From the sample space S={1,2,3,4, 15 15, a single munber is to be selected at rarmion Given the tollowing ovonts, find the indicated probabuity.
A. The solaciod number is even
B. The selected number is a rrultiple of 4 .
C. The selected number is a pime number.

Answers

Answer 1

A. The probability of selecting an even number is P(A) = 2/5.

B. The probability of selecting a multiple of 4 is P(B) = 1/5.

C.  The probability of selecting a prime number is P(C) = 2/5.

To find the indicated probabilities, let's consider the events one by one:

A. The event "the selected number is even":
- Out of the sample space S={1,2,3,4,15}, the even numbers are 2 and 4.


- Therefore, the favorable outcomes for this event are {2,4}, and the total number of outcomes in the sample space is 5.


- The probability of selecting an even number is the ratio of favorable outcomes to the total number of outcomes: P(A) = favorable outcomes / total outcomes = 2/5.


B. The event "the selected number is a multiple of 4":
- From the sample space S={1,2,3,4,15}, the multiples of 4 is only 4.


- The favorable outcomes for this event are {4}, and the total number of outcomes is still 5.


- Therefore, the probability of selecting a multiple of 4 is P(B) = 1/5.


C.The event "the selected number is a prime number":
- Prime numbers are numbers greater than 1 that have no divisors other than 1 and themselves. From the given sample space S={1,2,3,4,15}, the prime numbers are 2 and 3.


- The favorable outcomes for this event are {2,3}, and the total number of outcomes is 5.


- So, the probability of selecting a prime number is P(C) = 2/5.

Learn more about 'probability':

https://brainly.com/question/13604758

#SPJ11


Related Questions

Consider p(x) = -(x-1)(x+1)(x+2022) characteristic polynomial of A.
Which of the following is true? Please justify
a) A is diagonalizable
b) A2= 0
c) The eigenvalues of A2022 are all different
d) A is not invertible
THANK YOU

Answers

The correct statement about p(x) = -(x-1)(x+1)(x+2022) characteristic polynomial of A are A is diagonalizable

and the eigenvalues of [tex]A^{2022}[/tex] are all different. Option a and c is correct.

For a matrix to be diagonalizable, it must have a complete set of linearly independent eigenvectors. To verify this, we need to compute the eigenvalues of matrix A.

The eigenvalues are the roots of the characteristic polynomial, p(x). From the given polynomial, we can see that the eigenvalues of A are -1, 1, and -2022. Since A has distinct eigenvalues, it is diagonalizable. Therefore, statement a) is true.

The eigenvalues of [tex]A^{2022}[/tex] can find by raising the eigenvalues of A to the power of 2022. The eigenvalues of [tex]A^{2022}[/tex] will be [tex]-1^{2022}[/tex], [tex]1^{2022}[/tex], and [tex](-2022)^{2022}[/tex]. Since all of these values are different, statement c) is true.

Therefore, a and c is correct.

Learn more about polynomial https://brainly.com/question/28813567

#SPJ11

Determine the compound amount if BD 12000 is invested at 1%
compounded monthly for 790 days
¤Find the Discount value on BHD 31200 at the end 350 days if it
is invested at 3% compounded quarterly.

Answers

The discount value at the end of 350 days would be approximately BHD 1,910.83.

First problem:

Determine the compound amount if BHD 12,000 is invested at 1% compounded monthly for 790 days.

To calculate the compound amount, we can use the formula:

A = P(1 + r/n)^(nt)

Where:

A = Compound amount

P = Principal amount (initial investment)

r = Annual interest rate (as a decimal)

n = Number of times interest is compounded per year

t = Time period in years

In this case, the principal amount (P) is BHD 12,000, the annual interest rate (r) is 1% (or 0.01 as a decimal), the interest is compounded monthly, so n = 12, and the time period (t) is 790 days, which is approximately 2.164 years (790/365.25).

Plugging these values into the formula, we have:

A = 12000(1 + 0.01/12)^(12*2.164)

Calculating the compound amount gives us:

A ≈ 12,251.84

Therefore, the compound amount after 790 days would be approximately BHD 12,251.84.

Second problem:

Find the discount value on BHD 31,200 at the end of 350 days if it is invested at 3% compounded quarterly.

To calculate the discount value, we can use the formula:

D = P(1 - r/n)^(nt)

Where:

D = Discount value

P = Principal amount (initial investment)

r = Annual interest rate (as a decimal)

n = Number of times interest is compounded per year

t = Time period in years

In this case, the principal amount (P) is BHD 31,200, the annual interest rate (r) is 3% (or 0.03 as a decimal), the interest is compounded quarterly, so n = 4, and the time period (t) is 350 days, which is approximately 0.9589 years (350/365.25).

Plugging these values into the formula, we have:

D = 31200(1 - 0.03/4)^(4*0.9589)

Calculating the discount value gives us:

D ≈ 1,910.83

Therefore, the discount value at the end of 350 days would be approximately BHD 1,910.83.

Learn more about discount value

https://brainly.com/question/32761587

#SPJ11

54. Write formulas for each of the following: 54a. The charge in cents for a telephone call between two cities lasting n minutes, n greater than 3, if the charge for the first 3 minutes is $1.20 and each additional minute costs 33 cents.

Answers

To determine the formula for the charge in cents for a telephone call between two cities lasting n minutes, n greater than 3,

if the charge for the first 3 minutes is $1.20 and each additional minute costs 33 cents, we can follow the steps below: We can start by subtracting the charge for the first 3 minutes from the total charge for the n minutes.

Since the charge for the first 3 minutes is $1.20, the charge for the remaining n-3 minutes is:$(n-3) \times 0.33Then, we can add the charge for the first 3 minutes to the charge for the remaining n-3 minutes to get the total charge:$(n-3) \times 0.33 + 1.20$

Therefore, the formula for the charge in cents for a telephone call between two cities lasting n minutes, n greater than 3, if the charge for the first 3 minutes is $1.20 and each additional minute costs 33 cents is given by:Charge = $(n-3) \times 0.33 + 1.20$

This formula gives the total charge for a call that lasts for n minutes, including the charge for the first 3 minutes. It is valid only for values of n greater than 3.A 250-word answer should not be necessary to explain the formula for the charge in cents for a telephone call between two cities lasting n minutes, n greater than 3, if the charge for the first 3 minutes is $1.20 and each additional minute costs 33 cents.

