Answer:
Volume = π [ 2/3 - 12/2].
Step-by-step explanation:
So, in this question we are asked to find or Calculate for or determine the value of volume v of the solid obtained by rotating the region bonded by the given curves about the specified lines = ? (Unknown). In addition, we are given that y = x, y = x , so, about x = 3.
Volume = π ∫ [ (3 - y)^2 - (3 - y)^2 ] dy.
(Taking 0 and 1 as the lower and upper limit).
Volume = π ∫ 9 - 6y + y^2 - 9 - 6y + y^2 dy.
(Taking 0 and 1 as the lower and upper limit).
Volume = π ∫ 2y^2 - 12y dy.
(Taking 0 and 1 as the lower and upper limit).
(Solving the quadratic equation above, we have; Roots: -6, 0
Root Pair: -3 ± 3
Factored: f(x) = 2(x + 6)x)
Also,
Volume = π [ 2y^3 / 3 - 12y2/2]
Volume = π [ 2/3 - 12/2] cubic units.
What is the value of x?
45
m
(2x-5)
Answer:
if m is supposed to be the equals (=) sign then x = 25
Step-by-step explanation:
45 = (2x-5)
+5 +5
50 = (2x)
÷2 ÷2
25 = x
Answer: 70
Step-by-step explanation:
Type the correct answer in the box. Use numerals instead of words. If necessary, use / for the fraction bar.
The table gives the boiling point of water at different altitudes.
Altitude (1,000 feet) Boiling Point of Water (°F)
0 212.0
0.5 211.1
1.0 210.2
2.0 208.4
2.5 207.5
3.0 206.6
4.0 204.8
4.5 203.9
Based on the table, the linear equation that represents the change in water’s boiling point for every 1,000-foot change in altitude has a slope of
units.
Answer:
[tex]\large \boxed{\text{-1.8$^{\circ}$F/1000 ft}}[/tex]
Step-by-step explanation:
Identify the changes (Δ) in each consecutive pair of x-values and y-values, then calculate the corresponding values of Δy/Δx
Your working table should look like the one below.
[tex]\begin{array}{cccc}\textbf{Alt/1000 ft} & \textbf{B.p.$/^{\circ}$F} & \Delta\textbf{B. p}& \Delta\textbf{B.p/1000 ft}\\0 & 212.0 & & \\& &-0.9 & -1.8\\0.5 & 211.1 & & \\& &-0.9 & -1.8\\1.0 & 210.2 & & \\& &-1.8 & -1.8\\2.0 & 208.4 & & \\& &-1.8 & -1.8\\3.0 & 206.6 & & \\& &-1.8 & -1.8\\4.0 & 204.8 & & \\& &-0.9 & -1.8\\4.5 & 203.9 & & \\\end{array}[/tex]
[tex]\text{ The change in boiling point per thousand feet of altitude is $\large \boxed{\textbf{-1.8$^{\circ}$F/1000 ft}}$}[/tex]
Answer:
Answer:
Step-by-step explanation:
Identify the changes (Δ) in each consecutive pair of x-values and y-values, then calculate the corresponding values of Δy/Δx
Your working table should look like the one below.
Step-by-step explanation:
PLSS I NEED HELP I NEED HELP SOMEONE SAVE ME
Answer:
sorry but are you dyin why do u need help why do you need someone to save you just say i need answers to this equation pls
What is the process of comparing data with a set of rules or values to determine if the data meets certain criteria
Answer:
Validation
Step-by-step explanation: Validation is a term used to describe the processes involved when we compare a set of values and observations against a set standard or rules to ensure that they meet certain expectations or criteria.
Validation is meant to prove that something, a data set etc are acceptable based on known rules, the rules or standards which is used to evaluate what can be described as valid.
I NEED HELP PLEASE, THANKS! :)
Write 18(cos169° + isin169°) in rectangular form. Round numerical entries in the answer to two decimal places. (Show work)
Answer:
z = -17.67 + i3.43
Step-by-step explanation:
Let us apply the formula z = r(cos Ф + i sin Ф), given 18(cos169° + isin169°) -
z = 18( cos169 + isin169 ),
z = r(cos Ф + i sin Ф)
Now we can solve this question in the form z = a + bi, in this case where a = 18 cos169, and b = 18 sin169. This is as a = r cos Ф and b = r sin Ф -
sin169 is positive, while cos169 is negative, thus -
a = -17.6692893021...,
b = 3.43456191678...
