Forty one people were riding bus number 527. At 8:45 am,it arrived at the 109th street stop. There,19 people got off and then 20 people boarded. How many riders were on the bus when it traveled to the next stop?

Answers

Answer 1

Answer:

1 because jahahdhekskdbsks


Related Questions

Use the Remainder Theorem to determine which of the roots are roots of F(x). Show your work.
Polynomial: F(x)=x^3-x^2-4x+4
Roots: 1, -2, and 2.

Answers

Answer:    x1=1   x2=-2  and x3=2

Step-by-step explanation:

1st   x1=1 is 1 of the roots , so

F(1)=1-1-4+4=0 - true

So lets divide x^3-x^2-4x+4 by (x-x1), i.e  (x^3-x^2-4x+4) /(x-1)=(x^2-4)

x^2-4 can be factorized as (x-2)*(x+2)

So x^3-x^2-4x+4=(x-1)*(x^2-4)=(x-1)(x-2)*(x+2)

So there are 3 dofferent roots:

x1=1   x2=-2  and x3=2

What is the equation of a line passes thru the point (4, 2) and is perpendicular to the line whose equation is y = ×/3 - 1 ??

Answers

Answer:

Perpendicular lines have slopes that are opposite and reciprocal. Therefore, the line we are looking for has a -3 slope.

y= -3x+b

Now, we can substitute in the point given to find the intercept.

2= -3(4)+b

2= -12+b

b=14

Finally, put in everything we've found to finish the equation.

y= -3x+14

Answer:

y = -3x + 14

Step-by-step explanation:

First find the reciprocal slope since it is perpendicular.  Slope of the other line is 1/3 so the slope for our new equation is -3.  

Plug information into point-slope equation

(y - y1) = m (x-x1)

y - 2 = -3 (x-4)

Simplify if needed

y - 2 = -3x + 12

y = -3x + 14

A sphere and a cylinder have the same radius and height. The volume of the cylinder is 30 meters cubed A sphere with height h and radius r. A cylinder with height h and radius r. What is the volume of the sphere? 10 meters cubed 20 meters cubed 30 meters cubed 40 meters cubed

Answers

Answer:

30 m^3

Step-by-step explanation:

Answer:

B. 20m3

Step-by-step explanation:

i dont know if its correct, hope it is tho

When sampling sodas in a factory, every 1000th soda is tested for quality. Which of these sampling methods is closest to what is described here

Answers

Answer:

Systematic Sampling

Step-by-step explanation:

Systematic sampling is a form of sampling in which the researcher applies probability sampling such that every member of the group is selected at regular intervals or periods. The researcher picks a random starting point and after an interval must have elapsed, another sample member is chosen. This sampling method is similar to that disclosed in the question because it has the key qualities.

For example, an interval is given after the 1000th soda is tested for quality.  This means that the interval for testing can accommodate 1000 sodas after which the first member is tested again. So, this is a Systematic sampling method.

Over the past several years, the proportion of one-person households has been increasing. The Census Bureau would like to test the hypothesis that the proportion of one-person households exceeds 0.27. A random sample of 125 households found that 43 consisted of one person. The Census Bureau would like to set α = 0.05. Use the critical value approach to test this hypothesis. Explain.

Answers

Answer:

For this case we can find the critical value with the significance level [tex]\alpha=0.05[/tex] and if we find in the right tail of the z distribution we got:

[tex] z_{\alpha}= 1.64[/tex]

The statistic is given by:

[tex]z=\frac{\hat p -p_o}{\sqrt{\frac{p_o (1-p_o)}{n}}}[/tex] (1)  

Replacing we got:  

[tex]z=\frac{0.344 -0.27}{\sqrt{\frac{0.27(1-0.27)}{125}}}=1.86[/tex]  

Since the calculated value is higher than the critical value we have enough evidence to reject the null hypothesis and we can conclude that the true proportion of households with one person is significantly higher than 0.27

Step-by-step explanation:

We have the following dataset given:

[tex] X= 43[/tex] represent the households consisted of one person

[tex]n= 125[/tex] represent the sample size

[tex] \hat p= \frac{43}{125}= 0.344[/tex] estimated proportion of  households consisted of one person