To know more about costs, click here

https://brainly.com/question/17120857

#SPJ11

In a volatile housing market, the overall value of a home can be modeled by V(x)
= 500x^2 - 500x + 125,000. V represents the value of the home, while x represents each year after 2020. What is the y-intercept, and what does it mean in terms of the value of the home?
Please answer fast!

Answers

To find the y-intercept of the given equation, we need to set x = 0 and evaluate the equation V(x).

When x = 0, the equation becomes:

V(0) = 500(0)^2 - 500(0) + 125,000

= 0 - 0 + 125,000

= 125,000

Therefore, the y-intercept is 125,000.

In terms of the value of the home, the y-intercept represents the initial value of the home when x = 0, which in this case is $125,000. This means that in the year 2020 (x = 0), the value of the home is $125,000.

An 80 N crate is pushed up a ramp as shown in the diagram below. Use the information in the diagram to determine the efficiency of the system. (2 marks) 8.0 m 5.0 m Fin = 200 N

Answers

Answer:

40%

I dont want step by step

Consider the integral I=∫(xlog e u ​ (x))dx

Answers

Answer:  x to the power of x+c

Step-by-step explanation:

Let I =∫xx (logex)dx

Find the horizontal asymptote of
f(x) = y = (-3x³ + 2x - 5) / (x³+5x^(2)-1)

Answers

The horizontal asymptote of the given function would be y = -3.

Given the function:

f(x) = y = (-3x³ + 2x - 5) / (x³+5x^(2)-1)

To find the horizontal asymptote, we should know what it is.

Horizontal Asymptote: A horizontal asymptote is a horizontal line that the graph of a function approaches as x increases or decreases without bound. In other words, the horizontal asymptote is a line at a specific height on the y-axis that the function approaches as x goes to positive or negative infinity. Now, let's find the horizontal asymptote of the given function.To find the horizontal asymptote, we divide both the numerator and denominator by the highest power of x, and then take the limit as x approaches infinity.

f(x) = (-3x³ + 2x - 5) / (x³+5x²-1)

Dividing both numerator and denominator by x³, we get:

f(x) = (-3 + 2/x² - 5/x³) / (1 + 5/x - 1/x³)

As x approaches infinity, both 2/x² and 5/x³ approach zero, leaving only:-

3/1 = -3

So, the horizontal asymptote is y = -3.

Therefore, the answer is: The horizontal asymptote of the given function is y = -3.

Learn more about Horizontal Asymptote at https://brainly.com/question/30176270

#SPJ11

Ryan obtained a loan of $12,500 at 5.9% compounded quarterly. How long (rounded up to the next payment period) would it take to settle the loan with payments of $2,810 at the end of every quarter? year(s) month(s) Express the answer in years and months, rounded to the next payment period

Answers

Ryan obtained a loan of $12,500 at an interest rate of 5.9% compounded quarterly. He wants to know how long it would take to settle the loan by making payments of $2,810 at the end of every quarter.

To find the time it takes to settle the loan, we can use the formula for compound interest:

A = P(1 + r/n)^(nt)

Where:
A = the future value of the loan (the amount to be settled)
P = the initial principal (the loan amount)
r = the annual interest rate (5.9%)
n = the number of compounding periods per year (4, since it's compounded quarterly)
t = the time in years

In this case, we need to find the value of t, so let's rearrange the formula:

t = (log(A/P) / log(1 + r/n)) / n

Now let's substitute the given values into the formula:

A = $12,500 + ($2,810 * x), where x is the number of quarters it takes to settle the loan
P = $12,500
r = 0.059 (converted from 5.9%)
n = 4

We want to find the value of x, so let's plug in the values and solve for x:

x = (log(A/P) / log(1 + r/n)) / n

x = (log($12,500 + ($2,810 * x)) / log(1 + 0.059/4)) / 4

Now, we need to solve this equation to find the value of x.

To know more about "Interest Rate":

https://brainly.com/question/29451175

#SPJ11

what is the correct answer

Answers

[tex] \sin(x) = \frac{opp}{hyp} \\ \sin(k) = \frac{5}{10} \\ \sin(k) = \frac{1}{2} [/tex]

D is the correct answer

PLEASE MARK ME AS BRAINLIEST

What is the value of x in this? :
x X ((-80)+54) = 24 X (-80) + x X 54

Answers

The value of X in this is approximately 35.6981.

For finding the value compute the given equation step by step to find the value of the variable X.

Start with the equation: X + [(-80) + 54] = 24×(-80) + X×54.

Now, let's compute the expression within the square brackets:

(-80) + 54 = -26.

Putting this result back into the equation, we get:

X + (-26) = 24×(-80) + X×54.

Here, we can compute the right side of the equation:

24×(-80) = -1920.

Now the equation becomes:

X - 26 = -1920 + X×54.

Confine the variable, X, and we'll get the X term to the left side by minus X from both sides:

X - X - 26 = -1920 + X×54 - X.

This gets to:

-26 = -1920 + 53X.

Here,  the constant term (-1920) to the left side by adding 1920 to both sides:

-26 + 1920 = -1920 + 1920 + 53X.

Calculate further:

1894 = 53X.

X = 1894/53.

Therefore, the value of X is approximately 35.6981.

Learn more about value here:

https://brainly.com/question/14316282

Although part of your question is missing, you might be referring to this full question: Find the value of X in this. X+[(-80)+54]=24×(-80)+X×54

.

Find an equation that has the solutions: t=−4/5, t=2 Write your answer in standard form. Equation:

Answers

The equation that has the solutions t = -4/5 and t = 2 is 5t² - 6t - 8.

The given solutions of the equation are t = -4/5 and t = 2.

To find an equation with these solutions, the factored form of the equation is considered, such that:(t + 4/5)(t - 2) = 0

Expand this equation by multiplying (t + 4/5)(t - 2) and writing it in the standard form.

This gives the equation:t² - 2t + 4/5t - 8/5 = 0

Multiplying by 5 to remove the fraction gives:5t² - 10t + 4t - 8 = 0

Simplifying gives the standard form equation:5t² - 6t - 8 = 0

Therefore, the equation that has the solutions t = -4/5 and t = 2 is 5t² - 6t - 8.

To know more about equation visit:

brainly.com/question/29538993

#SPJ11

need this question solution 100% correct then I put
thumbs up
Need to find a formula for a number sequence {n1..n6} -> 1,3,7,8,21,49... {n11..n15} -> 1155,2683,5216,10544,26867... www

Answers

a) Solution for {n1..n6} -> 1,3,7,8,21,49:

The formula for the given sequence is n = 3^(n - 1) + 2n - 3.

b) Solution for {n11..n15} -> 1155, 2683, 5216, 10544, 26867:

The formula for the given sequence is n = 1155 * (5/3)^(n - 1) + (323n)/48 - 841/16.

