Answer: hello question b is incomplete attached below is the missing question
a) attached below
b) V = 0.336 ft/s
Explanation:
Elongation ( Xo) = 16/ 7 feet
mass attached to 4-foot spring = 16 pounds
medium has 9/2 times instanteous velocity
a) Find the equation of motion if the mass is initially released from the equilibrium position with a downward velocity of 2 ft/s
The motion is an underdamped motion because the value of β < Wo
Wo = 3.741 s^-1
attached below is a detailed solution of the question
1. A basket coffee filter (see below) is very light and has a large drag coefficient. It is possible to stack several filters together so they have the same drag coefficient as a single filter. Suppose you tried dropping one filter from a ladder, then tried dropping two stacked filters from the same height, then 3 and so on. For each try you measure the time taken for the filters to fall to the floor. How would you expect the time for the filters to fall to compare to the number of filters
Answer:
he times are getting closer as we use each filter, in the expression n would be the number of filters
t = [tex]\sqrt{ \frac{2(y_o - (n-1) h)}{g} }[/tex]
Explanation:
For this exercise let's use the kinematics relations
y = y₀ + v₀ t - ½ g t²
When the first filter reaches the ground, its height is y = 0, as they release its initial velocity is zero
for the 1st filter
0 = y₀ - ½ g t²
t² = 2y₀ / g
t = [tex]\sqrt{ \frac{2y_o}{g} }[/tex]
when we release the second filter upon arrival it has a height y = h where h is the height of each filter
h = y₀ - ½ g t²
t = [tex]\sqrt{ \frac{2(y_o- h)}{g} }[/tex]
when we release the third filter it reaches y = 2h
2h = y₀ - ½ g t²
t = [tex]\sqrt{ \frac{2(y_o -2h)}{g} }[/tex]
we can write the terms of this succession
(n-1) = y₀ - [tex]\frac{1}{2}[/tex] g t²
t = [tex]\sqrt{ \frac{2(y_o - (n-1) h)}{g} }[/tex]
therefore we see that the times are getting closer as we use each filter, in the expression n would be the number of filters
A load of mass 120kg is raised
vertically through a height of 2m in
30s by a machine whose efficiency,
is 100% Calculate the power generated
by the machine
Answer: P = 120 kg·9.81 m/s² · 2 m / 30 s = 78 W
Explanation: power P = Work done / time
Work is lifting work = mgh in which g = 9.81 m/s²
Time 30 s
A physics major is working to pay her college tuition by performing in a traveling carnival. She rides a motorcycle inside a hollow, transparent plastic sphere. After gaining sufficient speed, she travels in a vertical circle with a radius of 15.0 m. She has a mass of 80.0 kg and her motorcycle has mass 30.0 kg. What minimum speed must she have at the top of the circle for the motorcycle tires to remain in contact with the sphere
Answer:
v = 12.1 m/s
Explanation:
When at the top of the circle, there are two forces acting on the combined mass of the rider and the motorcycle.These are the force of gravity (downward) and the normal force, which is directed from the surface away from it, perpendicular to the surface.In this case, as the motorcycle runs in the interior of the circle, at the top point this force is completely vertical, and is also downward.Since the motorcycle is moving in a vertical circle, there must be a force, keeping the object moving around a circle.This force is the centripetal force, aims towards the center of the circle, and is just the net force aiming in this direction at any point.At the top point, this force is just the sum of the normal force and the weight of the mass of the rider and the motorcycle combined, as follows (we take the direction towards the center as positive):[tex]F_{c} = N + m*g (1)[/tex]
Now, we know that the centripetal force is related with the tangential speed at this point and the radius of the circle as follows:[tex]F_{c} = m*\frac{v^{2}}{r} (2)[/tex]
Since the normal force takes any value as needed to make (1) equal to (2), if the speed diminishes, it will be needed less force to keep the equality valid.In the limit, when the motorcyvle tires barely touch the surface, this normal force becomes zero.In this condition, from (1) and (2), we can find the minimum possible value of the speed that still keeps the motorcycle touching the surface, as follows:[tex]v_{min} =\sqrt{r*g} =\sqrt{15.0m*9.8m/s2} = 12.1 m/s (3)[/tex]Which type of biological molecule would control cell activities?
A) Amino Acids.
C) Nucleic Acids.
B) Lipids.
D) Carbohydrates.
Answer:
C. Nucleic Acids.
Explanation:
Nucleic acids are thus uniquely capable of directing their own self-replication, allowing them to function as the fundamental informational molecules of the cell. The information carried by DNA and RNA directs the synthesis of specific proteins, which control most cellular activities.