Rectangular Form, z = -17.67 + i3.43
Hope that helps!
Will give brainliest, someone please help
━━━━━━━☆☆━━━━━━━
▹ Answer
Area = 9
▹ Step-by-Step Explanation
A = b * h ÷ 2
A = 9 * 2 ÷ 2
A = 9
Hope this helps!
- CloutAnswers ❁
Brainliest is greatly appreciated!
━━━━━━━☆☆━━━━━━━
Applying the Segment Addition Postulate
Point B lies between points A and C on AC. Let x
represent the length of segment AB in inches.
A
B
3x
Use the segment to complete the statements.
The value of x is v.
The length of AR in inches is
✓x
C
The length of BC in inches is
20 inches
Intro
Answer:
x = 5, AB=5, BC = 15
Step-by-step explanation:
AC = AB + BC (Segment Addition)
AC= 20, AB =x Bc = 3x,
20= x+3x 20=4x
x=5
AB=x, AB =5
BC=3x BC= 15
The segment addition postulate states gives the value of x as 5, given
that the sum of x and 3·x is 20.
Responses:
The value of x is 5The length of [tex]\overline{AB}[/tex] is 5 inchesThe length of [tex]\overline{BC}[/tex] is 15 inchesHow does segment addition postulate give the value of x?From the given diagram, we have;
[tex]\overline{AB}[/tex] = x
[tex]\overline{BC}[/tex] = 3·x
According to segment addition postulate we have;
[tex]\overline{AB}[/tex] + [tex]\overline{BC}[/tex] = [tex]\overline{AC}[/tex] = 20 inches
Which gives;
x + 3·x = 20
Therefore;
4·x = 20
[tex]x = \dfrac{20}{4} = 5[/tex]
The value of x is 5The length of [tex]\overline{AB}[/tex] is 5 inches[tex]\mathbf{\overline{BC}}[/tex] = 3·x
[tex]\mathbf{\overline{BC}}[/tex] = 3 × 5 = 15
The length of [tex]\overline{BC}[/tex] is 15 inchesLearn more about segment addition postulate here:
https://brainly.com/question/1397818
You were hired as a geotechnical engineer in the XYZ Construction company. Your boss has asked you to estimate the settlement of a new building project that your firm just won the bid. Based on your extensive knowledge on geotechnical engineering and statistical analysis, you estimate that the settlement of the building will not exceed 2 inches with 95% probability. From a record of performance of many similar structures built on similar soil conditions, you also find that the coefficient of variation of the settlement is 20%. After showing the calculation to your boss, she still has few concerns about the settlement.
Requried:
Assuming a normal distribution is used to model the settlement of this project, your boss asks you to give her the probability that this building will settle more than 2.5 inches
Answer:
Probability = 0.10565
Step-by-step explanation:
Given:
Mean, u = 2
x = 2.5
CV = 20% = 0.2
To find standard deviation [tex] \sigma[/tex] use the formula:
[tex] CV = \frac{\sigma}{u} [/tex]
[tex] 0.2 = \frac{\sigma}{2} [/tex]
[tex] \sigma = 0.2 * 2 [/tex]
[tex] \sigma = 0.4 [/tex]
Find Z, using the formula:
[tex] Z = \frac{x - u}{\sigma} [/tex]
[tex] Z = \frac{2.5 - 2}{0.4} [/tex]
[tex] Z = \frac{0.5}{0.4} [/tex]
[tex] Z = 1.25 [/tex]
Using the p value table,
P(x > 1.25) = 0.10565
Therefore, The probability that this building will settle more than 2.5 inches is 0.10565
A human resources representative claims that the proportion of employees earning more than $50,000 is less than 40%. To test this claim, a random sample of 700 employees is taken and 305 employees are determined to earn more than $50,000.The following is the setup for this hypothesis test:{H0:p=0.40Ha:p<0.40Find the test statistic for this hypothesis test for a proportion. Round your answer to 2 decimal places.
