g what form would the general solution xt() have? [ii] if solutions move towards a line defined by vector

Answers

Answer 1

The general solution xt() would have the form of a linear combination of exponential functions. If the solutions move towards a line defined by a vector, the general solution would be a linear combination of exponential functions multiplied by polynomials.

In general, when solving linear homogeneous differential equations with constant coefficients, the general solution can be expressed as a linear combination of exponential functions. Each exponential function corresponds to a root of the characteristic equation.

If the solutions move towards a line defined by a vector, it means that the roots of the characteristic equation are all real and equal to a constant value, which corresponds to the slope of the line. In this case, the general solution would include terms of the form e^(rt), where r is the constant root of the characteristic equation.

To form the complete general solution, additional terms in the form of polynomials need to be included. These polynomials account for the presence of the line defined by the vector. The degree of the polynomials depends on the multiplicity of the root in the characteristic equation.

Overall, the general solution xt() in this scenario would have a combination of exponential functions multiplied by polynomials, where the exponential functions account for the movement towards the line defined by the vector, and the polynomials account for the presence of the line itself.

Learn more about: exponential functions

brainly.com/question/29287497

#SPJ11


Related Questions

a racquetball strikes a wall with a speed of 30 m/s and rebounds in the opposite direction with a speed of 1 6 m/s. the collision takes 5 0 ms. what is the average acceleration (in unit of m/s 2 ) of the ball during the collision with the wall?

Answers

The average acceleration of the racquetball during the collision with the wall is -280 m/s^2.

To find the average acceleration of the racquetball during the collision with the wall, we can use the formula:
Average acceleration = (final velocity - initial velocity) / time

Given that the racquetball strikes the wall with an initial speed of 30 m/s and rebounds with a final speed of 16 m/s, and the collision takes 50 ms (or 0.05 s), we can substitute these values into the formula:
Average acceleration = (16 m/s - 30 m/s) / 0.05 s
Simplifying this equation, we get:

Average acceleration = (-14 m/s) / 0.05 s
Dividing -14 m/s by 0.05 s gives us an average acceleration of -280 m/s^2. The negative sign indicates that the acceleration is in the opposite direction of the initial velocity, which means the ball is decelerating during the collision.
Therefore, the average acceleration of the racquetball during the collision with the wall is -280 m/s^2.
The average acceleration of the racquetball during the collision with the wall can be found using the formula:

average acceleration = (final velocity - initial velocity) / time. Given that the initial speed is 30 m/s, the final speed is 16 m/s, and the collision takes 50 ms (or 0.05 s), we can substitute these values into the formula. By subtracting the initial velocity from the final velocity and dividing by the time, we find that the average acceleration is -280 m/s^2.

The negative sign indicates that the acceleration is in the opposite direction of the initial velocity, meaning the ball is decelerating during the collision.

You can read more about velocity at https://brainly.com/question/80295

#SPJ11

A piano tuner stretches a steel piano wire with a tension of 765 N. The steel wire has a length of 0. 600m and a mass of 4. 50g.

What is the frequency f1 of the string's fundamental mode of vibration?

Express your answer numerically in hertz using three significant figures

Answers

The frequency f₁ of the string's fundamental mode of vibration is approximately 96 Hz, expressed to three significant figures.

The formula used to determine the frequency of a string's fundamental mode of vibration is given by:

f₁ = (1/2L) √(T/μ)

where:

f₁ is the frequency of the string's fundamental mode of vibration

L is the length of the string

T is the tension in the string

μ is the linear mass density of the string

Given values:

L = 0.600 m

T = 765 N

μ = 0.0075 kg/m

By substituting the values into the formula:

f₁ = (1/2L) √(T/μ)

f₁ = (1/2 × 0.600 m) √(765 N/0.0075 kg/m)

f₁ = (0.300 m) √(102000 N/m²)

f₁ = (0.300 m) (319.155)

f₁ = 95.746 Hz ≈ 96 Hz

Learn more about string's fundamental mode  here:-

https://brainly.com/question/29725169

#SPJ11

Other Questions
currently the federal minimum wage is 7.25 should the federal government raise the minimum wage? why or why not?How will this impact businesses and consumers? would there be any other things to vonsider if wages are raised?Currently, the federal minimum wage is 7.25 should the federal government raise the minimum wage? why or why not?How will this impact businesses and consumers? would there be any other things to consider if wages are raised? a racquetball strikes a wall with a speed of 30 m/s and rebounds in the opposite direction with a speed of 1 6 m/s. the collision takes 5 0 ms. what is the average acceleration (in unit of m/s 2 ) of the ball during the collision with the wall? a) perform a linear search by hand for the array [20,20,10,0,15], loching for 0 , and showing each iteration one line at a time b) perform a binary search by hand fo the array [20,0,10,15,20], looking for 0 , and showing each iteration one line at a time c) perform a bubble surt by hand for the array [20,20,10,0,15], shouing each iteration one line at a time d) perform a selection sort by hand for the array [20,20,10,0,15], showing eah iteration one line at a time What is the use of pancreas in the human body A piano tuner stretches a steel piano wire with a tension of 765 N. The steel wire has a length of 0. 600m and a mass of 4. 50g. What is the frequency f1 of the string's fundamental mode of vibration?Express your answer numerically in hertz using three significant figures For the given function, find (a) the equation of the secant line through the points where x has the given values and (b) the equation of the tangent line when x has the first value. y=f(x)=x^2+x;x=4,x=1 Suppose that in January a profit-maximizing firm has 25 employees. By February, the firm has decreased employment. One can infer that, when 25 employees are hired, theA) firm is losing market share.B) firm is minimizing losses.C) wage exceeds the value of the marginal product of labor.D) value of the marginal product of labor exceeds the wage A compound consisting of carbon and hydrogen consists of 67.90%carbon by mass. If the compound is measure to have a mass of 37.897Mg, how many grams of hydrogen are present in the compound? A split-plot design is also known as a:counterbalanced designmixed designTukey HSDblock design Explain the steps to generate machine code from a C/C++ code. 0.059 and 0.01 which is greater? Eight guests are invited for dinner. How many ways can they be seated at a dinner table if the table is straight with seats only on one side?A) 1B) 40,320C) 5040D) 362,880 determine the resultant force acting on the 0.7-m-high and 0.7-m-wide triangular gate Write the slope -intercept form of the equation of the line containing the point (5,-8) and parallel to 3x-7y=9