Answer: left 4 units
Step-by-step explanation: use the formula -b/2a to find the new x value. Or use a graphing calculator and compare the position of g(x) to f(x)
Answer:
Answer: left 4 units
Step-by-step explanation:
Which algebraic expression represents the phrase below? five times the sum of a number and eleven, divided by three times the sum of the number and eight 5(x + 11) + 3(x + 8) 5 x + 11 Over 3 x + 8 Start Fraction 5 (x + 11) Over 3 (x + 8) 5x + 11 + 3x + 8
Answer:
85
Step-by-step explanation:
im new↑∵∴∵∴∞
Given an objective function value of 150 and a shadow price for resource 1 of 5, if 10 more units of resource 1 are added (assuming the allowable increase is greater than 10), what is the impact on the objective function value?
Answer:
The impact on the objective function is that it is increased by 50.
Step-by-step explanation:
In this case we have that the value of the objective function is 150, and they tell us that 10 more units of resource one are added, but they tell us that the shadow price ranges from 1 to 5, therefore:
10 * 5 = 50
Which means that the impact on the objective function is that it is increased by 50.
Find the value of x. Please help! Thanks.
Answer:
[tex]\huge\boxed{x=\sqrt{30}}[/tex]
Step-by-step explanation:
ΔABC and ΔBDC are similar (AAA).
Therefore the corresponding sides are in proportion:
[tex]\dfrac{AC}{BC}=\dfrac{BC}{CD}[/tex]
substitute
[tex]AC=7+3=10\\{BC}=x\\CD=3[/tex]
[tex]\dfrac{10}{x}=\dfrac{x}{3}[/tex] cross multiply
[tex](10)(3)=(x)(x)\\\\30=x^2\\\\x^2=30\to x=\sqrt{30}[/tex]
Manueala scored -4 \dfrac12−4 2 1 minus, 4, start fraction, 1, divided by, 2, end fraction points relative to her season average against the China Dragons. She scored 1 \dfrac121 2 1 1, start fraction, 1, divided by, 2, end fraction points relative to her season average against the Canada Moose. Drag the white cards onto the gray rectangle to write an inequality that correctly compares Manueala's relative numbers of points. Which one of the following descriptions is correct? Choose 1 answer: Choose 1 answer: (Choice A) A Manueala scored more points against the China Dragons than against the Canada Moose. (Choice B) B Manueala scored more points against the Canada Moose than against the China Dragons.
Answer:
1 1/2 > - 4 1/2 and Manuela scored more points against the Canada Moose than against the China Dragons.
I need help with this question.
Answer:
b. 14
Step by step explanation:
If two events are mutually exclusive, why is ? Choose the correct answer below. A. because A and B each have the same probability. B. because A and B cannot occur at the same time. C. because A and B are independent. D. because A and B are complements of each other.
Answer:
B. because A and B cannot occur at the same time.
Step-by-step explanation:
If two events are mutually exclusive, why is ? Choose the correct answer below.
A. because A and B each have the same probability.
B. because A and B cannot occur at the same time.
C. because A and B are independent.
D. because A and B are complements of each other.
Please answer this correctly
Answer:
[tex] \frac{1}{6} [/tex]
Step-by-step explanation:
the ways of choosing 2 cards out of 4, is calculator by
[tex] \binom{4}{2} = 6[/tex]
so, 6 ways to select 2 cards.
but in only one way we can have 2 even cards. thus, the answer is
[tex] \frac{1}{6} [/tex]
Juan y maria mezclan cafe de colombia, cafe de brazil, cafe de guinea y cafe de venezuela en paquetes de un kilo. Observa la fraccion de kilo que utilizan de cada tipo de cafe y calcula la fraccion de kilo que representa el cafe de colombia
Answer:
Step-by-step explanation:
Ya que mezclan café colombiano, brasileño, guineano y venezolano en un paquete de un kilo. Igualmente deben agregar los cafés juntos.
Para encontrar la cantidad igual para cada café en 1 kilo, divida 1 kilo y los 4 cafés. Entonces la cantidad sería 1/4 (o 0.25) de café por kilo. La respuesta significa que cada uno de los cuatro cafés pesa 1/4 kilo.