We want to test the following hypothesis:

Null hypothesis: [tex]p \leq 0.27[/tex]

Alternative hypothesis: [tex]p>0.27[/tex]

And for this case we can find the critical value with the significance level [tex]\alpha=0.05[/tex] and if we find in the right tail of the z distribution we got:

[tex] z_{\alpha}= 1.64[/tex]

The statistic is given by:

[tex]z=\frac{\hat p -p_o}{\sqrt{\frac{p_o (1-p_o)}{n}}}[/tex] (1)  

Replacing we got:  

[tex]z=\frac{0.344 -0.27}{\sqrt{\frac{0.27(1-0.27)}{125}}}=1.86[/tex]  

Since the calculated value is higher than the critical value we have enough evidence to reject the null hypothesis and we can conclude that the true proportion of households with one person is significantly higher than 0.27

Find AC. (Khan Academy-Math)

Answers

Answer:

[tex]\boxed{11.78}[/tex]

Step-by-step explanation:

From observations, we can note that BC is the hypotenuse.

As the length of hypotenuse is not given, we can only use tangent as our trig function.

tan(θ) = opposite/adjacent

tan(67) = x/5

5 tan(67) = x

11.77926182 = x

x ≈ 11.78

what happens to the value of the expression n+15n as n decreases? answer

Answers

Answer:

The value will decrease.

Step-by-step explanation:

Suppose μ1 and μ2 are true mean stopping distances at 50 mph for cars of a certain type equipped with two different types of braking systems. Use the two-sample t test at significance level 0.01 to test H0: μ1 − μ2 = −10 versus Ha: μ1 − μ2 < −10 for the following data: m = 8, x = 115.6, s1 = 5.04, n = 8, y = 129.3, and s2 = 5.32.

Calculate the test statistic and determine the P-value. (Round your test statistic to two decimal places and your P-value to three decimal places.)

t = ________

P-value = _________

Answers

Answer:

Step-by-step explanation:

This is a test of 2 independent groups. Given that μ1 and μ2 are true mean stopping distances at 50 mph for cars of a certain type equipped with two different types of braking systems, the hypothesis are

For null,

H0: μ1 − μ2 = - 10

For alternative,

Ha: μ1 − μ2 < - 10

This is a left tailed test.

Since sample standard deviation is known, we would determine the test statistic by using the t test. The formula is

(x1 - x2)/√(s1²/n1 + s2²/n2)

From the information given,

x1 = 115.6

x2 = 129.3

s1 = 5.04

s2 = 5.32

n1 = 8

n2 = 8

t = (115.6 - 129.3)/√(5.04²/8 + 5.32²/8)

t = - 2.041

Test statistic = - 2.04

The formula for determining the degree of freedom is

df = [s1²/n1 + s2²/n2]²/(1/n1 - 1)(s1²/n1)² + (1/n2 - 1)(s2²/n2)²

df = [5.04²/8 + 5.32²/8]²/[(1/8 - 1)(5.04²/8)² + (1/8 - 1)(5.32²/8)²] = 45.064369/3.22827484

df = 14

We would determine the probability value from the t test calculator. It becomes

p value = 0.030

Since alpha, 0.01 < the p value, 0.03, then we would fail to reject the null hypothesis.

An inverse variation includes the point (-8,-19). Which point would also belong in this inverse variation? A. (-19,-8) B. (-8,19) C. (-19,8) D. (8,-19)

Answers

Answer:

(A)  (-19,-8)

Step-by-step explanation:

Given that the graph is an inverse variation.

The equation of variation is:

[tex]x=\dfrac{k}{y}[/tex]

Since point (-8, -19) is on the graph

[tex]-8=\dfrac{k}{-19}\\k=152[/tex]

Therefore, the equation connecting x and y is:

[tex]x=\dfrac{152}{y}[/tex]

[tex]\text{When y=-8},x=\dfrac{152}{-8}=-19\\\\\text{When y=19},x=\dfrac{152}{19}=8\\\\\text{When y=8},x=\dfrac{152}{8}=19\\\\\text{When y=-19},x=\dfrac{152}{-19}=-8[/tex]

Therefore, the point that is also on the graph is:

(A)  (-19,-8)

Ann's $6,900 savings is in two accounts. One account earns 3% annual interest and the other earns 8%. Her total interest for the year is $342. How much does she have in each account?