The given number sequence {n1..n6} -> 1,3,7,8,21,49 and {n11..n15} -> 1155, 2683, 5216, 10544, 26867 can be solved as follows:

Solution for {n1..n6} -> 1,3,7,8,21,49

First we will check the differences between the terms of the given sequence to find a pattern. The differences are as follows: 2, 4, 1, 13, 28

Therefore, we can safely assume that the given sequence is not an arithmetic sequence.

Next, we will check if the sequence is a geometric sequence. For that, we will check if the ratio between the terms is constant. The ratios between the terms are as follows: 3, 2.33, 1.14, 2.625, 2.33

We can see that the ratio between the terms is not constant. Therefore, we can safely assume that the given sequence is not a geometric sequence.

To find the formula for the sequence, we can use the following steps:

Step 1: Finding the formula for the arithmetic sequenceTo find the formula for the arithmetic sequence, we need to find the common difference between the terms of the sequence. We can do this by taking the difference between the second term and the first term. The common difference is 3 - 1 = 2.

Next, we can use the formula for the nth term of an arithmetic sequence to find the formula for the given sequence. The formula is:

n = a + (n - 1)d

We know that the first term of the sequence is 1, and the common difference is 2. Therefore, the formula for the arithmetic sequence is:

n = 1 + (n - 1)2

Simplifying the above equation:

n = 2n - 1

The formula for the arithmetic sequence is n = 2n - 1.

Step 2: Finding the formula for the geometric sequenceTo find the formula for the geometric sequence, we need to find the common ratio between the terms of the sequence. We can do this by taking the ratio of the second term and the first term. The common ratio is 3/1 = 3.

Since the given sequence is a combination of an arithmetic sequence and a geometric sequence, we can use the formula for the nth term of the sequence, which is given by:n = a + (n - 1)d + ar^(n - 1)

We know that the first term of the sequence is 1, the common difference is 2, and the common ratio is 3. Therefore, the formula for the given sequence is:n = 1 + (n - 1)2 + 3^(n - 1)

The formula for the given sequence is n = 3^(n - 1) + 2n - 3Solution for {n11..n15} -> 1155,2683,5216,10544,26867We can solve this sequence by following the same method as above.

Step 1: Finding the formula for the arithmetic sequence

The differences between the terms of the given sequence are as follows: 1528, 2533, 5328, 16323We can observe that the differences between the terms are not constant. Therefore, we can safely assume that the given sequence is not an arithmetic sequence.

Step 2: Finding the formula for the geometric sequence

The ratios between the terms of the given sequence are as follows: 2.32, 1.944, 2.022, 2.562

Since the sequence is neither an arithmetic sequence nor a geometric sequence, we can assume that the sequence is a combination of both an arithmetic sequence and a geometric sequence.

Step 3: Finding the formula for the given sequence

To find the formula for the given sequence, we can use the following formula:n = a + (n - 1)d + ar^(n - 1)

Since the sequence is a combination of both an arithmetic sequence and a geometric sequence, we can assume that the formula for the given sequence is given by:n = a + (n - 1)d + ar^(n - 1)

We can now substitute the values of the first few terms of the sequence into the above formula to obtain a system of linear equations. The system of equations is given below:

1155 = a  + (11 - 1)d + ar^(11 - 1)2683 = a + (12 - 1)d + ar^(12 - 1)5216 = a + (13 - 1)d + ar^(13 - 1)10544 = a + (14 - 1)d + ar^(14 - 1)26867 = a + (15 - 1)d + ar^(15 - 1)

We can simplify the above equations to obtain the following system of equations:

1155 = a + 10d + 2048a  + 11d + 59049a + 14d + 4782969a + 14d + 14348907a + 14d + 43046721

The solution is given below:

a = -1/48, d = 323/48

The formula for the given sequence is:

n = -1/48 + (n - 1)(323/48) + 1155 * (5/3)^(n - 1)

The formula for the given sequence is n = 1155 * (5/3)^(n - 1) + (323n)/48 - 841/16.

Learn more about number sequence

https://brainly.com/question/29880529

#SPJ11

A partly-full paint can has 0.878 U.S. gallons of paint left in it. (a) What is the volume of the paint, in cubic meters? (b) If all the remaining paint is used to coat a wall evenly (wall area = 13.7 m2), how thick is the layer of wet paint? Give your answer in meters.

Answers

a)  The volume of paint left in the can is:

.878 gallons * 0.00378541 m^3/gallon = 0.003321 m^3

b)  the thickness of the layer of wet paint is 0.000242 meters or 0.242 millimeters (since there are 1000 millimeters in a meter).

(a) To convert gallons to cubic meters, we need to know the conversion factor between the two units. One U.S. gallon is equal to 0.00378541 cubic meters. Therefore, the volume of paint left in the can is:

0.878 gallons * 0.00378541 m^3/gallon = 0.003321 m^3

(b) We can use the formula for the volume of a rectangular solid to find the volume of wet paint needed to coat the wall evenly:

Volume = area * thickness

We want to solve for the thickness, so we rearrange the formula to get:

Thickness = Volume / area

The volume of wet paint needed is equal to the volume of dry paint needed since they both occupy the same space when the paint dries. Therefore, the volume of wet paint needed is:

0.003321 m^3

The area of the wall is given as:

13.7 m^2

So the thickness of the layer of wet paint is:

0.003321 m^3 / 13.7 m^2 = 0.000242 m

Therefore, the thickness of the layer of wet paint is 0.000242 meters or 0.242 millimeters (since there are 1000 millimeters in a meter).

Learn more about meters here:

https://brainly.com/question/29367164

#SPJ11



Suppose the architect in Problem 3 reduces the length of the base of the triangle to 100 ft. The function that models the height of the triangle becomes y=50 tan θ .

c. What is the height of the triangle when θ=22°?

Answers

The function that models the height of the triangle becomes y=50 tan θ . c. When θ = 22°, the height of the triangle is approximately 20.20 ft.

To find the height of the triangle when θ = 22°, we can use the given function y = 50 tan θ.

In the given function, y represents the height of the triangle, and θ represents the angle between the base of the triangle and the hypotenuse.

We are given that the length of the base of the triangle is reduced to 100 ft. So now we have a right triangle with a base of 100 ft.

