Answer:
0.6
Step-by-step explanation:
What is the length of segment AC?
Answer:
AC = 12
Step-by-step explanation:
If segment AB is tangent to circle C, then
angle ABC is 90 degrees, so that the Pythagorean theorem applies.
AC^2
= AB^2 + BC^2
= 9.6^2 + 7.2^2 factor out 2.4
= 2.4^2(4^2+3^2) use 3^2+4^2 = 5^2
= 2.4^2*5^2
AC = sqrt(AC^2) = sqrt(2.4^2*5^2) = 2.4*5 = 12
Identify the slope and y-intercept of the line −2x+5y=−30.
Answer:
slope = 2/5 , y-intercept = -30
Step-by-step explanation:
-2x + 5y = -30
5y = 2x - 30
y = 2/5x - 6
we know that the general form is:
y = (slope)*x + (y- intercept)
so, from our equation, we can say that...
slope = 2/5
y- intercept = -30
The dose of a drug is 0.05 mg for each kg of a patient’s weight.The Drug is available as an oral liquid containing 50 mcg/0.1 ml.Calculate the dose of the oral liquid in ml for a patient who weighs 132 lb
Answer:
6 mL
Step-by-step explanation:
It is a matter of units conversion.
volume = (mass) × (dose/mass) ÷ (dose/volume)
(132 lb)/(2.2 kg/lb) × (0.05 mg/kg) / (0.05 mg/0.1 mL) = 6 mL
The given equation has been solved in the table.
The closest we get is the addition property, which was used in step 2. This is a fairly similar idea because subtraction is effectively adding on a negative number. Example: 5-7 = 5+(-7). Though because your teacher is making a distinction between addition property of equality and subtraction property of equality, it's safe to say that the subtraction property is not used.
A random sample has been taken from a normal distribution and the following confidence intervals constructed using the same data: (25.53, 37.87) and (23.59, 39.81). One of these intervals is a 99% CI and the other is a 95% CI. Please match them.
Answer:
(25.53, 37.87): 95% CI
(23.59, 39.81): 99% CI
Step-by-step explanation:
The margin of error of a confidence interval is given by:
[tex]M = z*\frac{\sigma}{\sqrt{n}}[/tex]
In which [tex]\sigma[/tex] is the standard deviation of the population and n is the size of the sample.
z is related to the confidence level. The higher the confidence level, the higher the values of z, and thus, we wider the confidence interval is.
In this question:
The narrower C.I. is the 95%, and the wider is the 99%. So
(25.53, 37.87): 95% CI
(23.59, 39.81): 99% CI
Bread recipe calls for 2 1/2 cups of whole wheat flour 2/3 cup of rice flour 2 1/4 cups of white flour how many total cups of flour are needed write your answer as a simplified mixed number
Answer:
5 5/12
Step-by-step explanation:
u first find the common denominator which is 12
2 6/12
8/12
2 3/12
now u add them all
hope this helps
If Brooklyn College students have an IQ of 100, on average, with a standard deviation of 16 points, and I collect 48 BC Psychology students to see how Psych majors compare to all of BC, find the following:_______.
1. mu =
2. sigma =
3. mu _x bar =
4. sigma _x bar =
Answer:
1 [tex]\mu = 100[/tex]
2 [tex]\sigma = 16[/tex]
3 [tex]\mu_x = 100[/tex]
4 [tex]\sigma _{\= x } = 2.309[/tex]
Step-by-step explanation:
From the question
The population mean is [tex]\mu = 100[/tex]
The standard deviation is [tex]\sigma = 16[/tex]
The sample mean is [tex]\mu_x = 100[/tex]
The sample size is [tex]n = 48[/tex]
The mean standard deviation is [tex]\sigma _{\= x } = \frac{\sigma }{\sqrt{n} }[/tex]
substituting values
[tex]\sigma _{\= x } = \frac{16 }{\sqrt{48} }[/tex]
[tex]\sigma _{\= x } = 2.309[/tex]
A statistics tutor wants to assess whether her remedial tutoring has been effective for her five students. She decides to conduct a related samples t-test and records the following grades for students prior to and after receiving her tutoring.