Answers

Answer:

x=4200, y=2700

Step-by-step explanation:

let x be first account

y the second

x+y=6900

0.03x+0.08y=342

solve by addition/elimination)

multiply first equation by 0.03

0.03x+0.03y=207  subtract from second

0.03x+0.03y-0.03x-0.08y=207-342

0.05y=135

y=2700, x=4200

if 2 1/5 of a number is 5. what is the number​

Answers

Answer:

2

Step-by-step explanation:

5÷2 1/5 = 2

Answer:

2 3/11

Step-by-step explanation:

To find the original number, we need to divide 5 by 2 1/5.

5/ 2 1/5

Convert 2 1/5 to an improper fraction:

11/5

5/ 11/5

When dividing fractions, we can multiply the first number by the reciprocal of the second one to get the answer.

5*5/11

25/11

2 3/11

Simplify the algebraic expression: 7x2 + 6x – 9x – 6x2 + 15. A) x2 + 15x + 15 B) x2 – 3x + 15 C) 13x2 + 3x + 15 D) x4 – 3x + 15

Answers

Answer:

B) [tex]x^2-3x+15[/tex]

Step-by-step explanation:

[tex]7x^2+6x-9x-6x^2+15=\\7x^2-6x^2+6x-9x+15=\\x^2+6x-9x+15=\\x^2-3x+15[/tex]

A) [tex]x^2+15x+15[/tex]

B) [tex]x^2-3x+15[/tex]

C) [tex]13x^2 + 3x + 15[/tex]

D) [tex]x^4-3x + 15[/tex]

━━━━━━━☆☆━━━━━━━

▹ Answer

B. x² - 3x + 15

▹ Step-by-Step Explanation

7x² + 6x - 9x - 6x² + 15

Collect like terms

x² + 6x - 9x + 15

Subtract

x² - 3x + 15

Final Answer

x² - 3x + 15

Hope this helps!

- CloutAnswers ❁

Brainliest is greatly appreciated!

━━━━━━━☆☆━━━━━━━

Ms. Stone decided to purchase 2 reusable bottles instead. When she got to the counter, she realized she had $10.15, only ⅝ of the money she needed for the purchase. How much does 1 bottle cost?

Answers

Answer:

The price of one reusable bottle is $8.12

Step-by-steetp explanation:

Ms stone wanted to purchase two reusable bottles but discovered she had only ⅝of the Mone and that ⅝ is equal to $ 10.15.

So the cost of what she wants to purchase will be called x.

Mathematically

⅝ * x = 10.15

X = (10.15*8)/5

X = 81.2/5

X= 16.24

The price of the two bottles is $16.24

So the price if one bottle will be calculated as follows.

2 bottles=$ 16.24

One bottle= $16.24/2

One bottle= $8.12

The price of one reusable bottle is $8.12

. If α and β are the roots of
2x^2+7x-9=0 then find the equation whose roots are
α/β ,β/α

Answers

Answer:

[tex]18x^2+85x+18 = 0[/tex]

Step-by-step explanation:

Given Equation is

=> [tex]2x^2+7x-9=0[/tex]

Comparing it with [tex]ax^2+bx+c = 0[/tex], we get

=> a = 2, b = 7 and c = -9

So,

Sum of roots = α+β = [tex]-\frac{b}{a}[/tex]

α+β = -7/2

Product of roots = αβ = c/a

αβ = -9/2

Now, Finding the equation whose roots are:

α/β ,β/α

Sum of Roots = [tex]\frac{\alpha }{\beta } + \frac{\beta }{\alpha }[/tex]

Sum of Roots = [tex]\frac{\alpha^2+\beta^2 }{\alpha \beta }[/tex]

Sum of Roots = [tex]\frac{(\alpha+\beta )^2-2\alpha\beta }{\alpha\beta }[/tex]

Sum of roots = [tex](\frac{-7}{2} )^2-2(\frac{-9}{2} ) / \frac{-9}{2}[/tex]

Sum of roots = [tex]\frac{49}{4} + 9 /\frac{-9}{2}[/tex]