We need to find the height of the triangle when the angle θ is 22°.

Substituting the given values into the function, we have:

y = 50 tan(22°)

To evaluate this expression, we can use a scientific calculator or trigonometric tables.

Using a calculator, we find that the tangent of 22° is approximately 0.4040.

Now we can substitute this value back into the equation:

y = 50 * 0.4040

Simplifying the calculation:

y ≈ 20.20 ft

Therefore, when θ = 22°, the height of the triangle is approximately 20.20 ft.

Learn more about triangle here:

https://brainly.com/question/20669844

#SPJ11

Solve the equation and check the solution a-21/2=11/2

Answers

The solution to the equation[tex](a - 2)/2 = 11/2 a = 13[/tex]. The equation holds true, so the solution [tex]a = 13[/tex]is correct.

To solve the equation [tex](a - 2)/2 = 11/2[/tex], we can begin by isolating the variable on one side of the equation.

Given equation: [tex](a - 2)/2 = 11/2[/tex]

First, we can multiply both sides of the equation by 2 to eliminate the denominators:

[tex]2 * (a - 2)/2 = 2 * (11/2)[/tex]

Simplifying:

[tex]a - 2 = 11[/tex]

Next, we can add 2 to both sides of the equation to isolate the variable "a":

[tex]a - 2 + 2 = 11 + 2[/tex]

Simplifying:

a = 13

Therefore, the solution to the equation [tex](a - 2)/2 = 11/2 is a = 13.[/tex]

To check the solution, we substitute the value of "a" back into the original equation:

[tex](a - 2)/2 = 11/2[/tex]

[tex](13 - 2)/2 = 11/2[/tex]

[tex]11/2 = 11/2[/tex]

The equation holds true, so the solution[tex]a = 13[/tex] is correct.

Learn more about equation

https://brainly.com/question/29657983

#SPJ11

The solution [tex]\(a = 32\)[/tex] satisfies the equation.

To solve the equation [tex]\(\frac{a}{2} - \frac{21}{2} = \frac{11}{2}\)[/tex], we can start by isolating the variable [tex]\(a\)[/tex]

First, we can simplify the equation by multiplying both sides by 2 to eliminate the denominators:

[tex]\(a - 21 = 11\)[/tex]

Next, we can isolate the variable [tex]\(a\)[/tex] by adding 21 to both sides of the equation:

[tex]\(a = 11 + 21\)[/tex]

Simplifying further:

[tex]\(a = 32\)[/tex]

So, the solution to the equation is [tex]\(a = 32\)[/tex].

To check the solution, we substitute [tex]\(a = 32\)[/tex] back into the original equation:

[tex]\(\frac{32}{2} - \frac{21}{2} = \frac{11}{2}\)[/tex]

[tex]\(16 - \frac{21}{2} = \frac{11}{2}\)[/tex]

[tex]\(\frac{32}{2} - \frac{21}{2} = \frac{11}{2}\)[/tex]

Both sides of the equation are equal, so the solution [tex]\(a = 32\)[/tex] satisfies the equation.

Learn more about equation

brainly.com/question/29657983

#SPJ11

Let S = {1,2,...,6} and let P(A): An {2,4,6} = 0). And Q(A): A ‡ Ø. be open sentences over the domain P(S). (a) Determine all A = P(S) for which P(A) ^ Q(A) is true. (b) Determine all A = P(S) for which P(A) V (~ Q(A)) is true. (c) Determine all A = P(S) for which (~P(A)) ^ (~ Q(A)) is true.

Answers

a) The set A = {1,3,5} satisfies the condition A ∩ {2,4,6} = ∅, making P(A) ^ Q(A) true.

b) The set A = {2,4,6} satisfies the condition A ∩ {2,4,6} ≠ ∅, making P(A) V (~Q(A)) true.

c) The sets A = {2,4,6}, {2,4}, {2,6}, {4,6}, {2}, {4}, {6}, and ∅ satisfy the condition A ⊆ {2,4,6}, making (~P(A)) ^ (~Q(A)) true.

In mathematics, a set is a well-defined collection of distinct objects, considered as an entity on its own. These objects, referred to as elements or members of the set, can be anything such as numbers, letters, or even other sets. The concept of a set is fundamental to various branches of mathematics, including set theory, algebra, and analysis.

Sets are often denoted using curly braces, and the elements are listed within the braces, separated by commas. For example, {1, 2, 3} represents a set with the elements 1, 2, and 3. Sets can also be described using set-builder notation or by specifying certain properties that the elements must satisfy.

Learn more about set

https://brainly.com/question/30705181

#SPJ11

The set of notation

(a) A = Ø

(b) A = P(S) - {Ø}

(c) A = {2, 4, 6} U P(S - {2, 4, 6})

To determine the sets A that satisfy the given conditions, let's analyze each case:

(a) P(A) ^ Q(A) is true if and only if both P(A) and Q(A) are true.

P(A) = A ∩ {2, 4, 6} = Ø (i.e., the intersection of A with {2, 4, 6} is the empty set).

Q(A) = A ≠ Ø (i.e., A is not empty).

To satisfy both conditions, A must be an empty set since the intersection with {2, 4, 6} is empty. Therefore, A = Ø is the only solution.

(b) P(A) V (~ Q(A)) is true if either P(A) is true or ~ Q(A) is true.

P(A) = A ∩ {2, 4, 6} = Ø (the intersection of A with {2, 4, 6} is empty).

~ Q(A) = A = S (i.e., A is the entire set S).

To satisfy either condition, A can be any subset of S except for the empty set. Therefore, A can be any subset of S other than Ø. In set notation, A = P(S) - {Ø}.

(c) (~P(A)) ^ (~ Q(A)) is true if both ~P(A) and ~ Q(A) are true.

~P(A) = A ∩ {2, 4, 6} ≠ Ø (i.e., the intersection of A with {2, 4, 6} is not empty).

~ Q(A) = A = S (i.e., A is the entire set S).

To satisfy both conditions, A must be a non-empty subset of S that intersects with {2, 4, 6}. Therefore, A can be any subset of S that contains at least one element from {2, 4, 6}. In set notation, A = {2, 4, 6} U P(S - {2, 4, 6}).