Tutoring
Before After
2.4 3.1
2.5 2.8
3.0 3.6
2.9 3.2
2.7 3.5
Test whether or not her tutoring is effective at a 0.05 level of significance. State the value of the test statistic. (Round your answer to three decimal places.)
t =
Compute effect size using estimated Cohen's d. (Round your answer to two decimal places.)
d =
Answer:
The test statistic value is, t = -5.245.
The effect size using estimated Cohen's d is 2.35.
Step-by-step explanation:
A paired t-test would be used to determine whether the remedial tutoring has been effective for the statistics tutor's five students.
The hypothesis can be defined as follows:
H₀: The remedial tutoring has not been effective, i.e. d = 0.
Hₐ: The remedial tutoring has been effective, i.e. d > 0.
Use Excel to perform the Paired t test.
Go to Data → Data Analysis → t-test: Paired Two Sample Means
A dialog box will open.
Select the values of the variables accordingly.
The Excel output is attached below.
The test statistic value is, t = -5.245.
Compute the effect size using estimated Cohen's d as follows:
[tex]\text{Cohen's d}=\frac{Mean_{d}}{SD_{d}}[/tex]
[tex]=\frac{0.54}{0.23022}\\\\=2.34558\\\\\approx 2.35[/tex]
Thus, the effect size using estimated Cohen's d is 2.35.
Here is the feasible region.
28
А
52 + 8y 120
B
y 5
What are the coordinates of vertex A?
Enter your answer in the boxes
Answer:
A(8, 10)
Step-by-step explanation:
Vertex A is on the vertical line x=8, so we can find the y-coordinate by solving the boundary equation ...
5x +8y = 120
5(8) +8y = 120 . . . use the x-value of the vertical line
5 + y = 15 . . . . . . . divide by 8
y = 10 . . . . . . . . . . subtract 5
Point A is (8, 10).
An object of mass 2kg is attached to a spring. A force of 5nt is applied to move the object 0.5m from its equilibrium position. The damping force of the object sliding on the table is int when the velocity is 0.25m/second. The object is pulled to the left until the spring is stretched lm and then released with the initial velocity of 2m/second to the right.
Set up an I.V.P. to describe the motion of the object and solve it, then state the amplitude function of the motion.
Answer:
[tex]\mathbf{x(t) = \dfrac{ \sqrt 5}{2}e^{-t} }[/tex]
Step-by-step explanation:
Given that:
mass of the object = 2 kg
A force of 5nt is applied to move the object 0.5m from its equilibrium position.
i.e
Force = 5 newton
Stretchin (x) =0.5 m
Damping force = 1 newton
Velocity = 0.25 m/second
The object is pulled to the left until the spring is stretched lm and then released with the initial velocity of 2m/second to the right
SOLUTION:
If F = kx
Then :
5 N = k(0.5 m)
where ;
k = spring constant.
k = 5 N/0.5 m
k = 10 N/m
the damping force of the object sliding on the table is 1 newton when the velocity is 0.25m/second.