Como cada café representa 1/4 kilo, el café colombiano representa 1/4 kilo.
Si necesita ayuda adicional, comente a continuación.
Given that IG is perpendicular to FT, which of the following statements is true?
Answer:
B ). IF = IT
Step-by-step explanation:
IG is perpendicular to FT, means that the line IG divides the line FT into two equal parts without remainder.
Line IG does not only divide line FT, it also bisect the arc FT into two equally parts also.
It also divide the segment of the circle FIT into two equal parts.
So to the correct answer to the question, IF = IT
What is the 20th digit in the decimal expansion for the sum of 2/9 and 1/7
Answer:
The 20th digit is 6.
Step-by-step explanation:
1. Add 2/9 and 1/7.
2/9 + 1/7 = 23/63
2. Convert to a decimal.
23 ÷ 63 = 0.365079...
If you continue to divide, you will notice that the number repeat. So, the decimal would be 0.365079365079...
3. Find the 20th digit.
0.365079365079365079365079
Answer:
6
Step-by-step explanation:
Aops question
We have $\frac29 + \frac17 = \frac{14}{63} + \frac{9}{63} = \frac{23}{63}$. Expressing $\frac{23}{63}$ as a decimal using long division, we find $\frac{23}{63}=0.\overline{365079}$. Therefore, every 6th digit after the decimal point is a 9. So, the 18th digit is a 9; the 20th digit is 2 decimal places later, so it is a $\boxed{6}$.
It's in Latex
What does 0 = 0 indicate about the solutions of the system?
Answer:
it indicates that it is infinitely many solutions
based off the data of ages of the last six US presidents( 69, 64, 46, 54, 47, and 70) What percentage of presidents ages fall within one standard deviation of the mean? (Round to one decimal place
Answer:
[tex]\bar X=\frac{\sum_{i=1}^n X_i}{n}[/tex]
[tex]s=\sqrt{\frac{\sum_{i=1}^n (X_i -\bar X)^2}{n-1}}[/tex]
And replacing we got:
[tex] \bar X= 58.33[/tex]
[tex]s= 10.78[/tex]
Then we can fin the limits for one deviation within the mean like this:
[tex]\mu -\sigma = 58.33-10.78= 47.55[/tex]
[tex]\mu -\sigma = 58.33+10.78= 69.11[/tex]
And then we see that the number of values between the limits are: 69, 64, 54,47 who represent 4 and then the percentage would be:
[tex]\% =\frac{4}{6}*100 =66.7\%[/tex]
Step-by-step explanation:
First we need ot calculate the mean and deviation with the following formulas:
[tex]\bar X=\frac{\sum_{i=1}^n X_i}{n}[/tex]
[tex]s=\sqrt{\frac{\sum_{i=1}^n (X_i -\bar X)^2}{n-1}}[/tex]
And replacing we got:
[tex] \bar X= 58.33[/tex]
[tex]s= 10.78[/tex]
Then we can fin the limits for one deviation within the mean like this:
[tex]\mu -\sigma = 58.33-10.78= 47.55[/tex]
[tex]\mu -\sigma = 58.33+10.78= 69.11[/tex]
And then we see that the number of values between the limits are: 69, 64, 54,47 who represent 4 and then the percentage would be:
[tex]\% =\frac{4}{6}*100 =66.7\%[/tex]
Priya was busy studying this week and ran 7 fewer miles than last week. She ran 3 times as far as Elena ran this week. Elena only had time to run 4 miles this week. How many miles did Priya run last week?
Answer:Priya ran 19 miles last week
Step-by-step explanation:
4 x 3 = 12
12 + 7 = 19
Fredrick hit 14, 18, 13, 12, 12, 16, 13, 12, 1, and 15 home runs in 10 seasons of play. Which statements are correct? Check all that apply. Fredrick’s data set contains an outlier. The median value is 12 home runs. The mean value is about 12.6 home runs. The median describes Fredrick’s data more accurately than the mean. The mean value stays the same when the outlier is not included in the data set.
Answer:
(a) Yes, Fredrick’s data set contains an outlier.