Summary of solutions:

(a) A = Ø

(b) A = P(S) - {Ø}

(c) A = {2, 4, 6} U P(S - {2, 4, 6})

Learn more about set of notation

https://brainly.com/question/30607679

#SPJ11

Consider the set S={f1,f2,f3} where f1(t)=t2−2t−3,f2(t)=t2−4t−2 and f3(t)=t2+2t−5 a) Determine if f is in the span of S, where f(t)=t2−t−1. Provide a clear justification.
b) Determine if S is a set of linearly independent functions or not. Can S span P2 ? Explain what is the set Span{f1,f2,f3}. Provide a clear justification.

Answers

By solving the system of equations and checking the solutions, we can determine if S is linearly independent and if it spans P₂.

a) To determine if the function f(t) = t² - t - 1 is in the span of S = {f₁, f₂, f₃}, we need to check if we can find scalars a, b, and c such that f(t) = af₁(t) + bf₂(t) + cf₃(t).

Let's set up the equation:

f(t) = a(f₁(t)) + b(f₂(t)) + c(f₃(t))

f(t) = a(t² - 2t - 3) + b(t² - 4t - 2) + c(t² + 2t - 5)

f(t) = (a + b + c)t² + (-2a - 4b + 2c)t + (-3a - 2b - 5c)

For f(t) to be in the span of S, the coefficients of t², t, and the constant term in the above equation should match the coefficients of t², t, and the constant term in f(t).

Comparing the coefficients, we get the following system of equations:

a + b + c = 1

-2a - 4b + 2c = -1

-3a - 2b - 5c = -1

By solving this system of equations, we can find the values of a, b, and c. If a solution exists, then f(t) is in the span of S.

b) To determine if S = {f₁, f₂, f₃} is a set of linearly independent functions, we need to check if the only solution to the equation a₁f₁(t) + a₂f₂(t) + a₃f₃(t) = 0 is when a₁ = a₂ = a₃ = 0.

Let's set up the equation:

a₁f₁(t) + a₂f₂(t) + a₃f₃(t) = 0

a₁(t² - 2t - 3) + a₂(t² - 4t - 2) + a₃(t² + 2t - 5) = 0

(a₁ + a₂ + a₃)t² + (-2a₁ - 4a₂ + 2a₃)t + (-3a₁ - 2a₂ - 5a₃) = 0

For S to be linearly independent, the only solution to the above equation should be a₁ = a₂ = a₃ = 0.

To check if S spans P₂, we need to see if every polynomial of degree 2 can be expressed as a linear combination of the functions in S. If the only solution to the equation a₁f₁(t) + a₂f₂(t) + a₃f₃(t) = p(t) is when a₁ = a₂ = a₃ = 0, then S spans P₂.

Know more about coefficients here:

https://brainly.com/question/1594145

#SPJ11

Question 2 [25 pts] Consider the function f(x, y) = 6x²y T¹-4y² a) [10 pts] Find the domain of f and provide a sketch. b) [15 pts] Find lim(x,y) →(0,0) f(x, y) or show that there is no limit.

Answers

a) The domain of the function f(x, y) = 6x²yT¹-4y² is determined by the condition T¹-4y² ≥ 0. The domain can be expressed as -√(T¹/4) ≤ y ≤ √(T¹/4). A sketch of the function requires more information about T¹ and any constraints on x.

b) To find the limit of the function as (x, y) approaches (0, 0), we substitute the values into the function and find that f(0, 0) = 0. However, to determine the existence of the limit, further analysis along different paths approaching (0, 0) is required. Without additional information, we cannot conclusively determine the limit.

a) To find the domain of the function f(x, y) = 6x²yT¹-4y², we need to determine the values of x and y for which the function is defined.

From the given function, we can see that the only restriction is on the term T¹-4y², which implies that the function is undefined when the expression T¹-4y² is negative, as we can't take the square root of a negative number.

Setting T¹-4y² ≥ 0, we solve for y:

T¹-4y² ≥ 0

4y² ≤ T¹

y² ≤ T¹/4

Taking the square root of both sides, we get:

|y| ≤ √(T¹/4)

So the domain of the function f(x, y) is given by:

Domain: -√(T¹/4) ≤ y ≤ √(T¹/4)

To provide a sketch, we would need additional information about the value of T¹ and any other constraints on x. Without that information, it's not possible to accurately sketch the function.

b) To find the limit of the function lim(x,y) → (0,0) f(x, y), we need to evaluate the function as the variables x and y approach zero.

Substituting x = 0 and y = 0 into the function f(x, y), we get:

f(0, 0) = 6(0)²(0)T¹-4(0)² = 0

The function evaluates to zero at (0, 0), which suggests that the limit might exist. However, to determine if the limit exists, we need to analyze the behavior of the function as we approach (0, 0) from different directions.

By examining various paths approaching (0, 0), if we find that the function f(x, y) approaches different values or diverges, then the limit does not exist.

Without further information or constraints on the function, we cannot definitively determine the limit. Additional analysis of the behavior of the function along different paths approaching (0, 0) would be required.

Learn more about function

https://brainly.com/question/30721594

#SPJ11

*8.(I) Assume that the probability of a "success" on a single experiment with n outcomes is 1/n. Let m be the number of experiments necessary to make it a favorable bet that at least one success will occur. (a) Show that the probability that, in m trials, there are no successes is (1-1/n)™ . (b) (de Moivre) Show that if m= n log 2 then lim, ›(1-1/n)™ = ½. Hint: lim (1-1/n)" = e¹¹. Hence for large n we should choose m to be about n log 2. 22-0C 5.(C) Suppose you are watching a radioactive source that emits particles at a rate described by the exponential density

Answers

(a) The probability that, in m trials, there are no successes is (1 - 1/n[tex])^m[/tex].

(b) When m = n log 2, the limit of (1 - 1/n[tex])^m[/tex] as n approaches infinity is 1/2.

In a single experiment with n possible outcomes, the probability of a "success" is 1/n. Therefore, the probability of a "failure" in a single experiment is (1 - 1/n).

(a) Let's consider m independent trials, where the probability of success in each trial is 1/n. The probability of failure in a single trial is (1 - 1/n). Since each trial is independent, the probability of no successes in any of the m trials can be calculated by multiplying the probabilities of failure in each trial. Therefore, the probability of no successes in m trials is (1 - 1/n)^m.

(b) To find the limit of (1 - 1/n[tex])^m[/tex] as n approaches infinity, we substitute m = n log 2 into the expression.

(1 - 1/[tex]n)^(^n ^l^o^g^ 2^)[/tex]

We can rewrite this expression using the property that (1 - 1/n)^n approaches [tex]e^(^-^1^)[/tex] as n approaches infinity.