Did some simple research, if that's fine and I hope this is correct as it says on the sites. Have a good one :)
An elevator suspended by a vertical cable is moving downward at a constant speed. The tension in the cable must be A) greater than the weight of the elevator. B) less than the weight of the elevator. C) equal to the weight of the elevator.
Answer:
(C) because the elevator is not accelerating
Note F = M a = M g (the resultant force on the elevator is due to gravity)
or Fup = Fc the force exerted on the elevator by the cable
and Fdown = Fe the force exerted on the elevator by gravity
F = M a = Fup - Fdown = zero resultant force on elevator
6. As distance increases, gravitational force *
(10 Points)
increases
decreases
What happens to solar radiation when it is absorbed
Answer:
Absorbed sunlight is balanced by heat radiated from Earth's surface and atmosphere. ... The atmosphere radiates heat equivalent to 59 percent of incoming sunlight; the surface radiates only 12 percent. In other words, most solar heating happens at the surface, while most radiative cooling happens in the atmosphere
The slope of a displacement time graph for a uniform motion represent what
Answer:
Velocity.
Explanation:
The slope of a displacement time graph for a uniform motion represent the gradient of the line i.e. the velocity of the object.
The velocity of an object is given by :
v = d/t
Where
d is displacement
t is time
Hence, the slope of the displacement-time graph gives the velocity of the object.
For the circuit in the previous part, the current flowing in the wire between the positive terminal of the battery and the resistor is ___________ the current flowing between the resistor and the negative terminal of the battery. For the circuit in the previous part, the current flowing in the wire between the positive terminal of the battery and the resistor is ___________ the current flowing between the resistor and the negative terminal of the battery. less than equal to greater than
Answer:
Explanation:
because it is godhood
The Hall effect can be used to determine the density of mobile electrons in a conductor. A thin strip of the material being investigated is immersed in a magnetic field and oriented so that its surface is perpendicular to the field. In a particular measurement, the magnetic field strength was 0.685 T, the strip was 0.107 mm thick, the current along the strip was 2.25 A, and the Hall voltage between the strip's edges was 2.59 mV.Find the density nof mobile electrons in the material. The elementary charge is 1.602×10−19 C.
Answer:
the density of mobile electrons in the material is 3.4716 × 10²⁵ m⁻³
Explanation:
Given the data in the question;
we make use of the following expression;
hall Voltage VH = IB / ned
where I = 2.25 A
B = 0.685 T
d = 0.107 mm = 0.107 × 10⁻³ m
e = 1.602×10⁻¹⁹ C
VH = 2.59 mV = 2.59 × 10⁻³ volt
n is the electron density
so from the form; VH = IB / ned
VHned = IB
n = IB / VHed
so we substitute
n = (2.25 × 0.685) / ( 2.59 × 10⁻³ × 1.602×10⁻¹⁹ × 0.107 × 10⁻³ )
n = 1.54125 / 4.4396226 × 10⁻²⁶
n = 3.4716 × 10²⁵ m⁻³
Therefore, the density of mobile electrons in the material is 3.4716 × 10²⁵ m⁻³
If the object on the Moon were raised to a height of 30.0 m, what would be the potential energy? PE=mgh (g on the Moon is 1.62m/s)
6. A garden hose attached to a nozzle is used to fill a 15-gal bucket. The inner diameter of the hose is 1.5 cm, and it reduces to 0.8 cm at the nozzle exit. If it takes 50 s to fill the bucket with water (density = 1 kg/L), determine (a) the volume and mass flow rates of water through the hose, and (b) the average velocity of water at the nozzle exit.
Answer: 1.135 L/s; 1.35 kg/s, 22.57 m/s
Explanation:
Given
Volume of bucket [tex]V=15\ gal\approx 56.78\ L[/tex]
time to fill it [tex]t=50\ s[/tex]
Volume flow rate
[tex]\dot{V}=\dfrac{56.78}{50}=1.135\ L/s\approx 1.135\times 10^{-3}\ m^3/s[/tex]
The inner diameter of the hose [tex]D=1.5\ cm[/tex]
diameter of the nozzle exit [tex]d=0.8\ cm[/tex]
we can volume flow rate as
[tex]\Rightarrow \dot{V}=Av\quad \quad \text{v=average velocity through nozzle exit}\\\\\Rightarrow 1.135\times 10^{-3}=\frac{\pi }{4}d^2\times v\\\\\Rightarrow 1.135\times 10^{-3}=\frac{\pi }{4}(0.8\times 10^{-2})^2\times v\\\\\Rightarrow v=\dfrac{4\times 1.135\times 10^{-3}}{\pi \times 64\times 10^{-6}}=22.57\ m/s[/tex]
Mass flow rate
[tex]\Rightarrow \dot{m}=\rho \times \dot{V}\\\Rightarrow \dot{m}=1\ kg/L\times 1.135\ L/s=1.35\ kg/s[/tex]
Which of these would have the highest temperature?