SO;
[tex]C \dfrac{dx}{dt}= F_d[/tex]
[tex]C* 0.25 = 1[/tex]
C = [tex]\dfrac{1 \ N }{0.25 \ m/s}[/tex]
C = 4 Ns/m
NOW;
[tex]m \dfrac{d^2x}{dt^2}+ C \dfrac{dx}{dt}+ kx = 0[/tex]
Divide through by m; we have;
[tex]\dfrac{m}{m}\dfrac{d^2x}{dt^2}+ \dfrac{C}{m} \dfrac{dx}{dt}+ \dfrac{k}{m} x= 0[/tex]
[tex]\dfrac{d^2x}{dt^2}+ \dfrac{C}{m} \dfrac{dx}{dt}+\dfrac{k}{m}x= 0[/tex]
[tex]\dfrac{d^2x}{dt^2}+ \dfrac{4}{2} \dfrac{dx}{dt}+\dfrac{10}{2}x= 0[/tex]
[tex]\dfrac{d^2x}{dt^2}+ 2 \dfrac{dx}{dt}+5x= 0[/tex]
we all know that:
[tex]x(t) = Ae^{(\alpha \ t)}[/tex] ------ (1)
SO;
[tex]\alpha ^2 + 2\alpha + 5 = 0[/tex]
[tex]\alpha = \dfrac{-2 \pm \sqrt{(4)-(4*5)}}{2}[/tex]
[tex]\alpha = -1 \pm 2i[/tex]
Thus ;
[tex]x(t) = e^{-t}[A \sin (2t)+ B cos (2t)][/tex] ------------ (1)
However;
[tex]\dfrac{dx}{dt} = e^{-t}[A \sin (2t)+ B cos (2t)]+ 2e ^{-t} [A \cos (2t)- B \ Sin (2t)][/tex] ------- (2)
From the question ; we are being told that;
The object is pulled to the left until the spring is stretched 1 m and then released with the initial velocity of 2m/second to the right.
So ;
[tex]x(0) = -1 \ m[/tex]
[tex]\dfrac{dx}{dt}|_{t=0} = 2 \ m/s[/tex]
x(0) ⇒ B = -1
[tex]\dfrac{dx}{dt}|_{t=0} =- B +2A[/tex]
[tex]=- 1 +2A[/tex]
1 = 2A
A = [tex]\dfrac{1}{2}[/tex]
From (1)
[tex]x(t) = e^{-t}[A \sin (2t)+ B cos (2t)][/tex]
[tex]x(t) = e^{-t}[\dfrac{1}{2} \sin (2t)+ (-1) cos (2t)][/tex]
[tex]x(t) = e^{-t}[\dfrac{1}{2} \sin (2t)-cos (2t)][/tex]
Assuming;
[tex]A cos \ \phi = \dfrac{1}{2}[/tex]
[tex]A sin \ \phi = 1[/tex]
Therefore:
[tex]A = \sqrt{\dfrac{1}{4}+1}[/tex]
[tex]A = \sqrt{\dfrac{1+4}{4}}[/tex]
[tex]A = \sqrt{\dfrac{5}{4}}[/tex]
[tex]A ={ \dfrac{ \sqrt5}{ \sqrt4}}[/tex]
[tex]A ={ \dfrac{ \sqrt5}{ 2}}[/tex]
where;
[tex]\phi = tan ^{-1} (2)[/tex]
Therefore;
[tex]x(t) = \dfrac{\sqrt 5}{2}e^{-t} \ sin (2 t - \phi)[/tex]
From above ; the amplitude is ;
[tex]\mathbf{x(t) = \dfrac{ \sqrt 5}{2}e^{-t} }[/tex]
Find the perimeter of the square. Be sure to write the correct unit in your answer.
Answer:
Step-by-step explanation:
Not sure what a side length of the square is, but simply take a side length, and multiply it by 4 to get the perimeter. For instance, if a side length was 5, simply multiply 5*4 to get that the perimeter is 20 units.
Hope it helps <3
Answer:
Hey there!
Since this is a square, all sides are equal length.
Thus, we multiply the length of one side by 4 to get the perimeter.
For example, if the side length was 3, the perimeter would be 3 times 4, or 12.
Hope this helps :)
: Bobby's Burger Palace had its
grand opening on Tuesday,
They had 164 1/2 lb of ground
beef in stock. They had 18 1/4
Ib left at the end of the day.
Each burger requires 1/4 lb of
ground beef. How many
hamburgers did they sell?
A consultant wants to ask workers at a factory about the workers' job satisfaction. Which of the following best describes a cluster sample of workers?
a. The consultant takes a list of the workers and selects every 6" worker until 60 workers are selected.
b. The consultant forms 5 groups of workers based on the workers' shifts. Then, he selects 12 workers at random from each group.
c. The consultant forms groups of 12 workers based on the lengths of time the workers have worked at the factory. Then, he randomly chooses 5 groups and selects all of the workers in these groups
Answer:
i think option c must be correct because it has formed the grops on the basis of length of time and made the group by random selection.