Answer:
The statistic for this case would be:
[tex] z=\frac{\hat p -p_o}{\sqrt{\frac{\hat p(1-\hat p)}{n}}}[/tex]
And replacing we got:
[tex] z= \frac{0.436-0.4}{\sqrt{\frac{0.436*(1-0.436)}{700}}}= 1.92[/tex]
Step-by-step explanation:
For this case we have the following info:
[tex] n =700[/tex] represent the sample size
[tex] X= 305[/tex] represent the number of employees that earn more than 50000
[tex]\hat p=\frac{305}{700}= 0.436[/tex]
We want to test the following hypothesis:
Nul hyp. [tex] p \leq 0.4[/tex]
Alternative hyp : [tex] p>0.4[/tex]
The statistic for this case would be:
[tex] z=\frac{\hat p -p_o}{\sqrt{\frac{\hat p(1-\hat p)}{n}}}[/tex]
And replacing we got:
[tex] z= \frac{0.436-0.4}{\sqrt{\frac{0.436*(1-0.436)}{700}}}= 1.92[/tex]
And the p value would be given by:
[tex] p_v = P(z>1.922)= 0.0274[/tex]
Kimberly is a program director for the channel KID. She tracked the cartoons shown on the channel for a week. The probability that the show had animals in it was 0.7. The probability that the show aired more than 10 times was 0.4. The probability that the show had animals in it and aired more than 10 times was 0.2. Which equation shows the correct use of the addition rule to determine the probability that a randomly selected show had animals in it or aired more than 10 times?
Options
0.7+0.2−0.4=0.5 0.7+0.2=0.9 0.7+0.4=1.1 0.4+0.2=0.6 0.7+0.4−0.2=0.9Answer:
[tex](E)0.7+0.4-0.2=0.9[/tex]
Step-by-step explanation:
In probability theory
[tex]P$(A or B)=P(A)+P(B)$-$P(A and B)[/tex]
Let the event that the show had animals in it = A
P(A)=0.7
Let the event that the show aired more than 10 times =B
P(B)=0.4
P(A and B)= 0.2
[tex]P$(A or B)$=0.7+0.4-0.2=0.9[/tex]
Therefore, the equation which shows the correct use of the addition rule to determine the probability that a randomly selected show had animals in it or aired more than 10 times is:
[tex]0.7+0.4-0.2=0.9[/tex]
The correct option is E.
Ok, so. I know It’s -27 + 23x and X = 7 right?? Or am I doing something wrong.
Answer:
134 degrees
Step-by-step explanation:
Right so far. To find the numerical measure of the angle, you need to use x=7 in your expression for the angle measure:
m∠STU = -27 +23(7) = 134 . . . degrees
How do you find the surface area of a triangle? A square?
Answer:
The area formula of a triangle is (base * height) / 2 and the area of a square is s² where s is the length of one side.
Find the slope of the line on the graph. Write your answer as a fraction or a whole number, not a mixed number or decimal.
Answer:
-4/8
Step-by-step explanation:
Using rise over run would give you -4/8. Since the rise is going downward four times the number would be negative. Since the run is going to the right 8 times it would be positive.
Answer: the slope is -1/2
Step-by-step explanation: The rise is -4. Easy to see from the y-intercept, 4 below the origin. The run is 8, again easy to see from the distance between the x-intercept at -8, 8 unite away from the origin.
So slope = rise/run -4/8 simplify (by LCM, 4) So you get slope = -1/2
find the local and/or absolute extrema for the function over the specified domain. (Order your answers from smallest to largest x.) f(x)
Answer:
Minimum 8 at x=0, Maximum value: 24 at x=4
Step-by-step explanation:
Retrieving data from the original question:
[tex]f(x)=x^{2}+8\:over\:[-1,4][/tex]
1) Calculating the first derivative
[tex]f'(x)=2x[/tex]
2) Now, let's work to find the critical points
Set this
[tex]2x=0\\x=0[/tex]
0, belongs to the interval. Plug it in the original function
[tex]f(0)=(0)^2+8\\f(0)=8[/tex]
3) Making a table x, f(x) then compare
x| f(x)
-1 | f(-1)=9
0 | f(0)=8 Minimum
4 | f(4)=24 Maximum
4) The absolute maximum value is 24 at x=4 and the absolute minimum value is 8 at x=0.