ice
· Water
water vapor
Answer:
water vapor
Explanation:
did assignment on edge
What is heredity and how does it influence physical fitness?
can someone please help me I am so behind I neee to catch up but I need it to be correct both of them
Answer:
1.B, 2.A
Explanation:
g A rigid air cylinder with a volume of 100 cm3 is punctured with a hole having a crosssectional area of 0.3 mm2 . The original pressure and temperature of the air inside the cylinder are 800 kPa and 35 C. As the air leaves the hole in the cylinder, it reaches a pressure of 100 kPa and a temperature of 5 C. The velocity of the air as it escapes through the hole is 100 m/s. Calculate the original mass of air inside the tank and the mass in the tank 5 seconds after it is punctured, assuming the exit conditions of the air remain independent of time g
Solution :
The volume of the rigid cylinder = [tex]$100 \ cm^3 = 100 \times 10^{-6} \ m^3$[/tex]
Initial pressure inside the cylinder, [tex]$P_i = 800 \ kPa$[/tex]
Initial temperature inside the cylinder, [tex]$T_i = 35^\circ C= 308 \ K$[/tex]
Final temperature inside the cylinder, [tex]$T_f = 5^\circ C= 278 \ K$[/tex]
Final pressure inside the cylinder, [tex]$P_f = 100 \ kPa$[/tex]
Area of the hole, A = [tex]$0.3 \ mm^2 = 3 \times 10^{-7} \ m^2$[/tex]
Velocity of the air through the hole, V = 100 m/s
The final pressure and the temperature inside the cylinder will be the condition same as the ambient conditions.
At initial state, from the equation of state,
PV = mRT, where R = 287 J/kg-K for air
[tex]$800 \times 10^3 \times100 \times10^{-6} = m_1 \times 287 \times 308$[/tex]
∴ [tex]$m_1=9.1 \times 10^{-4} \ kg$[/tex]
Since the exit condition does not change with time, we have ,
At ambient condition, [tex]$P_f = 100 \kPa$[/tex] and [tex]$T_f= 278 \ K$[/tex].
Therefore, we can find the density of the air
[tex]$P=\rho R T$[/tex]
[tex]$\rho = \frac{P}{RT}$[/tex]
[tex]$=\frac{100 \times 10^3}{287 \times 278}$[/tex]
[tex]$= 1.25 \ kg/m^3$[/tex]
Mass flow rate of air from the cylinder = [tex]$\dot m$[/tex]
[tex]$\dot m$[/tex] can be written as [tex]$\dot m$[/tex] [tex]$=\rho_{f} \times A \times v$[/tex]
[tex]$\dot m$[/tex] = [tex]$1.25 \times 3 \times 10^{-7} \times 100$[/tex]
[tex]$\dot m$[/tex] = [tex]$3.75 \times 10^{-5}$[/tex] kg/s
Mass escaped from the cylinder in 5 seconds
[tex]$m=3.75 \times 10^{-5} \times 5$[/tex]
[tex]$= 1.875 \times 10^{-4} \ kg$[/tex]
Mass of air remaining in the cylinder after 5 seconds :
[tex]$m_2 = m_1 - m$[/tex]
[tex]$m_2 = 9.1 \times 10^{-4} - 1.875 \times 10^{-4}$[/tex]
[tex]$m_2 = 7.225 \times 10^{-4} \ kg$[/tex]
= 0.7225 grams
In 2014, physicists from FOM Foundation at the University of Amsterdam introduced a new hypothesis of how the Pyramids at Giza were built. The group of physicists suggestedthat ancient Egyptians wetted sand in an effort toreduce friction and then pulled the 3000 kg stoneblocks to their final resting place. 15 men couldmove a block at a rate of 0.5m/sby pulling a largerope angled at 30owith respect to the plane anda tension of 7,200 N.
Required:
a. What is net work done on block?
b. What is speed of blck after it moved .25m?
c. What is work done by block if kinetic friction coefficient is 0.3?
d. What is net work including friction?
Answer:
The correct answer is:
(a) 0
(b) 0.5 m/s
(c) 7740 N
(d) 0
Explanation:
The given values are:
mass,
m = 3000 kg
Tension,
T = 7,200 N
Angle,
= 30°
(a)
Even as the block speed becomes unchanged, the kinetic energy (KE) will adjust as well:
⇒ [tex]\Delta K =0[/tex]
By using the theorem of energy, the net work done will be:
⇒ [tex]\Delta K =0[/tex]
(b)
According to the question, After 0.25 m the block is moving with the constant speed
= 0.5 m/s.
