equation.
For the second equation, y = 2x - 7, we substitute x = 4 and y = 1:
1 = 2(4) - 7
1 = 8 - 7
1 = 1
The equation also holds true for the second equation.
Since the point (4,1) satisfies both equations, it is indeed a solution to the system of equations.
The hip width x of adult females is normally distributed with a mean of 37.6 cm and a standard deviation of 4.36 cm. The maximum width of an aircraft seat that will accommodate 98% of all adult women is about: (Give your answer to one decimal places if necessary.)
Answer:
Step-by-step explanation:
To find the maximum width of an aircraft seat that will accommodate 98% of all adult women, we need to determine the corresponding z-score for the 98th percentile of the normal distribution.
First, we find the z-score corresponding to the 98th percentile using a standard normal distribution table or calculator. The z-score for the 98th percentile is approximately 2.05.
Next, we use the z-score formula to find the corresponding value in the original distribution:
z = (x - μ) / σ
Solving for x (the maximum width of the aircraft seat):
x = z * σ + μ
Substituting the values given:
x = 2.05 * 4.36 + 37.6
x ≈ 45.98
Therefore, the maximum width of an aircraft seat that will accommodate 98% of all adult women is approximately 46 cm (rounded to one decimal place).
Find the area of the region bounded by the graphs of f(x) = x^3 + x^2 - 6x and g(x) = 2x - x^2
The area of the region bounded by the graphs of [tex]f(x) = x^3 + x^2 - 6x[/tex] and [tex]g(x) = 2x - x^2[/tex] is 69 1/3 square units.
To find the area of the region bounded by the graphs of the functions [tex]f(x) = x^3 + x^2 - 6x[/tex] and [tex]g(x) = 2x - x^2[/tex], we need to determine the points of intersection and evaluate the definite integral.
First, let's find the points of intersection by setting f(x) equal to g(x):
[tex]x^3 + x^2 - 6x = 2x - x^2[/tex]
Rearranging the equation, we get:
[tex]x^3 + 2x^2 - 8x = 0[/tex]
Factoring out an x, we have:
[tex]x(x^2 + 2x - 8) = 0[/tex]
Using the quadratic formula, we find the solutions for [tex]x^2 + 2x - 8 = 0[/tex] to be x = -4 and x = 2. Therefore, the points of intersection are (-4, -16) and (2, 4).
To calculate the area, we integrate the difference of the two functions within the bounds of -4 to 2:
Area = ∫[from -4 to 2] (f(x) - g(x)) dx
Evaluating the definite integral, we have:
Area = ∫[-4 to 2] [(x^3 + x^2 - 6x) - (2x - x^2)] dx
= ∫[-4 to 2] (x^3 + 2x^2 - 8x) dx
Integrating each term and evaluating the integral, we find:
Area = [1/4x^4 + 2/3x^3 - 4x^2] from -4 to 2
= [(1/4)(2)^4 + (2/3)(2)^3 - 4(2)^2] - [(1/4)(-4)^4 + (2/3)(-4)^3 - 4(-4)^2]
= [4/4 + 16/3 - 16] - [16/4 + (-128/3) - 64]
= 1/3 + 128/3 - 16 + 4 - 128/3 + 64
= 1/3 + 4 + 64
= 69 1/3
For more such questions on area
https://brainly.com/question/2607596
#SPJ8
Divisores pares de 100
Answer:
2, 4, 10, 20, 50, and 100.
Step-by-step explanation:
Which of the segments below is a secant?
A. XY
B. UZ
C. XO
please answer i am stuck
(a) To find the assets in 2011 using the given information: A. To find the assets in 2011, substitute 11 for x and evaluate to find A(x).
In 2011 the assets are about $669.6 billion
(b) To find the assets in 2016 using the given information: B. To find the assets in 2016, substitute 16 for x and evaluate to find A(x).
In 2016 the assets are about $931.5 billion.