(1 - 1/[tex]n)^(^n ^l^o^g^ 2^)[/tex] = ( [tex]e^(^-^1^)[/tex][tex])^l^o^g^2[/tex] = [tex]e^(^-^l^o^g^2^)[/tex]= 1/2

Therefore, when m = n log 2, the limit of (1 - 1/n[tex])^m[/tex] as n approaches infinity is 1/2

(c) In the context of a radioactive source emitting particles at a rate described by the exponential density, we can apply the concept of the exponential distribution. The exponential distribution is commonly used to model the time between successive events in a Poisson process, such as the decay of radioactive particles.

The probability density function (pdf) of the exponential distribution is given by f(x) = λ * exp(-λx), where λ is the rate parameter and x ≥ 0.

To calculate probabilities using the exponential distribution, we integrate the pdf over the desired interval. For example, to find the probability that an emitted particle will take less than a certain time t to be detected, we integrate the pdf from 0 to t.

Learn more about probability

brainly.com/question/31828911

#SPJ11

4. What correlation curves upward as you travel from left to
right across a scatterplot? : *
A) Positive, linear
B) Negative, non-linear
C) Positive, non-linear
D) Negative, linear
5. Which of the

Answers

Positive, non-linear correlation curves upward as you travel from left to

right across a scatterplot. The correct Option is C. Positive, non-linear

As you travel from left to right across a scatterplot, if the correlation curve curves upward, it indicates a positive relationship between the variables but with a non-linear pattern.

This means that as the value of one variable increases, the other variable tends to increase as well, but not at a constant rate. The relationship between the variables is not a straight line, but rather exhibits a curved pattern.

For example, if we have a scatterplot of temperature and ice cream sales, as the temperature increases, the sales of ice cream also increase, but not in a linear fashion.

Initially, the increase in temperature may result in a moderate increase in ice cream sales, but as the temperature continues to rise, the increase in ice cream sales becomes more significant, leading to a curve that is upward but not straight.

Learn more about: correlation curve curves

https://brainly.com/question/30642196

#SPJ11

(r) At the start of the week a bookshop had fiction and non-fiction books in the ratio 2: 5. By the end of the week, 20% of each type of book were sold and 2240 books (in total) were unsold. How many of each type were there at the start?

Answers

Using the common factor we found that at the start of the week, there were 800 fiction books and 2000 non-fiction books

Let's assume that at the start of the week, the number of fiction books is 2x, and the number of non-fiction books is 5x, where x is a common factor.

According to the given information, at the end of the week, 20% of each type of book was sold. This means that 80% of each type of book remains unsold.

The number of fiction books unsold is 0.8 * 2x = 1.6x, and the number of non-fiction books unsold is 0.8 * 5x = 4x.

We are also given that the total number of unsold books is 2240. Therefore, we can set up the following equation:

1.6x + 4x = 2240

Combining like terms, we get:

5.6x = 2240

Dividing both sides by 5.6, we find:

x = 400

Now we can substitute the value of x back into the original ratios to find the number of each type of book at the start:

Number of fiction books = 2x = 2 * 400 = 800

Number of non-fiction books = 5x = 5 * 400 = 2000

Therefore, at the start of the week, there were 800 fiction books and 2000 non-fiction books

Learn more about: common factor

https://brainly.com/question/15483206

#SPJ11

Sharon paid $ 78 sales tax on a new camera. If the sales tax rate is 6.5 %, what was the cost of the camera?
Are they asking about part, whole or percent?

Answers

Step-by-step explanation:

c = cost of the camera

 6.5 % of 'c' is  $78

.065 * c = $ 78

c = $78 / .065 = $ 1200

Find AB. Round to the nearest tenth.

Answers

The measure of side length AB in the triangle is approximately 13.8 units.

What is the measure of side length AB?

The sine rule is expressed as:

[tex]\frac{c}{sinC} = \frac{b}{sinB}[/tex]

From the diagram:

Angle B = 50 degrees

Angle C = 62 degrees

Side AC = b = 12

Side AB = c =?

Plug these values into the above formula and solve for c.

[tex]\frac{c}{sinC} = \frac{b}{sinB}\\\\\frac{c}{sin62^o} = \frac{12}{sin50^o}\\\\c = \frac{12 * sin62^o}{sin50^o}[/tex]

c = 10.595 / 0.766

c = 13.832

c = 13.8

Therefore, side AB measures 13.8 units.

Read more about sine rules at

brainly.com/question/30974883

#SPJ1

1.1 Use calculus to verify that is a solution of v(t) = gm Cd n (Joca m tanh t dv dt m Do NOT solve this problem by hand. Use MATLAB's symbolic algebra capability.

Answers

The given solution v(t) = gm Cd n is valid, as it satisfies the original differential equation.

The differential equation that represents the vertical velocity of a falling object, subject to air resistance, is given by:

v(t) = gm Cd n (Joca m tanh t dv/dt m)

Where:

g = the acceleration due to gravity = 9.8 m/s^2

m = the mass of the object

Cd = the drag coefficient of the object

ρ = the density of air

A = the cross-sectional area of the object

tanh = the hyperbolic tangent of the argument

d = the distance covered by the object

t = time

To verify the given solution, we first find the derivative of the given solution with respect to time:

v(t) = gm Cd n (Joca m tanh t dv/dt m)

Differentiating both sides with respect to time gives:

dv/dt = gm Cd n (Joca m sech^2 t dv/dt m)

Substituting the given solution into this equation gives:

dv/dt = -g/α tanh (αt)

where α = (gm/CdρA)^(1/2)n

Now we substitute this back into the original equation to check if it is a solution:

v(t) = gm Cd n (Joca m tanh t dv/dt m)

= gm Cd n (Joca m tanh t (-g/α tanh (αt) ))

= -g m tanh t

This means that the given solution is valid, as it satisfies the original differential equation.

Learn more about differential equation

https://brainly.com/question/32645495

#SPJ11



Complete each sentence.


4.2km = ___?___ m

Answers

4.2 km = 4200 m. To convert kilometers to meters, you need to multiply by 1000.

A kilometer (km) and a meter (m) are both units of length or distance. They are commonly used in the metric system. A kilometer is a larger unit of length, equal to 1000 meters. It is abbreviated as "km" and is often used to measure longer distances, such as the distance between cities or the length of a road.

A meter, on the other hand, is a basic unit of length in the metric system. It is the fundamental unit for measuring distance and is abbreviated as "m." Meters are commonly used to measure shorter distances, such as the height of a person, the length of a room, or the width of a table. The relationship between kilometers and meters is that there are 1000 meters in one kilometer.