How does changing the maximum value affect the range? A. The range is greatly affected by this change. B. The range of a data set depends on the number of data, not the specific values. Therefore, the range does not vary by changing the maximum value. C. The range becomes more accurate when the maximum value is an outlier. D. The change in the range is low and insignificant.
Answer:
The correct option is (A).
Step-by-step explanation:
The range of a data set is a measure of variability of that data set.
The range is the difference between the maximum and minimum value of the set.
[tex]\text{Range}=\text{Maximum}-\text{Minimum}[/tex]
Since the maximum value is used in the computation of range, changing the maximum value affects the range greatly.
The correct option is (A).
Find a parabola with equation y = ax2 + bx + c that has slope 5 at x = 1, slope −11 at x = −1, and passes through the point (2, 18).
By "slope" I assume you mean slope of the tangent line to the parabola.
For any given value of x, the slope of the tangent to the parabola is equal to the derivative of y :
[tex]y=ax^2+bx+c\implies y'=2ax+b[/tex]
The slope at x = 1 is 5:
[tex]2a+b=5[/tex]
The slope at x = -1 is -11:
[tex]-2a+b=-11[/tex]
We can already solve for a and b :
[tex]\begin{cases}2a+b=5\\-2a+b=-11\end{cases}\implies 2b=-6\implies b=-3[/tex]
[tex]2a-3=5\implies 2a=8\implies a=4[/tex]
Finally, the parabola passes through the point (2, 18); that is, the quadratic takes on a value of 18 when x = 2:
[tex]4a+2b+c=18\implies2(2a+b)+c=10+c=18\implies c=8[/tex]
So the parabola has equation
[tex]\boxed{y=4x^2-3x+8}[/tex]
Using function concepts, it is found that the parabola is: [tex]y = 4x^2 - 3x + 14[/tex]
----------------------------
The parabola is given by:
[tex]y = ax^2 + bx + c[/tex]
----------------------------
Slope 5 at x = 1 means that [tex]y^{\prime}(1) = 5[/tex], thus:
[tex]y^{\prime}(x) = 2ax + b[/tex]
[tex]y^{\prime}(1) = 2a + b[/tex]
[tex]2a + b = 5[/tex]
----------------------------
Slope -11 at x = -1 means that [tex]y^{\prime}(-1) = -11[/tex], thus:
[tex]-2a + b = -11[/tex]
Adding the two equations:
[tex]2a - 2a + b + b = 5 - 11[/tex]
[tex]2b = -6[/tex]
[tex]b = -\frac{6}{2}[/tex]
[tex]b = -3[/tex]
And
[tex]2a - 3 = 5[/tex]
[tex]2a = 8[/tex]
[tex]a = \frac{8}{2}[/tex]
[tex]a = 4[/tex]
Thus, the parabola is:
[tex]y = 4x^2 - 3x + c[/tex]
----------------------------
It passes through the point (2, 18), which meas that when [tex]x = 2, y = 18[/tex], and we use it to find c.
[tex]y = 4x^2 - 3x + c[/tex]
[tex]18 = 4(2)^2 - 3(4) + c[/tex]
[tex]c + 4 = 18[/tex]
[tex]c = 14[/tex]
Thus:
[tex]y = 4x^2 - 3x + 14[/tex]
A similar problem is given at https://brainly.com/question/22426360
Ben bought the enormous box of juice shown below. He drinks 450 cubic centimeters of juice each day. How many days does it take Ben to drink the box of juice?
Answer:
Step-by-step explanation:
to find the answer you have to find the vulume and then divide by 450
Answer:
7 days
Step-by-step explanation:
vol = 20*15*10.5
vol = 3150
how many days to drink 3150 cu.cm if Ben drinks 450 cu.cm per day?