(c) To find the assets in 2019 using the given information: B. To find the assets in 2019, substitute 19 for x and evaluate to find A(x).
In 2019 the assets are about $1135.4 billion.
How to estimate the cost of the assets in 2011?Based on the information provided, we can logically deduce that the assets for a financial firm can be approximately represented by the following exponential function:
[tex]A(x)=324e^{0.066x}[/tex]
where:
A(x) is in billions of dollars.x = 7 corresponds to the year 2007.For the year 2011, the cost (in billions of dollars) is given by;
x = (2011 - 2007) + 7
x = 4 + 7
x = 11 years.
Next, we would substitute 11 for x in the exponential function:
[tex]A(11)=324e^{0.066 \times 11}[/tex]
A(11) = $669.6 billions.
Part b.
For the year 2016, the cost (in billions of dollars) is given by;
x = (2016 - 2007) + 7
x = 9 + 7
x = 16 years.
Next, we would substitute 16 for x in the exponential function:
[tex]A(16)=324e^{0.066 \times 16}[/tex]
A(16) = $931.5 billions.
Part c.
For the year 2019, the cost (in billions of dollars) is given by;
x = (2019 - 2007) + 7
x = 12 + 7
x = 19 years.
Next, we would substitute 19 for x in the exponential function:
[tex]A(19)=324e^{0.066 \times 19}[/tex]
A(19) = $1135.4 billions.
Read more on exponential functions here: brainly.com/question/28246301
#SPJ1
What number completes the sequence below? Enter your answer in the input
box at the bottom.
8——-4
16——8
24——12
32——?
Answer:
16
Step-by-step explanation:
the numbers on the right of the arrow are half the value of the corresponding numbers on the left, then
32 → [tex]\frac{1}{2}[/tex] (32)
32 → 16
HELP THIS QUESTION IS HARD
Answer:
a)
[tex] \frac{1}{( - 7)^{4} } [/tex]
Answer:
[tex](-7)^-^4=\frac{1}{(-7)^4}[/tex]
Step-by-step explanation:
The user aswati already wrote the correct answer, but I wanted to help explain why their answer is correct so that you'll understand.
According to the negative exponent rule, when a base (let's call it m) is raised to a negative exponent (let's call it n), we rewrite it as a fraction where the numerator is 1 and the denominator is the base raised to the same exponent turned positive.
Thus, the negative exponent rule is given as:
[tex]b^-^n=\frac{1}{b^n}[/tex]
Thus, [tex](-7)^-^4[/tex] becomes [tex]\frac{1}{(-7)^4}[/tex]
Simplify the f(x) and g(x) to get it
Answer:
(fg)(x)= (x²+6)(x²-x+9)
multiply the terms:
(fg)(x)= x²(x²-x+9) +6(x²-x+9)
add the like terms:
(fg)(x)= (x⁴-x³+9x²)+(6x²-6x+54)
and you get your final answer:
(fg)(x)= x⁴-x³+15x²-6x+54
Given the sequence 9/8, 3/4, 1/2,...,8/81 is the geometric sequence. Find the common ratio and the number of all terms of this sequence.
Common ratio of the geometric sequence 9/8, 3/4, 1/2,...,8/81 is 2/3 and the number of all terms in this sequence is 7.
As we know that,
Common ratio of any G.P. is a constant number that is multiplied by the previous term to obtain the next term.
So, r= (n+1)th term / nth term
where r ⇒ common ratio
(n+1)th term⇒ succeeding term
nth term⇒ preceding term
According to the given question, r = (9/8) / (3/4)
r = (2/3)
We also know,
Any term of a G.P. [nth term] can be obtained by the formula:
Tₙ= a[tex]r^{n-1}[/tex]
where, Tₙ= nth term
a= first term of G.P.
r=common ratio
Since last term of the G.P. is given to be 8/81; putting this in the above formula will yield us the total number of terms.