What are the solutions to the system of equations graphed below?
Answer:
Hey there!
The solutions to a system are where the lines, or graphs intersect each other.
We see that the graphs intersect at (0, -4) and (2, 0).
Thus, the solutions are (0, -4) and (2, 0).
Hope this helps :)
Maya Buy a desk on sale for 432 the price was 36% less than the original price what was the original price
Answer:
[tex]\boxed{Costing Price = $675}[/tex][tex]\boxed{Costing Price = $675}[/tex]Costing Price = $675
Step-by-step explanation:
Selling Price = $432
Discount = 36% of the costing price (36/100 * CP)
Then, Costing Price:
Let costing price be x
=> x - 0.36 x = 432
=> 0.64 x = 432
Dividing both sides by 0.64
=> x = $675
So, the costing Price is $675
A clinical trial tests a method designed to increase the probability of conceiving a girl. In the study 290 babies were born, and 261 of them were girls. Use the sample data to construct a 99% confidence interval estimate of the percentage of girls born. Based on the result, does the method appear to be effective?
Answer:
The 99% confidence interval estimate of the percentage of girls born is between 85.46% and 94.54%.
Usually, babies are equally as likely to be boys or girls. Here, it is desired to increase the probability of conceiving a girl, which is achieved, considering the lower bound of the confidence interval is considerably above 50%.
Step-by-step explanation:
Confidence interval for the proportion:
In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which
z is the zscore that has a pvalue of [tex]1 - \frac{\alpha}{2}[/tex].
For this problem, we have that:
[tex]n = 290, \pi = \frac{261}{290} = 0.9[/tex]
99% confidence level
So [tex]\alpha = 0.01[/tex], z is the value of Z that has a pvalue of [tex]1 - \frac{0.01}{2} = 0.995[/tex], so [tex]Z = 2.575[/tex].
The lower limit of this interval is:
[tex]\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.9 - 2.575\sqrt{\frac{0.9*0.1}{290}} = 0.8546[/tex]
The upper limit of this interval is:
[tex]\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.9 + 2.575\sqrt{\frac{0.9*0.1}{290}} = 0.9454[/tex]
Percentage:
Proportion multplied by 100.
0.8546*100 = 85.46%
0.9454*100 = 94.54%
The 99% confidence interval estimate of the percentage of girls born is between 85.46% and 94.54%.
Based on the result, does the method appear to be effective?
Usually, babies are equally as likely to be boys or girls. Here, it is desired to increase the probability of conceiving a girl, which is achieved, considering the lower bound of the confidence interval is considerably above 50%.
What is the discrimination of this function !! Please help
Answer:
Option C is correct.
The discriminant of the function is negative since the function doesn't have real roots as evident from the graph.
Step-by-step explanation:
The discriminant of a quadratic equation is the part of the quadratic formula underneath the square root symbol, that is, (b² - 4ac).
The discriminant tells us whether there are two solutions, one solution, or no solutions.
- When the discriminant is positive or greater than zero, that is, (b² - 4ac) > 0, the quadratic function has 2 real distinct roots.
- When the discriminant is equal to zero, that is, (b² - 4ac) = 0, the quadratic function has 1 repeated root.
- When the discriminant is negative or lesser than zero, that is, (b² - 4ac) < 0, the quadratic function has no real roots.
For this question, the graph of the quadratic function shows that it doesn't have real roots (this is evident because the graph doesn't cross the x-axis), hence, the duscriminant of this quadratic function has to bee negative.
Hope this Helps!!!