(b) No, the median value is not 12 home runs.
(c) Yes, the mean value is about 12.6 home runs.
(d) Yes, the median describes Fredrick’s data more accurately than the mean.
(e) No, the mean value doesn't stay the same when the outlier is not included in the data set.
Step-by-step explanation:
We are given that Fredrick hit 14, 18, 13, 12, 12, 16, 13, 12, 1, and 15 home runs in 10 seasons of play.
Firstly, arranging our data set in ascending order we get;
1, 12, 12, 12, 13, 13, 14, 15, 16, 18.
(a) The statement that Fredrick’s data set contains an outlier is true because in our data set there is one value that stands out from the rest of the data, which is 1.
Hence, the outlier value in the data set is 1.
(b) For calculating median, we have to first observe that the number of observations (n) in the data set is even or odd, i.e;
If n is odd, then the formula for calculating median is given by;Median = [tex](\frac{n+1}{2})^{th} \text{ obs.}[/tex]
If n is odd, then the formula for calculating median is given by;Median = [tex]\frac{(\frac{n}{2})^{th} \text{ obs.}+(\frac{n}{2}+1)^{th} \text{ obs.} }{2}[/tex]
Here, the number of observations in Fredrick's data set is even, i.e. n = 10.
SO, Median = [tex]\frac{(\frac{n}{2})^{th} \text{ obs.}+(\frac{n}{2}+1)^{th} \text{ obs.} }{2}[/tex]
= [tex]\frac{(\frac{10}{2})^{th} \text{ obs.}+(\frac{10}{2}+1)^{th} \text{ obs.} }{2}[/tex]
= [tex]\frac{(5)^{th} \text{ obs.}+(6)^{th} \text{ obs.} }{2}[/tex]
= [tex]\frac{13+13 }{2}[/tex] = 13 home runs
So, the statement that the median value is 12 home runs is not correct.
(c) The mean of the data set is given by;
Mean = [tex]\frac{1+ 12+ 12+ 12+ 13+ 13+14+ 15+ 16+ 18}{10}[/tex]
= [tex]\frac{126}{10}[/tex] = 12.6 home runs
So, the statement that the mean value is about 12.6 home runs is correct.
(d) The statement that the median describes Fredrick’s data more accurately than the mean is correct because even if the outlier is removed from the data set, the median value will remain unchanged but the mean value gets changed.
(e) After removing the outlier, the data set is;
12, 12, 12, 13, 13, 14, 15, 16, 18.
Now, the mean of the data = [tex]\frac{12+12+ 12+ 13+ 13+ 14+ 15+ 16+ 18}{9}[/tex]
= [tex]\frac{125}{9}[/tex] = 13.89
So, the statement that the mean value stays the same when the outlier is not included in the data set is incorrect.
Answer:
Fredrick’s data set contains an outlier.
The mean value is about 12.6 home runs.
The median describes Fredrick’s data more accurately than the mean.
Step-by-step explanation:
replace each star with a digit to make the problem true.Is there only one answer to each problem? ****-***=2
Answer: We have two solutions:
1000 - 998 = 2
1001 - 999 = 2
Step-by-step explanation:
So we have the problem:
****-*** = 2
where each star is a different digit, so in this case, we have a 4 digit number minus a 3 digit number, and the difference is 2.
we know that if we have a number like 99*, we can add a number between 1 and 9 and we will have a 4-digit as a result:
So we could write this as:
1000 - 998 = 2
now, if we add one to each number, the difference will be the same, and the number of digits in each number will remain equal:
1000 - 998 + 1 - 1 = 2
(1000 + 1) - (998 + 1) = 2
1001 - 999 = 2
now, there is a trivial case where we can find other solutions where the digits can be zero, like:
0004 - 0002 = 2
But this is trivial, so we can ignore this case.
Then we have two different solutions.
Write the recursive sequence for: 64, 16, 4, 1, ...
Answer:
Use the formula
a
n
=
a
1
r
n
−
1
to identify the geometric sequence.
Step-by-step explanation:
a
n
=
64
4
n
−
1 hope this helps you :)
Answer: The answer is in the steps.