Tₙ= a[tex]r^{n-1}[/tex]
⇒ (8/81) = (9/8) x ([tex]2/3^{n-1}[/tex])
⇒ (64/729)= ([tex]2/3^{n-1}[/tex])
⇒[tex](2/3)^{6}[/tex] = ([tex]2/3^{n-1}[/tex])
⇒ n-1 = 6
⇒ n = 7
∴ The total number of terms in G.P. is 7.
Therefore, Common ratio of the sequence 9/8, 3/4, 1/2,...,8/81 is 2/3 and the number of all terms in this sequence is 7.
Read more about Geometric Progression (G.P.):
https://brainly.com/question/29084446
The Common Ratio for this geometric sequence is 2/3 and the total number of terms in the sequence is 6.
Explanation:The given mathematical sequence appears to be a geometric sequence, which is a sequence of numbers where each term after the first is found by multiplying the previous term by a fixed, non-zero number called the Common Ratio. In a geometric sequence, you can find the Common Ratio by dividing any term by the preceding term.
So in this case, the second term (3/4) divided by the first term (9/8) equals 2/3. Therefore, the Common Ratio for this geometric sequence is 2/3.
To find the total number of terms in this sequence we use the formula for the nth term of a geometric sequence: a*n = a*r^(n-1), where a is the first term, r is the common ratio, and n is the number of terms. This gives us: 8/81 = (9/8)*(2/3)^(n-1). Solving this for n gives us n = 6. Therefore, the total number of terms in this sequence is 6.
Learn more about Geometric Sequence here:https://brainly.com/question/34721734
#SPJ2
Select the correct answer.
The number of hours that 20 people spent watching television per day, in relation to age, is graphed. This quadratic equation represents the model
for the set of data.
y = 0.004z²0.314z + 7.5
Based on the model, approximately how much time does an 18-year-old spend watching television each day?
O A.
OB.
O C.
O D.
3 hours
2 hours
7.5 hours
0.5 hour
Based on the quadratic function, an 18 year old would spend 3 hours watching television.
Using the quadratic function given :
y = 0.004z²-0.314z + 7.5The age is represented as the variable , 'z'
substitute z = 18 into the equation
y = (0.004*18²) - 0.314(18) + 7.5
y = 3.144
y = 3 hours approximately
Hence, an 18 year old spend approximately 18 hours watching television.
Learn more on Quadratic functions:https://brainly.com/question/30164833
#SPJ1
if 2540cm is increase by 15%, the result is
Answer:
2921
Step-by-step explanation:
[tex]2540 + 2540 * \frac{15}{100} \\\\= 2540 + 381\\\\= 2921[/tex]
A hose fills a hot tub at a rate of 2.82
gallons per minute. How many hours will it take to fill a 303
-gallon
hot tub?
Answer:
Step-by-step explanation:
60 minutes per hour
2.82gal *60mins = 169.2gal per hour.
303 gallons / 169.2 gph = about 1.7907 hours
Pregunta 1
Resuelve el siguiente problema aplicando las estrategias de solución de problemas.
• El área de un triángulo es de 30 pies cuadrados y la base mide 5 pies. ¿Cuál es la
altura del triángulo en pulgadas?
Answer:
I can't understand the language but try people who can
What is the difference between relational understanding and Instructional understanding in mathematics?
In a sample of 5,000 students , the mean GPA is 2.80 and the standard deviation is 0.35. Assume the distribution to be normal.
How many students score below 2.60?
In a sample of 5000 students, the mean GPA is 2.80 and their standard deviation is 0.35 and 1428 students score below 2.60.
To find the number of students scoring below 2.60, we need to calculate the area under the normal distribution curve to the left of this value.
First, we need to standardize the value of 2.60 using the z-score formula: z = (x - μ) / σ, where x is the value (2.60), μ is the mean (2.80), and σ is the standard deviation (0.35). Plugging in the values, we get z = (2.60 - 2.80) / 0.35 = -0.57.