Please help me the venn diagram is wrong too im confused on how to do this :(((
Answer:
probability of chosing a student that has a cat and a dog is 9/25
Step-by-step explanation:
And yes the Venn diagram is wrong because you forgot to subtract 9 from 15 and 16
This makes it
[ 3 ( 6 ( 9 ) 7 ) ]
3 + 6 + 9 + 7 = 25
Find a formula for the general term an of the sequence, assuming that the pattern of the first few terms continues. (Assume that n begins with 1.) −3, 2, − 4 3 , 8 9 , − 16 27 , ...
Answer:
The general term is
Sn = -(-2)ⁿ.3¹⁻ⁿ
step by step Explanation:
we were told to find a general term of the above sequence, what should come to mind is that the terms will follow an order....
CHECK THE ATTACHMENT FOR DETAILED EXPLANATION
Compute the determinants using a cofactor expansion across the first row. Also compute the determinant by a cofactor expansion down the second column.
[ 0 4 1
5 −3 0
2 3 1 ]
Answer:
The determinant is 1Step-by-step explanation:
Given the 3* 3 matrices [tex]\left[\begin{array}{ccc}0&4&1\\5&-3&0\\2&3&1\end{array}\right][/tex], to compute the determinant using the first row means using the row values [0 4 1 ] to compute the determinant. Note that the signs on the values on the first row are +0, -4 and +1
Calculating the determinant;
[tex]= +0\left[\begin{array}{cc}-3&0\\3&1\\\end{array}\right] -4\left[\begin{array}{cc}5&0\\2&1\\\end{array}\right] +1\left[\begin{array}{cc}5&-3\\2&3\\\end{array}\right] \\\\= 0 - 4[5(1)-2(0)] +1[5(3)-2(-3)]\\= 0 -4[5-0]+1[15+6]\\= 0-20+21\\= 1[/tex]
The determinant is 1 using the first row as co-factor
Similarly, using the second column [tex]\left[\begin{array}{c}4\\-3\\3\end{array}\right][/tex] as the cofactor, the determinant will be expressed as shown;
Note that the signs on the values are -4, +(-3) and -3.
Calculating the determinant;
[tex]= -4\left[\begin{array}{cc}5&0\\2&1\\\end{array}\right] -3\left[\begin{array}{cc}0&1\\2&1\\\end{array}\right] -3\left[\begin{array}{cc}0&1\\5&0\\\end{array}\right] \\\\= -4[5(1)-2(0)] - 3[0(1)-2(1)] -3[(0)-5(1)]\\= -4[5-0] -3[0-2]-3[0-5]\\= -20+6+15\\= -20+21\\= 1[/tex]
The determinant is also 1 using the second column as co factor.
It can be concluded that the same value of the determinant will be arrived at no matter the cofactor we choose to use.
Suppose that vehicles taking a particular freeway exit can turn right (R), turn left (L), or go straight (S). Consider observing the direction for each of three successive vehicles.
A) List all outcomes in the event A that all three vehicles go in the same direction.
B) List all outcomes in the event B that all three vehicles take different directions.C) List all outcomes in the event C that exactly two of the three vehicles turn right.D) List all outcomes in the event D that exactly two vehicles go in the same direction.E) List outcomes in D'.F) List outcomes in C ∪ D.G) List outcomes in C ∩ D.
Answer:
A) A = {RRR, LLL, SSS}
B) B = {LRS. LSR, RLS, RSL, SLR, SRL}
C) C = {RRL, RRS, RSR, RLR, LRR, SRR}
D) D = {RRL, RRS, RSR, RLR, LRR, SRR. LLR, LLS, LSL, LRL, RLL, SLL, SSL, SSR, SLS, SRS, LSS, RSS}
E) D' ={RRR, LLL, SSS, LRS. LSR, RLS, RSL, SLR, SRL}
F) C ∪ D = {RRL, RRS, RSR, RLR, LRR, SRR. LLR, LLS, LSL, LRL, RLL, SLL, SSL, SSR, SLS, SRS, LSS, RSS}
G) C ∩ D = {RRL, RRS, RSR, RLR, LRR, SRR}
Step-by-step explanation:
A) All vehicles must go right, left or straight ahead (three possibilities):
A = {RRR, LLL, SSS}
B) One vehicle must go right, one must go left, and the remaining one must go straight ahead (six possibilities):
B = {LRS. LSR, RLS, RSL, SLR, SRL}
C) There are three ways that exactly two vehicles go right (1 and 3, 2 and 3, 1 and 2), there are then two options for the remaining vehicle (left and straight) for a total of six possibilities:
C = {RRL, RRS, RSR, RLR, LRR, SRR}
D) Follow the same reasoning from the previous item, but multiply the number of possibilities by 3 (for each direction in which both cars can go: right, left or straight):
D = {RRL, RRS, RSR, RLR, LRR, SRR. LLR, LLS, LSL, LRL, RLL, SLL, SSL, SSR, SLS, SRS, LSS, RSS}
E) D' is the set containing all possibilities not present in set D. D' is comprised by the possibilities of all vehicles going in the same direction, or each vehicle in a different direction:
D' ={RRR, LLL, SSS, LRS. LSR, RLS, RSL, SLR, SRL}
F) The outcomes in C ∪ D is the union of elements from set C and D (neglecting repeated values), which happens to be all values in set D.