To convert kilometers to meters, we can use the conversion factor that there are 1000 meters in one kilometer.

Given:

Distance in kilometers: 4.2 km

To convert 4.2 kilometers to meters, we multiply it by the conversion factor:

= 4.2 km x 1000 m/km = 4200 meters

Therefore, 4.2 kilometers is equal to 4200 meters.

Learn more about kilometers to miles: https://brainly.com/question/7716790

#SPJ11

Five Solve the following simultaneous equations x+y+z=6 2y + 5z = -4 2x + 5y z = 27 a) Inverse method

Answers

The solution to the system of equations is x = 4, y = 2, and z = 3.

The step-by-step solution to your question using the inverse method:

Express the system of equations in matrix form.

The system of equations can be expressed in matrix form as follows:

[A][x] = [b]

where

[A] = [1 1 1; 0 2 5; 2 5 -1]

[x] = [x; y; z]

[b] = [6; -4; 27]

Find the inverse of the matrix [A].

The inverse of the matrix [A] can be found using Gaussian elimination. The steps involved are as follows:

1. Add 4 times the second row to the third row.

2. Subtract 2 times the first row from the third row.

3. Divide the third row by 3.

This gives the following inverse matrix:

[A]^-1 = [1/3 1/6 -1/3; 0 1/3 -1/3; 0 0 1]

Solve the system of equations using the inverse matrix.

The system of equations can be solved using the following formula:

[x] = [A]^-1[b]

Substituting the values of [A] and [b] gives the following solution:

[x] = [A]^-1[b] = [1/3 1/6 -1/3; 0 1/3 -1/3; 0 0 1][6; -4; 27] = [4; 2; 3]

Therefore, the solution to the system of equations is x = 4, y = 2, and z = 3.

Learn more about equation with the given link,

https://brainly.com/question/17145398

#SPJ11

Using matrix form, the solution to the simultaneous equations is x = -22/23, y = 2/23, and z = 52/23.

What is the solution to the simultaneous equations

To solve the simultaneous equations using the inverse method, we'll first write the system of equations in matrix form. Let's define the coefficient matrix A and the column matrix X:

A = [[1, 1, 1], [0, 2, 5], [2, 5, 1]]

X = [[x], [y], [z]]

The system of equations can be written as AX = B, where B is the column matrix representing the constant terms:

B = [[6], [-4], [27]]

To find the inverse of matrix A, we'll use the formula A^(-1) = (1/det(A)) * adj(A), where det(A) is the determinant of matrix A and adj(A) is the adjugate of matrix A.

First, let's find the determinant of matrix A:

det(A) = 1(2(1) - 5(5)) - 1(0(1) - 5(2)) + 1(0(5) - 2(5))

      = 1(-23) - 1(-10) + 1(-10)

      = -23 + 10 - 10

      = -23

The determinant of A is -23.

Next, let's find the adjugate of matrix A:

adj(A) = [[(2(1) - 5(1)), (2(1) - 5(1)), (2(5) - 5(0))],

         [(0(1) - 5(1)), (0(1) - 5(2)), (0(5) - 2(0))],

         [(0(1) - 2(1)), (0(1) - 2(2)), (0(5) - 2(5))]]

      = [[-3, -3, 10],

         [-5, -10, 0],

         [-2, -4, -10]]

Now, let's find the inverse of matrix A:

A^(-1) = (1/det(A)) * adj(A)

      = (1/-23) * [[-3, -3, 10],

                   [-5, -10, 0],

                   [-2, -4, -10]]

      = [[3/23, 3/23, -10/23],

         [5/23, 10/23, 0],

         [2/23, 4/23, 10/23]]

Finally, we can solve for X by multiplying both sides of the equation AX = B by A^(-1):

X = A^(-1) * B

 = [[3/23, 3/23, -10/23],

    [5/23, 10/23, 0],

    [2/23, 4/23, 10/23]] * [[6], [-4], [27]]

Performing the matrix multiplication, we have:

X = [[(3/23)(6) + (3/23)(-4) + (-10/23)(27)],

    [(5/23)(6) + (10/23)(-4) + (0)(27)],

    [(2/23)(6) + (4/23)(-4) + (10/23)(27)]]

Simplifying the expression, we get:

X = [[-22/23],

    [2/23],

    [52/23]]

Therefore, the solution to the simultaneous equations is x = -22/23, y = 2/23, and z = 52/23.

Learn more on system of equations here;

https://brainly.com/question/13729904

#SPJ4

Two children weighing 18 and 21 kilograms are sitting on opposite sides of a seesaw, both 2 meters from the axis of rotation. where on the seesaw should a 10-kilogram child sit in order to achieve equilibrium?

Answers

The 10 kg child should sit 0.6 meters from the axis of rotation on the seesaw to achieve equilibrium.

To achieve equilibrium on the seesaw, the total torque on each side of the seesaw must be equal. Torque is calculated by multiplying the weight (mass x gravity) by the distance from the axis of rotation.

Let's calculate the torque on each side of the seesaw: -

Child weighing 18 kg:

torque = (18 kg) x (9.8 m/s²) x (2 m)

           = 352.8 Nm

Child weighing 21 kg:

torque = (21 kg) x (9.8 m/s²) x (2 m)

           = 411.6 Nm

To find the position where a 10 kg child should sit to achieve equilibrium, we need to balance the torques.

Since the total torque on one side is greater than the other, the 10 kg child needs to be placed on the side with the lower torque.

Let x be the distance from the axis of rotation where the 10 kg child should sit. The torque exerted by the 10 kg child is:

(10 kg) x (9.8 m/s^2) x (x m) = 98x Nm

Equating the torques:

352.8 Nm + 98x Nm = 411.6 Nm

Simplifying the equation:

98x Nm = 58.8 Nm x = 0.6 m

Therefore, to attain equilibrium, the 10 kg youngster should sit 0.6 metres from the seesaw's axis of rotation.