Now, we can use a standard normal distribution table or a statistical calculator to find the area to the left of -0.57. Consulting a standard normal distribution table, we find that the area to the left of -0.57 is approximately 0.2857.
To calculate the number of students scoring below 2.60, we multiply this area by the total number of students in the sample: 0.2857 * 5000 ≈ 1428.5.
Since the number of students must be a whole number, we round down to 1428 students.
Therefore, approximately 1428 students score below 2.60 in the sample of 5000 students, assuming a normal distribution with a mean of 2.80 and a standard deviation of 0.35.
Know more about standard deviation here:
https://brainly.com/question/475676
#SPJ8
Use the marginal tax rate chart to answer the question. Tax Bracket Marginal Tax Rate $0–$10,275 10% $10,276–$41,175 12% $41,176–$89,075 22% $89,076–$170,050 24% $170,051–$215,950 32% $215,951–$539,900 35% > $539,901 37% Determine the effective tax rate for a taxable income of $175,000. Round the final answer to the nearest hundredth.
Answer:
the effective tax rate for a taxable income of $175,000 is approximately 21.02%.
Step-by-step explanation:
Let's break down the income into the corresponding tax brackets:
The first $10,275 is taxed at a rate of 10%.
Tax on this portion: $10,275 * 0.10 = $1,027.50
The income between $10,276 and $41,175 is taxed at a rate of 12%.
Tax on this portion: ($41,175 - $10,276) * 0.12 = $3,710.88
The income between $41,176 and $89,075 is taxed at a rate of 22%.
Tax on this portion: ($89,075 - $41,176) * 0.22 = $10,656.98
The income between $89,076 and $170,050 is taxed at a rate of 24%.
Tax on this portion: ($170,050 - $89,076) * 0.24 = $19,862.88
The income between $170,051 and $175,000 is taxed at a rate of 32%.
Tax on this portion: ($175,000 - $170,051) * 0.32 = $1,577.44
Now, sum up all the taxes paid:
$1,027.50 + $3,710.88 + $10,656.98 + $19,862.88 + $1,577.44 = $36,836.68
The effective tax rate is calculated by dividing the total tax paid by the taxable income:
Effective tax rate = Total tax paid / Taxable income
Effective tax rate = $36,836.68 / $175,000 = 0.21024 (rounded to the nearest hundredth)
¿Cuál es el costo de un plátano si el racimo de 22 plátanos cuesta $23.10?
The cost of a single unit is given as follows:
$1.05.
El costo de un plátano es el seguiente:
$1.05.
How to obtain the cost of a single unit?The cost of a single unit is obtained applying the proportions in the context of the problem.
The cost of 22 units is of $23.10, hence the cost of a single unit is obtained dividing the total cost by the number of units, as follows:
23.1/22 = $1.05.
More can be learned about proportions at https://brainly.com/question/24372153
#SPJ1
JLK is similar to PQR find the value of X
Answer:
30
Step-by-step explanation:
22/33=20/x
cross multiply
22x=33x20
22x=660
x=660/22
x=30
Simplify the expression to a polynomial in standard form (x^2+3x+3) (-2x^2-x+6)
The polynomial [tex](x^2 + 3x + 3) * (-2x^2 - x + 6)[/tex] simplifies to [tex]-2x^4 - 7x^3 - 3x^2 + 33x + 18.[/tex]
A polynomial is a mathematical expression consisting of variables, coefficients, and exponents, combined using addition, subtraction, and multiplication operations. It is defined as a sum of terms, where each term consists of a variable raised to a non-negative integer exponent, multiplied by a coefficient.
The general form of a polynomial is:
P(x) = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₂x² + a₁x + a₀
To simplify the expression[tex](x^2 + 3x + 3) * (-2x^2 - x + 6)[/tex], we need to perform the multiplication and combine like terms.