3150 cu.cm / 450 cu.cm per day = 7 days
which inequality best represents the statement. reduced movie price tickets are available for the following ages (a): children 13 or under and adults 65 years or older
Answer:
13≥x U x≥65
Step-by-step explanation:
For a customer to have the reduced movie price tickets, they have to be 13 or younger, or 65 or older so I made the inequality, (X is less than or equal to 13) Union (X is greater than or equal to 65)
Answer:
13 [tex]\geq[/tex] a [tex]\geq[/tex] 65
Step-by-step explanation:
Let's first look at the beginning of the statement: Reduced movie tickets are available for the following ages (a): children 13 or under. In other words, we know that if you are 13, you can purchase reduced tickets, and if you are ANY age YOUNGER than (or below) 13, you are part of the age range. This tells us that a means your age is equal to 13, or it is less than 13. Because of this conclusion we have come to, we can see that we must use the less than or equal to sign, like this: a [tex]\leq[/tex] 13.
Now, for the second part of the statement that communicates that those 65 and older have this ability as well! In other words, if your age is equal to 65 or it is greater than 65, you are part of the age group that qualifies for the reduced tickets. This means we can use the greater than or equal to sign: a [tex]\geq[/tex] 65.
Just a little bit of work left to go, you're almost done!
Finally, we must figure out how to combine these to come to the correct answer. We have: a [tex]\leq[/tex] 13 and a [tex]\geq[/tex] 65. If we get a in the middle, we will be able to merge these two inequalities! It would make the most sense to keep 13 on the left side, numerically speaking, so we need to mirror everything in that inequality. this gives us: 13 [tex]\geq[/tex] a, which means the EXACT same thing!!! Now, we just add the other inequality to the end of the first to get our final answer of 13 [tex]\geq[/tex] a [tex]\geq[/tex] 65.
If this helped you, I encourage you to leave a "thanks" in order to let others know that this is a valid answer! Thank you for your time!
Suppose that a certain brand of light bulb has a mean life of 450 hours and a standard deviation of 73 hours. Assuming the data are bell-shaped: (Show work to get full credit)
a. Would it be unusual for a light bulb to have a life span of 320 hours? 615 hours? Justify each response.
b. According to the Empirical Rule, 99.7% of the light bulbs have a lifetime between what two values?
c. Determine the percentage of light bulbs that will have a life between 304 and 596 hours.
Answer:
yes it is correct
Step-by-step explanation:
plz give brainliest.
What is the distance between (−11, −20) and (−11, 5)?
−25 units
−15 units
15 units
25 units
Answer:
IT'S NOT -15 FOR SUREEE
Step-by-step explanation:
I Believe it's 15
The diagonal of a rectangular room is 39 ft long. One wall measures 21 ft longer than the adjacent wall. Find the dimensions of the room.
Answer:
Length x = 36ft
Breadth y = 15 ft
Therefore, the dimensions of the room x by y is 36ft by 15ft.
Step-by-step explanation:
Let x and y represent the length and breadth of the room
And r represent the diagonal of the room.
Given;
One wall measures 21 ft longer than the adjacent wall
x = y + 21 .......1
The diagonal of a rectangular room is 39 ft long
r = 39ft
Since r is the diagonal, applying Pythagoras theorem;
r = √(x^2 + y^2) = 39
√(x^2 + y^2) = 39
Square both sides and substitute equation 1;
(x^2 + y^2) = 39^2
((y+21)^2 +y^2) = 39^2
(y^2 + 42y + 21^2 + y^2) -39^2 = 0
2y^2 +42y - 1080 = 0
y^2 + 21y - 540 = 0
Solving the quadratic equation, we have;
y = - 39 or y = 15
Since length cannot be negative then;
y = 15 ft
From equation 1;
x = y + 21
x = 15 + 21
x = 36 ft
Length x = 36ft
Breadth y = 15 ft
Therefore, the dimensions of the room x by y is 36ft by 15ft.
Choose the correct simplification of (3p)(5q)
Answer:
15pq
Step-by-step explanation:
We simply multiply the 2 terms together:
5q(3p) = 15pq
Since we cannot simplify this term any further, that is our answer.
Answer:
15 pq
Step-by-step explanation:
Took the test.