C ∪ D = {RRL, RRS, RSR, RLR, LRR, SRR. LLR, LLS, LSL, LRL, RLL, SLL, SSL, SSR, SLS, SRS, LSS, RSS}
G) The outcomes in C ∩ D is the list of values present in both sets C and D, which happens to be all values in set C:
C ∩ D = {RRL, RRS, RSR, RLR, LRR, SRR}
Suppose that the function g is defined, for all real numbers, as follows.
Of 380 randomly selected medical students, 21 said that they planned to work in a rural community. Find a 95% confidence interval for the true proportion of all medical students who plan to work in a rural community.
Answer:
[tex]0.0553 - 1.96\sqrt{\frac{0.0553(1-0.0553)}{380}}=0.0323[/tex]
[tex]0.0553 + 1.96\sqrt{\frac{0.0553(1-0.0553)}{380}}=0.0783[/tex]
Step-by-step explanation:
The info given is:
[tex] X= 21[/tex] number of students who said that they planned to work in a rural community
[tex] n= 380[/tex] represent the sample size selected
[tex]\hat p =\frac{21}{380}= 0.0553[/tex] the estimated proportion of students who said that they planned to work in a rural community
In order to find the critical value we need to take in count that we are finding the interval for a proportion, so on this case we need to use the z distribution. Since our interval is at 95% of confidence, our significance level would be given by [tex]\alpha=1-0.95=0.05[/tex] and [tex]\alpha/2 =0.025[/tex]. And the critical value would be given by:
[tex]z_{\alpha/2}=-1.96, z_{1-\alpha/2}=1.96[/tex]
The confidence interval for the mean is given by the following formula:
[tex]\hat p \pm z_{\alpha/2}\sqrt{\frac{\hat p (1-\hat p)}{n}}[/tex]
Replpacing we got:
[tex]0.0553 - 1.96\sqrt{\frac{0.0553(1-0.0553)}{380}}=0.0323[/tex]
[tex]0.0553 + 1.96\sqrt{\frac{0.0553(1-0.0553)}{380}}=0.0783[/tex]
A mean for estimation is the minimum-maximum variation estimate's C.I. The % of pupils planning to work in a rural community alters between 0.0323 and 0.0783.
Confidence interval:
Let's [tex]p^{}[/tex] represent the sampling fraction of the people who promised to work in a rural area.