Sum of Roots = [tex]\frac{49+36}{4} / \frac{-9}{2}[/tex]

Sum of roots = [tex]\frac{85}{4} * \frac{2}{-9}[/tex]

Sum of roots = S = [tex]-\frac{85}{18}[/tex]

Product of Roots = [tex]\frac{\alpha }{\beta } \frac{\beta }{\alpha }[/tex]

Product of Roots = P = 1

The Quadratic Equation is:

=> [tex]x^2-Sx+P = 0[/tex]

=> [tex]x^2 - (-\frac{85}{18} )x+1 = 0[/tex]

=> [tex]x^2 + \frac{85}{18}x + 1 = 0[/tex]

=> [tex]18x^2+85x+18 = 0[/tex]

This is the required quadratic equation.

Answer:

α/β= -2/9      β/α=-4.5

Step-by-step explanation:

So we have quadratic equation  2x^2+7x-9=0

Lets fin the roots  using the equation's  discriminant:

D=b^2-4*a*c

a=2 (coef at x^2)   b=7(coef at x)  c=-9

D= 49+4*2*9=121

sqrt(D)=11

So x1= (-b+sqrt(D))/(2*a)

x1=(-7+11)/4=1   so   α=1

x2=(-7-11)/4=-4.5    so  β=-4.5

=>α/β= -2/9       => β/α=-4.5

A group of 20 people were asked to remember as many items as possible from a list before and after being taught a memory device. Researchers want to see if there is a significant difference in the amount of items that people are able to remember before and after being taught the memory device. They also want to determine whether or not men and women perform differently on the memory test. They choose α = 0.05 level to test their results. Use the provided data to run a Two-way ANOVA with replication.


A B C
Before After
Male 5 7
4 5
7 8
7 8
7 8
7 8
5 6
7 7
6 7
Female 5 8
5 6
8 8
7 7
6 6
8 9
8 8
6 6
7 6
8 8

Answers

Answer:

1. There is no difference in amount of items that people are able to remember before and after being taught the memory device.

2. There is no difference between performance of men and women on memory test.

Step-by-step explanation:

Test 1:

The hypothesis for the two-way ANOVA test can be defined as follows:

H₀: There is no difference in amount of items that people are able to remember before and after being taught the memory device.

Hₐ: There is difference in amount of items that people are able to remember before and after being taught the memory device.

Use MS-Excel to perform the two-way ANOVA text.

Go to > Data > Data Analysis > Anova: Two-way with replication  

A dialog box will open.

Input Range: select all data

Rows per sample= 10

Alpha =0.05

Click OK

The ANOVA output is attaches below.

Consider the Columns data:

The p-value is 0.199.

p-value > 0.05

The null hypothesis will not be rejected.

Conclusion:

There is no difference in amount of items that people are able to remember before and after being taught the memory device.

Test 2:

The hypothesis  to determine whether or not men and women perform differently on the memory test is as follows:

H₀: There is no difference between performance of men and women on memory test.

Hₐ: There is a difference between performance of men and women on memory test.

Consider the Sample data:

The p-value is 0.075.

p-value > 0.05

The null hypothesis will not be rejected.

Conclusion:

There is no difference between performance of men and women on memory test.

find the lateral surface area of a cylinder whose radius is 1.2 mm and whose height is 2 mm

Answers

Answer:

Lateral Surface Area = 15.072 [tex]mm^2[/tex]

Step-by-step explanation:

Given that:

Base of Cylinder has radius, r = 1.2 mm

Height, h = 2 mm

To find:

Lateral Surface area of cylinder = ?

Solution:

We know that total surface area of a cylinder is given by:

[tex]TSA = 2\pi r^2+2\pi rh[/tex]

Here [tex]2\pi r^2[/tex] is the area of two circular bases of the cylinder and

[tex]2\pi rh[/tex] is the lateral surface area.

Please refer to the attached image for a better understanding of the Lateral and Total Surface Area.