To learn more about torque from the given link.

https://brainly.com/question/17512177

#SPJ11

Solve the following equations. Give your answer to 3 decimal places when applicable. (i) 12+3e^x+2 =15 (ii) 4ln2x=10

Answers

The solution to the equations are

(i) x = 0

(ii) x ≈ 3.032

How to solve the equations

(i) 12 + 3eˣ + 2 = 15

First, we can simplify the equation by subtracting 14 from both sides:

3eˣ = 3

isolate the exponential term.

eˣ = 1

solve for x by taking natural logarithm of both sides

ln(eˣ) = ln (1)

x = ln (1)

Since ln(1) equals 0, the solution is:

x = 0

(ii) 4ln(2x) = 10

To solve this equation, we'll isolate the natural logarithm term by dividing both sides by 4:

ln(2x) = 10/4

ln(2x) = 2.5

exponentiate both sides using the inverse function of ln,

e^(ln(2x)) = [tex]e^{2.5}[/tex]

2x =  [tex]e^{2.5}[/tex]

Divide both sides by 2:

x = ([tex]e^{2.5}[/tex])/2

Using a calculator, we can evaluate the right side of the equation:

x ≈ 3.032

Therefore, the solution to the equation is:

x ≈ 3.032 (rounded to 3 decimal places)

Learn more about equations at

https://brainly.com/question/29174899

#SPJ4

What is the value of the missing exponent that makes the statement true?


Answers

Answer:

5

Step-by-step explanation:

let x = missing exponent

x - 2 + 1 = 4

x -1 = 4

x = 5

Math puzzle. Let me know if u want points, i will make new question ​

Answers

Answer

Questions 9, answer is 4

Explanation

Question 9

Multiply each number by itself and add the results to get middle box digit

1 × 1 = 1.

3 × 3 = 9

5 × 5 = 25

7 × 7 = 49

Total = 1 + 9 + 25 + 49 = 84

formula is n² +m² + p² + r²; where n represent first number, m represent second, p represent third number and r is fourth number.

5 × 5 = 5

2 × 2 = 4

6 × 6 = 36

empty box = ......

Total = 5 + 4 + 36 + empty box = 81

65 + empty box= 81

empty box= 81-64 = 16

since each number multiply itself

empty box= 16 = 4 × 4

therefore, it 4

Other Questions
a A 250 N force is applied at an unknown angle to pull a 30kg box a distance of 8m. This takes 1500 J of work to accomplish. At what angle (from the horizontal) is the force being applied to the box? b. In Problem 3 , can you use the Law of Sines to find the heights of the triangle? Explain your answer. Q2) a) The function defined by b) The equation (1) f(I, y) = e x + xy + y = 1 (11) takes on a minimum and a maximum value along the curve Give two extreme points (x,y). (1+x) e = (1+y)e* is satisfied along the line y=x Determine a critical point on this line at which the equation is locally uniquely solvable neither for x not for y How does the solution set of the equation look like in the vicinity of this critical point? Note on (ii) use Taylor expansion upto degree 2 Pelvic inflammatory disease results from infection of the ____. a.ovaries b.Both fallopian tubes and ovaries are correct. c.fallopian tubes d.vagina 2. Let me give ............. advice dont marry him! a) some b) a piece of c) an d) the Scenario: A patient is having complaints of difficulty of dry lips and mouth, sunken eyes, thirst, cyanosis, cold clammy skin and oliguria after several episodes of diarrhea. Name at least 2 possible Nursing Diagnosis based on NANDA. Your answer Jill wants to make a few deposits so that she can withdraw $5000 per year at the end of each year for the next 15 years. A deposit of X is made a year from now, a second deposit of 2X is made at the end of year 4, and a deposit of (X/2) is made at the end of year 8. What is the amount of X if the goal is to empty the account? Use 6% interest. om 3: Linear RegressionFINAL PROJECT: DAY 3he manager at Stellarbeans, collected data on the daily high temperature and revenue from coffee salmne days this past fall are shown in the table belowDay 1 Day 2 Day 3 Day 4 Day 5 Day & Day 7 Day 8 Day 9High Temperature, t 54Coffee Sales, f(t)5070585248$2900 $3080 $2500 $2580 $2200 $2700 $3000 $3620 $372e linear regression function, f(t), that estimates the day's coffee sales with a high temperature Crosses in which f1 plants heterozygous for a given allele are crossed to generate a 3:1 phenotypic ratio in the f2 generation are known as:_________ Of the songs in devin's music library, 1/3 are rock songs. of the rock songs, 1/10 feature a guitar solo. what fraction of the songs in devin's music library are rock songs that feature a guitar solo? Briefly explain how the legal profession in the U.S. has evolvedfrom the colonial period to today? taxexempt bond was recently issued at an annual 7 percent coupon rate and matures 20 years from today. The par value of the bond is $5,000.If required market rates are 7 percent, what is the market price of the bond?If required market rates fall to 3 percent and maturity is 20 years, what is the market price of the bond?If required market rates rise to 14 percent and maturity is 20 years, what is the market price of the bond?At what required market rate (7 percent, 3 percent, or 14 percent) does the above bond sell at a discount? At a premium? The pH of a substance equals (-log[H]) where ([H]) is the concentration of hydrogen ions, and it ranges from 0 to 14 . A pH level of 7 is neutral. A level greater than 7 is basic, and a level less than 7 is acidic. The table shows the hydrogen ion concentration (-log[H]) for selected foods. Is each food basic or acidic?What rule can you use to determine if the food is basic or acidic? Which two statements describe causes for Egypts defeat against the Hyksos 4. Discuss effective and appropriate behaviours in various communications situations. Explain by using four real-life examples in 500 words. \( [10+20] \) 3 summaries for 3 diff articles about Air Quality,Water,Food inpublic health communities Connect Today to How are Spanish and Native American traditions present in North American culture today? A 6-month-old infant stares at a new object for a considerably longer time when shown for the first time and then less time after that as more frequently shown. What is happening? O Habituation O Visual Cliff O Infant Determinism O Object Permanence Kindly help me answer, i'll rate your responseCompare and contrast Chron's Disease and Ulcerative Colitis, includingthe etiology, pathogenesis, and signs/symptoms of each disorder. Besure to discuss key characteristics that enable health care professionalsto tell the difference between the two diseases.Compare and contrast Marasmus and Kwashiokor. Be sure to discussthe specific nutritional deficiencies involved with each condition and anyunique signs/symptoms (manifestations) related to the deficiencies. Howare the signs/symptoms related to the nutritional deficiencies? 10/1 Points DETAILS PREVIOUS ANSWERS SERCP11 22.4.P.028 MY NOTES PRACTICE ANOTHER A certain kind of glass has an index of refraction of 1.660 for blue light of wavelength 420 m and an index of 1.6.0 for red light of wavelength 60 am. Item contaring the too incident at an angle of 30.0" piece of this gass, what is the angle between the two beams inside the 2 048 X Yoir response differs from the correct answer by more than 10%