Sample size:
[tex]n = 380[/tex]
x: the large number the pupils expected to work in a rural setting
[tex]p^{} = \frac{x}{n} \\\\p^{} = \frac{21}{ 380} = 0.0553\\\\(1- \alpha)\ \ 100\%[/tex]confidence for true proportion:
[tex]( p^{}\ \pm Z_{\frac{\alpha}{2}} \times \sqrt{p^{} \times \frac{(1-p^{})}{n}} ) \\\\[/tex]
For [tex]95\%[/tex]confidence interval:
[tex]\to 1 - \alpha = 0.95[/tex]
When:
[tex]\to \alpha = 0.05[/tex]
Calculating the value of Z by using the table:
[tex]\to Z_{0.025} = 1.96[/tex]
When the [tex]95\%[/tex] of the confidence interval:
[tex]\to (0.0553 \pm Z_{0.025} \times \sqrt{(0.0553 \times \frac{(1- 0.0553)}{380}})\\\\\to (0.0553 - Z_{0.025} \times \sqrt{(0.0553 \times \frac{(1- 0.0553)}{380})},0.0553 + Z_{0.025} \times \sqrt{(0.0553 \times \frac{(1- 0.0553)}{380}))}\\\\[/tex]
by solving the value we get:
[tex]\to ( 0.0323 , 0.0783 )[/tex]
We are [tex]95\%[/tex] sure that the true proportion of students planning to work in a rural community is between [tex]0.0323[/tex] and [tex]0.0783[/tex]. That is we are [tex]95\%[/tex] sure that the percentage of students planning to work in a rural community is between [tex]3.23\%[/tex] and [tex]7.83\%[/tex].Find out more about the Confidence interval here:
brainly.com/question/2396419
Please help ?!!! Solve the three equations in the table using any method of your choice. List the method you used.
Equation
x^2-4=-12
-9x^2+4x-10=0
x^2+8x=-17
With solutions and method
Step-by-step explanation:
[tex]x = \frac{ - b \frac{ + }{ - } \sqrt{ {b}^{2} - 4ac } }{2a} [/tex]
The quadratic formula is honestly the most straightforward way of solving here.
Your other options are completing the square (which is the same thing as the quadratic formula but it's good to know that method if you have to take Integral Calculus at some point) or maybe factoring by grouping if it's appropriate. But the quadratic formula will work for you in all three equations:
1) a=1, b=0, c=8
This reduces pretty quickly into x=8i,-8i due to the negative under the radical. (Actually we didn't even really need the formula here.)
2) a=-9, b=4, c=-10
This reduces into x=(-4+i√(344))/-18, (-4-i√(344))/-18 and doesn't go any further because 344 isn't a perfect square.
3) a=1, b=8, c=17
This reduces to x=(-4+i), (-4-i)
So those are the answers for each.
Please Refer to the screenshot. Hope this helps!
Rewrite 100⋅(200⋅300) using the Associative Law of Multiplication.
Answer:
6 x 10⁶ or 6,000,000
Step-by-step explanation:
100 × (200 × 300)
100 x 60,000 → 6,000,000
6,000,000 → 6 x 10⁶
Hope this helps! :)
The accompanying data represent the total travel tax (in dollars) for a 3-day business trip in 8 randomly selected cities. A normal probability plot suggests the data could come from a population that is normally distributed. A boxplot indicates there are no outliers.
67.85 78.62 70.28 84.03 79.28 87.72 101.54 97.28
1. Determine a point estimate for the population mean travel tax.
2. Construct and interpret a 95% confidence interval for the mean tax paid for a three-day business trip.
Filling the missing boxes.
The lower bound is $_______and the upper bound is $_______. One can be______% confident that all cities have a travel tax between these values.
The lower bound is $______and the upper bound is $______. The travel tax is between these values for______% of all cities.
The lower bound is $_____and the upper bound is $______. There is a_______% probability that the mean travel tax for all cities is between these values.
The lower bound is $_______and the upper bound is______. One can be______% confident that the mean travel tax for all cities is between these values.
3. What would you recommend to a researcher who wants to increase the precision of the interval, but does not have access to additional data?
A. The researcher could decrease the level of confidence.
B. The researcher could decrease the sample standard deviation.
C. The researcher could increase the level of confidence.
D. The researcher could increase the sample mean.
Answer:
1. Point estimate M (sample mean): 83.33
2. The lower bound is $73.36 and the upper bound is $93.30. One can be______% confident that the mean travel tax for all cities is between these values.
3. A. The researcher could decrease the level of confidence.
Step-by-step explanation:
A point esimate for the population mean travel tax can be done with the sample mean.
We can calculate the sample mean as:
[tex]M=\dfrac{1}{n}\sum_{i=1}^n\,x_i\\\\\\M=\dfrac{1}{8}(67.85+78.62+70.28+84.03+79.28+87.72+101.54+97.28)\\\\\\M=\dfrac{666.6}{8}\\\\\\M=83.33\\\\\\[/tex]
2. We have to calculate a 95% confidence interval for the mean.
The sample mean is M=83.33.