So, LSA = [tex]2\pi rh[/tex]

[tex]\Rightarrow LSA = 2 \times 3.14 \times 1.2 \times 2\\\Rightarrow LSA = 6.28 \times 2.4\\\Rightarrow LSA = 15.072\ mm^2[/tex]

So, the answer is:

Lateral Surface Area of given cylinder = 15.072 [tex]mm^2[/tex]

Answer:

LSA  =   24.1

Step-by-step explanation:

I just did this, I dont know how to upload my work, but It marked it as right and gave me the green check mark. The answer is 24.1

Can somebody help me i have to drag the functions on top onto the bottom ones to match their inverse functions.

Answers

Answer:

1. x/5

2. cubed root of 2x

3.x-10

4.(2x/3)-17

Step-by-step explanation:

Answer:

Step-by-step explanation:

1. Lets find the inverse function for function f(x)=2*x/3-17

To do that first express x through f(x):

2*x/3= f(x)+17

2*x=(f(x)+17)*3

x=(f(x)+17)*3/2   done !!!                        (1)

Next : to get the inverse function from (1) substitute x by f'(x)   and f(x) by x.

So the required function is f'(x)=(x+17)*3/2 or f'(x)=3*(x+17)/2

This is function is No4 in our list. So f(x)=2*x/3-17 should be moved to the box No4  ( on the bottom) of the list.

2.  Lets find the inverse function for function f(x)=x-10

To do that first express x through f(x):

x= f(x)+10

x=f(x)+10   done !!!                        (2)

Next : to get the inverse function from (2) substitute x by f'(x)   and f(x) by x.

So the required function is f'(x)=x+10

This is function is No3 in our list. So f(x)=x-10 should be moved to the box No3  ( from the top) of the list.

3.Lets find the inverse function for function f(x)=sqrt 3 (2x)

To do that first express x through f(x):

2*x= f(x)^3

x=f(x)^3/2   done !!!                        (3)

Next : to get the inverse function from (3) substitute x by f'(x)   and f(x) by x.

So the required function is f'(x)=x^3/2

This is function No2 in our list. So f(x)=sqrt 3 (2x) should be moved to the box No2  ( from the top) of the list.

4.Lets find the inverse function for function f(x)=x/5

To do that first express x through f(x):

x=f(x)*5   done !!!                        (4)

Next : to get the inverse function from (4) substitute x by f'(x)   and f(x) by x.

So the required function is f'(x)=x*5 or f'(x)=5*x

This is function No1 in our list. So f(x)=x/5 should be moved to the box No1  ( on the top) of the list.

x=-4
Tell whether it’s graph is a horizontal or a vertical line

Answers

Answer:

Vertical Line

Step-by-step explanation:

A vertical line is x = [a number]

A horizontal line is y = [a number]

Answer:

vertical line

Step-by-step explanation:

A vertical line is of the form

x =

All the x values are the same and the y value changes

x = -4 is a vertical line

Find the length of a picture frame whose width is 3 inches and whose proportions are the same as a 9-inch wide by 12-inch long picture frame.

Answers

Answer:

4 inches

Step-by-step explanation:

We can set up a proportion to find out the length value (assuming x is the length of the frame)

[tex]\frac{3}{x} = \frac{9}{12}[/tex]

We multiply 12 and 3...

[tex]12\cdot3=36[/tex]

And divide by 9...

[tex]36\div9=4[/tex]

So, the length of the frame is 4 inches.

Hope this helped!

Answer:

Step-by-step explanation:

4 inches

Find the directional derivative of at the point (1, 3) in the direction toward the point (3, 1). g

Answers

Complete Question:

Find the directional derivative of g(x,y) = [tex]x^2y^5[/tex]at the point (1, 3) in the direction toward the point (3, 1)

Answer:

Directional derivative at point (1,3),  [tex]D_ug(1,3) = \frac{162}{\sqrt{8} }[/tex]

Step-by-step explanation:

Get [tex]g'_x[/tex] and [tex]g'_y[/tex] at the point (1, 3)

g(x,y) = [tex]x^2y^5[/tex]

[tex]g'_x = 2xy^5\\g'_x|(1,3)= 2*1*3^5\\g'_x|(1,3) = 486[/tex]

[tex]g'_y = 5x^2y^4\\g'_y|(1,3)= 5*1^2* 3^4\\g'_y|(1,3)= 405[/tex]

Let P =  (1, 3) and Q = (3, 1)