Step-by-step explanation:
f(1)= 64
f(n)=1/4(n-1) n in this case is the nth term.
Which of the following is the
graph of
(x - 3)2 + (y - 1)2 = 9 ?
Answer:
Answer is A
Step-by-step explanation:
The equation (x - 3)² + (y - 1)² = 9, is represented by the second graph as its center is at point (3, 1) and its radius is 3 units, both similar to the equation. Thus, option B is the right choice.
What does the equation of a circle represent?The general equation of a circle is of the form (x - h)² + (y - k)² = r², where (h, k) is the point where the center of the given circle lies, and r is the radius of this given circle.
How to solve the question?In the question, we are asked to find the graph from the given options which represents the equation (x - 3)² + (y - 1)² = 9.
Comparing the given equation, (x - 3)² + (y - 1)² = 9, to the general equation, (x - h)² + (y - k)² = r², we can say that h = 3, k = 1, and r = 3.
Thus the center of the given circle lies at the point (3, 1) and its radius is 3 units.
Now we check the options to find the matching circle:
Option A: The center is at the point (3, -1), which is different from (3, 1) of the equation (x - 3)² + (y - 1)² = 9. Thus, this is not the right choice.Option B: The center is at the point (3, 1), and the radius is 3 units, which is similar to the equation (x - 3)² + (y - 1)² = 9. Thus, this is the right choice.Option C: The center is at the point (-3, 1), which is different from (3, 1) of the equation (x - 3)² + (y - 1)² = 9. Thus, this is not the right choice.Therefore, the equation (x - 3)² + (y - 1)² = 9, is represented by the second graph as its center is at point (3, 1) and its radius is 3 units, both similar to the equation. Thus, option B is the right choice.
Learn more about circles at
https://brainly.com/question/1559324
#SPJ2
Solve: -1/2+ c =31/4 c=8 c=7 c=33/4 c=29/4
Answer:
c = 29/4Step-by-step explanation:
[tex] - \frac{1}{2} + c = \frac{31 }{4} \\ \\ c = \frac{31}{4} + \frac{1}{2} = \frac{31 - 2}{4} \\ \\ c = \frac{29}{4} [/tex]
Hope this helps you
If ∠1 and ∠2 are complementary and m∠1 = 17º, what is m∠2
Answer:
m<2 = 73
Step-by-step explanation:
Since <1 and <2 are complementary (which means that they equal 90), all you have to do is subtract 17 from 90 to find your answer:
90 - 17 = 73
thus, m<2 = 73
Answer:
73
Step-by-step explanation:
Suppose heights of seasonal pine saplings are normally distributed and have a known population standard deviation of 17 millimeters and an unknown population mean. A random sample of 15 saplings is taken and gives a sample mean of 308 millimeters. Find the confidence interval for the population mean with a 99%z0.10 z0.05 z0.025 z0.01 z0.0051.282 1.645 1.960 2.326 2.576
Answer:
[tex]296.693\leq x\leq 319.307[/tex]
Step-by-step explanation:
The confidence interval for the population mean x can be calculated as:
[tex]x'-z_{\alpha /2}\frac{s}{\sqrt{n} } \leq x\leq x'+z_{\alpha /2}\frac{s}{\sqrt{n} }[/tex]
Where x' is the sample mean, s is the population standard deviation, n is the sample size and [tex]z_{\alpha /2}[/tex] is the z-score that let a proportion of [tex]\alpha /2[/tex] on the right tail.
[tex]\alpha[/tex] is calculated as: 100%-99%=1%
So, [tex]z_{\alpha/2}=z_{0.005}=2.576[/tex]
Finally, replacing the values of x' by 308, s by 17, n by 15 and [tex]z_{\alpha /2}[/tex] by 2.576, we get that the confidence interval is:
[tex]308-2.576\frac{17}{\sqrt{15} } \leq x\leq 308+2.576\frac{17}{\sqrt{15} }\\308-11.307 \leq x\leq 308+11.307\\296.693\leq x\leq 319.307[/tex]
On a Cartesian coordinate plane, points $(2,1)$ and $(3, 4)$ are adjacent points on a square. What is the area of the square?