(c)
The given kinetic friction coefficient is:
u = 0.3
The friction force will be:
= [tex]u(mg-Tsin30^{\circ})[/tex]
On substituting the values, we get,
= [tex]0.3[(3000\times 9.8)-(7200\times 0.5)][/tex]
= [tex]0.3[29400-3600][/tex]
= [tex]0.3\times 25800[/tex]
= [tex]7,740 \ N[/tex]
(d)
On including the friction,
The net work will be:
⇒ [tex]\Delta K=0[/tex]
What Kind of clothing would you most likely wear at 15 latitude?
A. Fleece or jacket and long pants
B. cotton shirts, light jacket, long pants
C. parka, gloves,insulated pants, heavy boots
D. shorts , sandals and T-shirts
Answer:
I'd say A, but I'm not 100% what kind of latitude you're referring to
Answer:
D. shorts, sandals and T-shirts
Explanation:
The 15th parallel north is a circle of latitude that is 15 degrees north of the Earth's equatorial plane. It crosses Africa, Asia, the Indian Ocean, the Pacific Ocean, Central America, the Caribbean and Atlantic Ocean. All these areas are all warm and weather for wearing shorts, sandals and T-shirts!
(Hope this helped! If so please mark this answer as brainliest!)
If the net force acting on an object is 0 N, you can be sure that the forces acting on the object are
A. balanced B.Unbalanced C. acting at the same direction
I think the answer would be A.
After all, it is 0 which is technically a dead center number meaning that the net should be balanced and still.
Hope this helps and have a nice day.
-R3TR0 Z3R0
1. An object with a mass of 5 kg is pushed by a force of 10 N. What is the object's acceleration?
Answer:2m/s^2
Explanation:
a=f/m
A trapeze artist swings in simple harmonic motion with a period of 3.8 s.
Calculate the length of the cables supporting the trapeze. (g=9.81 m/s2)
Classes are canceled due to snow, so you take advantage of the extra time to conduct some physics experiments. You fasten a large toy rocket to the back of a sled and take the modified sled to a large, flat, snowy field. You ignite the rocket and observe that the sled accelerates from rest in the forward direction at a rate of 11.5 m/s^2 for a time period of 3.30 s. After this time period, the rocket engine abruptly shuts off, and the sled subsequently undergoes a constant backward acceleration due to friction of 4.15 m/s^2.
Required:
a. After the rocket turns off, how much time does it take for the sled to come to a stop?
b. By the time the sled finally comes to a rest, how far has it traveled from its starting point?
Answer:
a) t = 9.2s
b) Δx = 242.2 m
Explanation:
a)
In order to find the time that the sled traveled since the rocket was turned off, we need to find the first the speed that it had at that moment.Applying the definition of accceleration, since we know that the sled started from rest, we can find the value of the final speed (for this part) as follows:[tex]v_{f1} = a_{1} * t_{1} = 11.5m/s2* 3.30 s = 38.0 m/s (1)[/tex]
This speed, is just the initial speed for the second part, so we can find the time traveled from the moment the rocket was turned off until it came to an stop, as follows:[tex]t_{2} = \frac{v_{f1}}{a_{2} } = \frac{38m/s}{4.15m/s} = 9.2 s (2)[/tex]
b)
We need to find find first the displacement when the sled was accelerating.Assuming the acceleration is constant, since it started from rest, we can use the following kinematic equation:[tex]v_{f1} ^{2} = 2* a_{1} * x_{1} (3)[/tex]
Solving for x₁:[tex]x_{1} =\frac{v_{f1}^{2} }{2*a_{1}} =\frac{(38m/s)^{2} }{2*11.5m/s2} =62.8 m (4)[/tex]
In the same way, we can use the same equation, replacing the values of the final speed (which becomes zero), initial speed (which is the same as vf1), and a, which becomes -4.15 m/s2 as it is backwards.[tex]-v_{f1} ^{2} = 2* a_{2} * x_{2} (5)[/tex]
Solving for x₂:[tex]x_{2} =\frac{-v_{f1}^{2} }{2*a_{2}} =\frac{-(38m/s)^{2} }{2*(-4.15m/s)^2} =174.0 m (6)[/tex]
Δx = x₁ + x₂ = 68.2 m + 174.0 m = 242.2 m (7)A frictionless pendulum is made with a bob of mass 12.6 kg. The bob is held at height = 0.650 meter above the bottom of its trajectory, and then pushed
forward with an initial speed of 4.22 m/s. What amount of mechanical energy does the bob have when it reaches the bottom?