Find the unit vector of PQ,

[tex]u = \frac{\bar{PQ}}{|\bar{PQ}|} \\\bar{PQ} = (3-1, 1-3) = (2, -2)\\{|\bar{PQ}| = \sqrt{2^2 + (-2)^2}\\[/tex]

[tex]|\bar{PQ}| = \sqrt{8}[/tex]

The unit vector is therefore:

[tex]u = \frac{(2, -2)}{\sqrt{8} } \\u_1 = \frac{2}{\sqrt{8} } \\u_2 = \frac{-2}{\sqrt{8} }[/tex]

The directional derivative of g is given by the equation:

[tex]D_ug(1,3) = g'_x(1,3)u_1 + g'_y(1,3)u_2\\D_ug(1,3) = (486*\frac{2}{\sqrt{8} } ) + (405*\frac{-2}{\sqrt{8} } )\\D_ug(1,3) = (\frac{972}{\sqrt{8} } ) + (\frac{-810}{\sqrt{8} } )\\D_ug(1,3) = \frac{162}{\sqrt{8} }[/tex]

consider the difference of squares identity a^2-2b^2=(a+b)(a-b)

Answers

Answer: a= 3x and b= 7

Step-by-step explanation:

^^

help please this is important​

Answers

Answer:

D. [tex]3^3 - 4^2[/tex]

Step-by-step explanation:

Well if Alia gets 4 squared less than Kelly who get 3 cubed it’s natural the expression is 3^3 - 4 ^2

If the area of a circular cookie is 28.26 square inches, what is the APPROXIMATE circumference of the cookie? Use 3.14 for π.


75.2 in.
56.4 in.
37.6 in.
18.8 in.

Answers

Answer:

Step-by-step explanation:

c= 2(pi)r

Area = (pi)r^2

28.26 = (pi) r^2

r =[tex]\sqrt{9}[/tex] = 3

circumference = 2 (3.14) (3)

                        = 18.8 in

Answer:  approx 18.8 in

Step-by-step explanation:

The area of the circle is

S=π*R²   (1)   and the circumference of the circle is C= 2*π*R      (2)

So using (1)  R²=S/π=28.26/3.14=9

=> R= sqrt(9)

R=3 in

So using (2) calculate C=2*3.14*3=18.84 in or approx 18.8 in

2-x=-3(x+4)+6 please help

Answers

Answer:

2-x=-3x-12+6

2-x=-3x-6

8=-3x+x

8=-2x

x=-4

hope it's clear

mark me as brainliest

Answer:

X = -4

Option B is the correct option.

Step by step explanation

2 - x = -3 ( x + 4) +6

Distribute -3 through the paranthesis

2 - x = - 3x - 12 + 6

Calculate

2 - x = - 3x - 6

Move variable to LHS and change its sign

2 - x + 3x = -6

Move constant to R.H.S and change its sign

- x + 3x = -6 - 2

Collect like terms and simplify

2x = -8

Divide both side by 2

2x/2 = -8/2

Calculate

X = -4

Hope this helps....

Good luck on your assignment..

Q4. A simple random sample of size n=180 is obtained from a population whose size=20,000 and whose population proportion with a specified characteristic is p=0.45. Determine whether the sampling distribution has an approximate normal distribution. Show your work that supports your conclusions.

Answers

Answer:

np = 81  , nQ = 99

Step-by-step explanation:

Given:

X - B ( n = 180 , P = 0.45 )

Find:

Sampling distribution has an approximate normal distribution

Computation:

nP & nQ ≥ 5

np = n × p

np = 180 × 0.45

np = 81

nQ = n × (1-p)

nQ = 180 × ( 1 - 0.45 )

nQ = 99

[tex]Therefore, sampling\ distribution\ has\ an\ approximately\ normal\ distribution.[/tex]

On a piece of paper, graph y + 2 ≤ -2/3x +4. Then determine which answer choice matches the graph you drew.

Answers

Answer:

  B

Step-by-step explanation:

You only need to look at the comparison symbol (≤) to determine the correct graph. It tells you the shading is below the boundary line, and the boundary line is included in the solution region (a solid line).

The shading is below the line because y-values are less than (or equal to) values on the line.