The sample size is N=8.
The population standard deviation is not known, so we have to estimate it from the sample standard deviation and use a t-students distribution to calculate the critical value.
We calculate the sample standard deviation as:
[tex]s=\sqrt{\dfrac{1}{n-1}\sum_{i=1}^n\,(x_i-M)^2}\\\\\\s=\sqrt{\dfrac{1}{7}((67.85-83.33)^2+(78.62-83.33)^2+(70.28-83.33)^2+. . . +(97.28-83.33)^2)}\\\\\\s=\sqrt{\dfrac{994.49}{7}}\\\\\\s=\sqrt{142.07}=11.92\\\\\\[/tex]
The standard error is:
[tex]s_M=\dfrac{s}{\sqrt{N}}=\dfrac{11.92}{\sqrt{8}}=\dfrac{11.92}{2.828}=4.214[/tex]
The degrees of freedom for this sample size are:
[tex]df=n-1=8-1=7[/tex]
The t-value for a 95% confidence interval and 7 degrees of freedom is t=2.36.
The margin of error (MOE) can be calculated as:
[tex]MOE=t\cdot s_M=2.36 \cdot 4.214=9.97[/tex]
Then, the lower and upper bounds of the confidence interval are:
[tex]LL=M-t \cdot s_M = 83.33-9.97=73.36\\\\UL=M+t \cdot s_M = 83.33+9.97=93.30[/tex]
The 95% confidence interval for the mean travel tax is (73.36, 93.30).
We can be 95% confident that the true mean travel tax is within this interval.
3.. If we have no access to additional data, we can not decrease the standard deviation or increase the sample size.
The only way to have a narrower confidence interval is decreasing its level of confidence. With the same sample information, the lower the confidence, the narrower is the interval.
246,000 in scientific notation
Answer:
246000 in scientific notation is 2.46e5, or 2.46 x 10^5
Step-by-step explanation:
246000, move the decimal place 5 places to the left.
2.4x10^5
Answer:
2.46 × 10⁵
Step-by-step explanation:
The decimal point is after the first non-zero digit.
⇒ 2.46
Multiply the number with base 10 and an exponent which will equal to 246,000.
⇒ 10⁵
Tublu buys a cylindrical water tank of height 1.4m and diameter 1.1m to catch rainwater off his roof. He has a full 2 liter tin of paint in his store and decides to paint the tank (not the base). If he uses 250ml to cover 1m^2, will he have enough paint to cover the tank with one layer of paint? ( Take π = 3.142)
Answer:
There is enough paint to cover the tank with one layer of paint.
Step-by-step explanation:
Given the cilindrical configuration of the tank and supposing that only external face must be painted, the surface area of the section (lateral wall + lid) can be calculated by the following expression:
[tex]A_{s} = 2\pi\cdot r\cdot h + \pi\cdot r^{2}[/tex]
Where [tex]r[/tex] and [tex]h[/tex] represent the radius and the height of the cube, respectively.
If [tex]r = 0.55\,m[/tex] (a diameter is two times the length of radius) and [tex]h = 1.4\,m[/tex], the intended surface area is:
[tex]A_{s} = 2\pi\cdot (0.55\,m)\cdot (1.1\,m)+\pi\cdot (0.55\,m)^{2}[/tex]
[tex]A_{s} \approx 4.751\,m^{2}[/tex]
It is known that 250 mL of paint are needed to cover a square meter of the surface area, the needed amount of paint to cover the required area is estimated by simple rule of three:
[tex]Q = \frac{4.751\,m^{2}}{1\,m^{2}}\times (250\,mL)[/tex]
[tex]Q = 1187.75\,mL\,(1.188\,L)[/tex]
In consequence, there is enough paint to cover the tank with one layer of paint.
Shaun's tent (shown below) is a triangular prism. Find the surface area, including the floor, of his tent.
Answer: 52.8
Step-by-step explanation: it’s on khan ,