5) In the last part of step 7 of the procedure, you measured the resistance of the flashlight when it had no current passing through it. The resistance of the flashlight is different, however, when current is passing through it. Explain how your measurement of the resistance of the variable resistor obtained in part 7 is a valid approximation of the resistance of the flashlight when it had current passing through it. Is the resistance higher when the flashlight is on or off
Answer:
Following are the responses to this question:
Explanation:
The small current passes thru the capacitor of the strain gauge and the current is generated throughout the resistor. For the very first time, in contrast to what we calculate, its resistance of the multimeter is quite high and therefore the small stream flowing through the bulb would have very little impact on the measure. Thus, as the current flows through the flashbulb, this same calculation is of excellent price, its material is heated and resistance varies with increase. Therefore, when the bulb will be on, sensitivity is greater.
Mitch holds a pumpkin at waist level. How can he add potential energy to the pumpkin?
Answer:
raise it as high as he can
Explanation:
A student picks up two spheres that are the same size. One is made of steel and the other is made of aluminum. The student notices that the steel sphere feels much heavier than the aluminum sphere. He then holds one sphere in each hand at eye level and lets go of them at the same time. They fall to the floor. Which ball, if any, will hit the ground first and for what reason
Answer:
They will fall at the same time. This is because gravity accelerates all objects at the same speed, Earth's gravity being approximately 9.8m/s²
They'll both fall at the same time. This is because gravity accelerates everything at the same rate, with Earth's gravity being approximately 9.8 m/s2.
What is gravity with some instances?The energy that holds the gases inside the sun together. the force that causes a ball to fall after being thrown into the air the force that causes a car to coast downhill even when the gas pedal is not depressed the force that causes a glass to shatterGravity, also known as gravitation, affects all material objects in the universe. Gravity attracts any two objects or particles with nonzero mass toward one another. Gravity affects everything from subatomic particles to galaxy clusters. Gravity is the attraction force between two objects. It's what causes things to fall and keeps us from floating away into space. Gravity is a fundamental natural force.To learn more about gravity, refer to:
https://brainly.com/question/16275567
#SPJ2
What do Ice core samples with lower ratios of O-18 to O-16 isotopes tell scientist about past climates
Answer:
Ocean-floor sediments can also be used to determine past climate. ... Ice cores contain more 16O than ocean water, so ice cores have a lower 18O/ 16O ratio than ocean water or ocean-floor sediments. Water containing the lighter isotope 16O evaporates more readily than 18O in the warmer subtropical regions
Explanation:
Electromagnetic radiation is made up of wave components of electric and magnetic fields moving together. What form of energy is most closely associated with electromagnetic waves?
A.
light energy
B.
chemical energy
C.
electrical energy
D.
mechanical energy
Answer:
A) Because light is due to the electromagnetic fields (fields moving at the speed of light)
Note: Electrical energy is also used to describe the energy usage
in RLC circuits
Four bicyclists travel different distances and times along a straight path. Which cyclist traveled with the greatest average
speed?
A
B
Cyclist 2 travels
87 min 22 s
Cyclist 4 travels
108 min 24 s
D
Cyclist 1 travels
95 m in 27 s
Cyclist 3 travels
106 m in 26 s
Answer:
The cyclist with the greatest average speed is Cyclist 4 with average speed of 4.5 m/s
Explanation:
Given;
Cyclist 1 travels 9 m in 27 s
Cyclist 2 travels 87 m in 22 s
Cyclist 3 travels 106 m in 26 s
Cyclist 4 travels 108 m in 24 s
Determine the average speed of the cyclists as follows;
Average speed of Cyclist 1: v = 9/27 = 0.33 m/s
Average speed of Cyclist 2: v = 87/22 = 3.96 m/s
Average speed of Cyclist 3: v = 106/26 = 4.08 m/s
Average speed of Cyclist 4: v = 108/24 = 4.5 m/s
Therefore, the cyclist with the greatest average speed is Cyclist 4 with average speed of 4.5 m/s
An object swings in a horizontal circle, supported by a 1.8-m string. It swings at a speed of 3 m/s. What is the mass of the object given that the tension in the string is 90 N?
Answer:
Mass = 18 kg
Explanation:
Formula for force in centripetal motion is;
F = mv²/r
We have;
Mass; m.
Speed; v = 3 m/s
radius; r = 1.8 m
Force; F = 90 N
Thus;
Making m the subject;
m = Fr/v²
m = 90 × 1.8/3²
m = 18 kg