Choice B matches the attached graph.

Answer:

it is graph b

Step-by-step explanation:

g A cylindrical tank with radius 7 m is being filled with water at a rate of 6 mଷ/min. How fast is the height of the water increasing? (Recall: V = πrଶh)

Answers

Answer:

  6/(49π) ≈ 0.03898 m/min

Step-by-step explanation:

  V = πr²h . . . . formula for the volume of a cylinder

  dV/dt = πr²·dh/dt . . . . differentiate to find rate of change

Solving for dh/dt and filling in the numbers, we have ...

  dh/dt = (dV/dt)/(πr²) = (6 m³/min)/(π(7 m)²) = 6/(49π) m/min

  dh/dt ≈ 0.03898 m/min

Find the 55th term of the following arithmetic sequence.
7, 10, 13, 16, ...

Answers

The 55th term of the 7, 10, 13, 16, ... arithmetic sequence is a(55) = 169.

This is an arithmetic sequence since there is a common difference between each term. In this case , adding 3 to the previous term in the sequence gives the next term.

a(n) = a(1) + d( n- 1)

d = 3

This is the formula of an arithmetic sequence.

an = a(1) + d( n- 1)

Substitute in the values of

a(1) = 7 and

d = 3

a(n) = 7 + 3 ( n- 1)

Simplify each term.

a(n) = 7 + 3n- 3

Subtract 3 from 7.

a(n) =  3n + 4

The nth term = 3n + 4. The formula for the nth term of an arithmetic progression is a(n) = dn + a(1) - d. Therefore in your sequence, the difference d = 3, and the first term a(1) = 7.

Substitute in the value of n to find the nth term.

a(55) = 3 (55) + 4

Multiply 3 by 55 .

a(55) = 165 + 4

Add 165 and 4.

a(55) = 169

Thus , The 55th term in the arithmetic progression of 7, 10, 13, 16,... is a(55) = 169.

To learn more about Aritmetic sequence

https://brainly.com/question/6561461

#SPJ1

Hi, can someone help me on this. I'm stuck --

Answers

Answer:

a) Fx=-5N  Fy=-5*sqrt(3) N   b) Fx= 5*sqrt(3) N    Fy=-5N

c) Fx=-5*sqrt(2) N    Fy=-5*sqrt(2)   N

Step-by-step explanation:

The arrow's F ( weight) component on axle x  is Fx= F*sinA  and on axle y is

Fy=F*cosA

a) The x component and y component both are opposite directed to axle x and axle y accordingly.  So both components are negative.

So Fx = - 10*sin(30)= -5 N      Fy= -10*cos(30)= -10*sqrt(3)/2= -5*sqrt (3) N

b) Now the x component  is co directed to axle x , and y component is opposite directed to axle y.

So x component is positive and y components is negative

So Fx = 10*sin(60)= 5*sqrt(3) N       Fy= -10*cos(60)= -10*1/2= -5 N

c)The x component and y component both are opposite directed to axle x and axle y accordingly.  So both components are negative.

So Fx = - 10*sin(45)= -5*sqrt(2)  N    

 Fy= -10*cos(45)= -10*sqrt(2)/2= -5*sqrt (2) N

units digit of the number[tex]2^{4000}[/tex]

Answers

Answer:

6

Step-by-step explanation:

We want to find the units digit of [tex]2^{4000}[/tex]. Let's first look for a pattern:

[tex]2^{1}=2[/tex]

[tex]2^{2}=4[/tex]

[tex]2^{3}=8[/tex]

[tex]2^{4}=16[/tex]

[tex]2^{5}=32[/tex]

[tex]2^{6}=64[/tex]

[tex]2^{7}=128[/tex]

[tex]2^{8}=256[/tex]

...and so on

Notice the units digits: 2, 4, 8, 6, 2, 4, 8, 6, ... It repeats every four!

This means that for every exponent of 2 that is a multiple of 4 (like 4000 in the problem), the units digit will always be the fourth number in the repeating pattern: 6.

The answer is thus 6.