Hey there! :)
Answer:
A = 10 units².
Step-by-step explanation:
To solve this, we need to find the distance between the two points to derive the side-lengths of the square. Use the distance formula:
[tex]d = \sqrt{(x_2 - x_1)^2 + (y_2-y_1)^2}[/tex]
Plug in points into the formula to find the distance:
[tex]d = \sqrt{(3 - 2)^2 + (4-1)^2}[/tex]
Simplify:
[tex]d = \sqrt{(1)^2 + (3)^2}[/tex]
[tex]d = \sqrt{(1) + (9)}[/tex]
[tex]d = \sqrt{10}[/tex]
Find the area of the square using the formula A = s² where s = √10:
A = (√10)²
A = 10 units².
Answer:
10
Step-by-step explanation:
We use the distance formula to find the distance between the two points, which is the side length of the square.. Therefore, the area of the square is 10.
The time X(mins) for Ayesha to prepare breakfast for her family is believed to have a uniform
distribution with A=25 and B=35.
a) Determine the pdf of X and draw its density curve.
b) What is the probability that time taken by Ayesha to prepare breakfast exceeds 33 mins?
c) What is the probability that cooking or preparation time is within 2 mins of the mean time?
(Hint: Identify mean from the graph of f(x))
Answer:
(c) [tex]f_{X}(x)=\left \{ {{\frac{1}{35-25}=\frac{1}{10};\ 25<X<35} \atop {0;\ Otherwise}} \right.[/tex]
(b) The probability that time taken by Ayesha to prepare breakfast exceeds 33 minutes is 0.20.
(c) The probability that cooking or preparation time is within 2 mins of the mean time is 0.40.
Step-by-step explanation:
The random variable X follows a Uniform (25, 35).
(a)
The probability density function of an Uniform distribution is:
[tex]f_{X}(x)=\left \{ {{\frac{1}{B-A};\ A<X<B} \atop {0;\ Otherwise}} \right.[/tex]
Then the probability density function of the random variable X is:
[tex]f_{X}(x)=\left \{ {{\frac{1}{35-25}=\frac{1}{10};\ 25<X<35} \atop {0;\ Otherwise}} \right.[/tex]
(b)
Compute the value of P (X > 33) as follows:
[tex]P(X>33)=\int\limits^{35}_{33} {\frac{1}{10}} \, dx \\\\=\frac{1}{10}\cdot\int\limits^{35}_{33} {1} \, dx \\\\=\frac{1}{10}\times [x]^{35}_{33}\\\\=\frac{35-33}{10}\\\\=\frac{2}{10}\\\\=0.20[/tex]
Thus, the probability that time taken by Ayesha to prepare breakfast exceeds 33 minutes is 0.20.
(c)
Compute the mean of X as follows:
[tex]\mu=\frac{A+B}{2}=\frac{25+35}{2}=30[/tex]
Compute the probability that cooking or preparation time is within 2 mins of the mean time as follows:
[tex]P(30-2<X<30+2)=P(28<X<32)[/tex]
[tex]=\int\limits^{32}_{28} {\frac{1}{10}} \, dx \\\\=\frac{1}{10}\cdot\int\limits^{32}_{28}{1} \, dx \\\\=\frac{1}{10}\times [x]^{32}_{28}\\\\=\frac{32-28}{10}\\\\=\frac{4}{10}\\\\=0.40[/tex]
Thus, the probability that cooking or preparation time is within 2 mins of the mean time is 0.40.
A sample of 80 Valencia oranges showed a mean weight of 5.5 ounces with a standard deviation of 0.2 ounces. Obtain a 95% confidence interval for the weight of Valencia oranges. [5.495, 5.505 ] [0.195, 0.205] [ 5.456,5.544] [0.156, 0.244 )
Answer:
[ 5.456, 5.544]
Step-by-step explanation:
Confidence interval can be defined as a range of values so defined that there is a specified probability that the value of a parameter lies within it.