First, we multiply each term in the first polynomial by each term in the second polynomial:
[tex](x^2 + 3x + 3) * (-2x^2 - x + 6) = x^2 * (-2x^2 - x + 6) + 3x * (-2x^2 - x + 6) + 3 * (-2x^2 - x + 6)[/tex]
Expanding each term, we get:
=[tex](-2x^4 - x^3 + 6x^2) + (-6x^3 - 3x^2 + 18x) + (-6x^2 - 3x + 18)[/tex]
Now, we combine like terms:
=[tex]-2x^4 + (-x^3 - 6x^3) + (6x^2 - 3x^2 - 6x^2) + (18x + 18x - 3x) + 18[/tex]
Simplifying further:
=[tex]-2x^4 - 7x^3 - 3x^2 + 33x + 18[/tex]
The simplified expression in polynomial standard form is:
-2x^4 - 7x^3 - 3x^2 + 33x + 18
For more such questions on polynomial visit:
https://brainly.com/question/4142886
#SPJ8
The slope of the tangent line to the curve y= 3/x
at the point 5, 3/5 is-
The equation of this tangent line can be written in the form y = mx + b
where:
m is:
b is:
The tangent line at that point is:
y = (-3/25)*x + 6/5
so m = -3/25, and b = 6/5
How to find the slope of the tangent line?To find the slope at that point, we need to evaluate the derivative at that point.
y = 3/x
The derivative is:
y' = -3/x²
When x = 5, we have:
y' = -3/5² = -3/25
So that is the slope, m.
Now let's find the line.
The line must pass trhough the point (5, 3/5), then:
3/5 = (-3/25)*5 + b
3/5 = -3/5 + b
3/5 + 3/5 = b
6/5 = b
The equation of the line is:
y = (-3/25)*x + 6/5
Learn more about the tangent line:
https://brainly.com/question/30162650
#SPJ1
10 donuts cost $2.99 how much 1 cost?
2. Sandra's house is located at the point (2,2). The school is located at the point (7, 10). Each
unit on the graph represents 1 mi. How far is the school from Sandra's house? Remember to
show your work.
Plot and label your points on the coordinate plane (1 point)
Use the Pythagorean Theorem to calculate the diagonal distance between the two
points, express your answer as a radical and as a decimal rounded to nearest
hundredths.
Answer:
Step-by-step explanation:
A group of adults were asked how many children they have in their families. The bar graph below shows the number of adults who indicated each number of children. 4+ 3.5+ 3- 2.5 2- 1.5- 1 0.5- 0 1 2 Number of Children How many adults were questioned? m St 4 5 What percentage of the adults questioned had 2 children? Round answer to 1 decimal place. %
Answer:
Step-by-step explanation:
To determine the percentage of adults who had 2 children, we need to first find the total number of adults questioned.
Looking at the bar graph, we can see that the bar representing 2 children has a height of 2.5. This means that 2.5 adults indicated having 2 children.
Let's assume the total number of adults questioned is "m". According to the bar graph, the sum of the heights of all the bars represents the total number of adults questioned.
From the bar graph, we can see the following:
The bar representing 4+ children has a height of 4.
The bar representing 3- children has a height of 3.5.
The bar representing 2- children has a height of 2.5.
The bar representing 1- children has a height of 1.5.
The bar representing 1 child has a height of 1.
The bar representing 0.5- children has a height of 0.5.
The bar representing 0 children has a height of 0.
To find the total number of adults questioned (m), we sum up the heights of all the bars:
m = 4 + 3.5 + 3 + 2.5 + 2 + 1.5 + 1 + 0.5 + 0
m = 18
Therefore, the total number of adults questioned is 18.
To find the percentage of adults who had 2 children, we divide the number of adults with 2 children (2.5) by the total number of adults questioned (18) and multiply by 100:
Percentage = (2.5 / 18) * 100
Percentage ≈ 13.9 (rounded to 1 decimal place)
Therefore, approximately 13.9% of the adults questioned had 2 children.