~ an aesthetics lover

Other Questions
For a class project, a teacher cuts out 15 congruentcircles from a single sheet of paper that measures 6inches by 10 inches. How much paper is wasted? O (60 - 152) square inchesO 150 square inchesO 45 square inchesO (60 - ) square inches A polynomial is factored using algebra tiles. An algebra tile configuration. 0 tiles are in the Factor 1 spot and 0 tiles are in the Factor 2 spot. 8 tiles are in the Product spot in 2 columns with 4 rows: 1 is labeled + x squared, 1 is labeled + x, the 3 tiles below + x squared are labeled negative x, and the 3 tiles below the + x tile are labeled negative. What are the factors of the polynomial? (x 1) and (x + 3) (x + 1) and (x 3) (x 2) and (x + 3) (x + 2) and (x 3) Who was the declaration of independence written directly to? The answers I can choose from are : A. King George III B. George Washington C. Samuel Adams Please hurry!!!!!!Which expression is equivalent to a+(C+7)? 7acO a-(C+7)O (C+7)-a0 (a+c) + 7 A hockey stick is regularly $54.99, but is on sale for 20% off. What is the price of the hockey stick, including 13% tax? A nautical mile is the unit of length used in sea and air navigation. Anautical mile is equal to 6,174 feet. What percent of a statute mile, (5,360feet) is a nautical mile? (Round to the nearest hundredth.) What makes a clinical thermometer suitable for measuring small changes in body temperature? * Which story premise most clearly contains a supernatural element Which expression is equivalent to (x Superscript one-half Baseline y Superscript negative one-fourth Baseline z) Superscript negative 2? StartFraction x Superscript one-half baseline Over y z squared EndFraction StartFraction x Superscript one-half baseline Over y Superscript one-fourth Baseline z squared EndFraction StartFraction y Superscript one-half Baseline Over x z squared EndFraction Express as a trinomial (2x-5) (3x-8) PLEASE HELP. FINAL TEST QUESTION!!!! Devon is having difficulty determining if the relation given in an input-output table is a function. Explain why he is correct or incorrect. All automobile makers around the world are in the same strategic group because they manufacture automobiles.a) trueb) false Given that the velocity of blood pumping through the aorta is about 30 cm/s, what is the total current of the blood passing through the aorta (in grams of blood per second)? What is a factor that increases the volatility of demand in industrial markets? Multiple Choice Professional buyers in the industrial market tend to make independent purchase decisions. Derived demand accelerates changes in markets. Small, noncyclical swings in supply are inherent in industrial markets. The ratio of input to output is high for industrial goods. The demand for industrial goods is inelastic. A superintendent of a school district conducted a survey to find out the level of job satisfaction among teachers. Out of 53 teachers who replied to the survey, 13 claim they are satisfied with their job.z equals fraction numerator p with hat on top minus p over denominator square root of begin display style fraction numerator p q over denominator n end fraction end style end root end fractionThe superintendent wishes to construct a significance test for her data. She find that the proportion of satisfied teachers nationally is 18.4%.What is the z-statistic for this data? Answer choices are rounded to the hundredths place.a. 2.90b. 1.15c. 1.24d. 0.61 a point charge q is located at the center of a cube with edge length d. whatis the value of the flux over one face of the cube The vertex form of the equation of a parabola is y = = 6(x-2)-8.What is the standard form of the equation?A. y = 12x2 - 6x + 8B. y = 6x2 - - 24x + 16c. y = 6x2 - 4x + 4O D. y = 12x2 - 12x + 16 the number 3^13 - 3^10 is divisible by What view of marriage does the story present? The story was published in 1894; does it only represent attitudes toward marriage in the nineteenth century, or could it equally apply to attitudes about marriage today? * The amount of pollutants that are found in waterways near large cities is normally distributed with mean 8.6 ppm and standard deviation 1.3 ppm. 38 randomly selected large cities are studied. Round all answers to 4 decimal places where possible a. What is the distribution of X? b. What is the distribution of a? c. What is the probability that one randomly selected city's waterway will have more than 8.5 ppm pollutants? d. For the 38 cities, find the probability that the average amount of pollutants is more than 8.5 ppm. e. For part d), is the assumption that the distribution is normal necessary? f. Find the IQR for the average of 38 cities. Q1=__________ ppm Q3 =_________ ppm IQR=_________ ppm