The confidence interval of a statistical data can be written as.
x+/-zr/√n
Given that;
Mean x = 5.5 ounces
Standard deviation r = 0.2 ounces
Number of samples n = 80
Confidence interval = 95%
z value (at 95% confidence) = 1.96
Substituting the values we have;
5.5+/-1.96(0.2/√80)
5.5+/-1.96(0.022360679774)
5.5+/-0.043826932358
5.5+/-0.044
= ( 5.456, 5.544) ounces
Therefore the 95% confidence interval (a,b) = ( 5.456, 5.544) ounces
What is the solution of the system? {2x+y=15x−y=3 Enter your answer in the boxes. ( , )
Step-by-step explanation:
2x+y=15x-y=3
then u group like terms
2x-15x= -y+y=3
then ur answer
13x=3
-12
Natural
Whole
Integers
Rationals
Irrationals
Real
Answer:
the answer is integers if helpful please give 5 star
the depth D, in inches, od wsnow in my yard t hours after it started snowing this morning is given by D=1.5t + 4. if the depth of the snow is 7 inches now, what will be the depth one hour from now?
Answer:
8.5 inches
Step-by-step explanation:
First let's find the time t when the depth of the snow is 7 inches.
To do this, we just need to use the value of D = 7 then find the value of t:
[tex]7 = 1.5t + 4[/tex]
[tex]1.5t = 3[/tex]
[tex]t = 2\ hours[/tex]
We want to find the depth of snow one hour from now, so we just need to use the value of t = 3 to calculate D:
[tex]D = 1.5*3 + 4[/tex]
[tex]D = 4.5 + 4 = 8.5\ inches[/tex]
The depth of snow one hour from now will be 8.5 inches.
The depth of the snow one hour from now is 8.5 inches.
Let D represent the depth of snow in inches at time t. It is given by the relationship:
D=1.5t + 4
Since the depth of the snow is 7 inches now, hence, the time now is:
7 = 1.5t + 4
1.5t = 3
t = 2 hours
One hour from now, the time would be t = 2 + 1 = 3 hours. Hence the depth at this time is:
D = 1.5(3) + 4 = 8.5 inches
Therefore the depth of the snow one hour from now is 8.5 inches.
Find out more at: https://brainly.com/question/13911928
two cards are drawn without replacement from a standard deck of 52 playing cards. what is the probability of choosing a diamond and then without replacement another diamond? express your answer as a fraction or decimal number rounded to four decimal places.
Answer:
1/17
Step-by-step explanation:
There are 13 diamond cards in a standard 52-card deck.
First drawing:
13 diamonds
52 total cards
After the first drawing you already took a diamond, so there are 12 diamonds left out of 51 total cards.
p(diamond and diamond) = 13/52 * 12/51 = 1/4 * 4/17 = 1/17
Given the parametric equations below, eliminate the parameter t to obtain an equation for y as a function of x { x ( t ) = 5 √ t y ( t ) = 7 t + 4
Answer:
y(x) = (7/25)x^2 + 4
Step-by-step explanation:
Given:
x = 5*sqrt(t) .............(1)
y = 7*t+4 ..................(2)
solution:
square (1) on both sides
x^2 = 25t
solve for t
t = x^2 / 25 .........(3)
substitute (3) in (2)
y = 7*(x^2/25) +4
y= (7/25)x^2 + 4
Reed made a lasagna for dinner. That night, he ate1/4
% of the lasagna. His brother and sister ate 2/3 of
the lasagna. How much of the lasagna did they eat
in all?
Answer: 11/12
Step-by-step explanation:
First find the LCM of 4 and 3(12). Then make the denominator of both fractions 12(3/12 and 8/12). Then add the fractions to get that they ate 11/2 of the lasagna.
Hope it helps <3
Work out the circumference of this circle Give your answer in terms of pie and state in units R=14cm Answer= Units=
Answer:
28π cm²
Step-by-step explanation:
Circumference Formula: C = 2πr
Simply plug in r into the formula:
C = 2π(14)
C = 28π or 87.9646
Answer:
28π cm
Step-by-step explanation:
The circumference of a circle has the formula 2πr.
2 × π × r
Where r is the radius.
2 × π × 14
28 × π
= 28π
The circumference is 28π and the unit is centimeters.