The surface area of an open-top box with length L, width W, and height H can be found using the
formula:
A = 2LH + 2WH + LW
Find the surface area of an open-top box with length 9 cm, width 6 cm, and height 4 cm.
Answer:
174 square cm
Step-by-step explanation:
2(9×4) + 2(6×4)+ 9×6
2(36) + 2(24) + 54
72 + 48 + 54
120 + 54
174
The accounting department analyzes the variance of the weekly unit costs reported by two production departments. A sample of 16 cost reports for each of the two departments shows cost variances of 2.5 and 5.5, respectively. Is this sample sufficient to conclude that the two production departments differ in terms of unit cost variance? Use = .10. State the null and alternative hypotheses.
Answer:
[tex]F=\frac{s^2_2}{s^2_1}=\frac{5.5}{2.5}=2.2[/tex]
Now we can calculate the p value but first we need to calculate the degrees of freedom for the statistic. For the numerator we have [tex]n_2 -1 =16-1=15[/tex] and for the denominator we have [tex]n_1 -1 =16-1=15[/tex] and the F statistic have 15 degrees of freedom for the numerator and 15 for the denominator. And the P value is given by:
[tex]p_v =2*P(F_{15,15}>2.2)=0.138[/tex]
For this case the p value is highert than the significance level so we haev enough evidence to FAIL to reject the null hypothesis and we can conclude that the true deviations are not significantly different
Step-by-step explanation:
Information given
[tex]n_1 = 16 [/tex] represent the sampe size 1
[tex]n_2 =16[/tex] represent the sample 2
[tex]s^2_1 = 2.5[/tex] represent the sample deviation for 1
[tex]s^2_2 = 5.5[/tex] represent the sample variance for 2
[tex]\alpha=0.10[/tex] represent the significance level provided
The statistic is given by:
[tex]F=\frac{s^2_2}{s^2_1}[/tex]
Hypothesis to test
We want to test if the variations in terms of the variance are equal, so the system of hypothesis are:
H0: [tex] \sigma^2_1 = \sigma^2_2[/tex]
H1: [tex] \sigma^2_1 \neq \sigma^2_2[/tex]
The statistic is given by:
[tex]F=\frac{s^2_2}{s^2_1}=\frac{5.5}{2.5}=2.2[/tex]
Now we can calculate the p value but first we need to calculate the degrees of freedom for the statistic. For the numerator we have [tex]n_2 -1 =16-1=15[/tex] and for the denominator we have [tex]n_1 -1 =16-1=15[/tex] and the F statistic have 15 degrees of freedom for the numerator and 15 for the denominator. And the P value is given by:
[tex]p_v =2*P(F_{15,15}>2.2)=0.138[/tex]
For this case the p value is highert than the significance level so we haev enough evidence to FAIL to reject the null hypothesis and we can conclude that the true deviations are not significantly different
A square with side lengths of 3 cm is reflected vertically over a horizontal line of reflection that is 2 cm below the bottom edge of the square. What is the distance between the points C and C’? cm What is the perpendicular distance between the point B and the line of reflection? cm What is the distance between the points A and A’? cm
Answer:
a) 4 cm
b) 5 cm
c) 10 cm
Step-by-step explanation:
The side lengths of the reflected square are equal to the original, and the distance from the axis(2) also remains the same. From there, it is just addition.
Hope it helps <3
Answer:
A) 4
B) 5
C) 10
Step-by-step explanation:
edge2020
3. Your friend is solving a system of linear equations and finds the following solution:
0=5
What is the solution of the system? Explain your reasoning.
Answer:
No solution.
Step-by-step explanation:
Because the equations are combined but the final answers are not equal, the equations have no solution. This is because "no matter what value is plugged in for the variable, you will ALWAYS get a contradiction".
Hope this helps!
8716 no es divisible por 4
Answer:
False
Step-by-step explanation:
No esta verdad.
8716/4 = 2179 (divisible por 4)
Find A x B, where A=(5i+j) , B=(i-5j)
Answer:
5i² - 25ij +ji-5j²
Step-by-step explanation:
Use distributive property
Answer:
The answer is 5i² - 24ij - 5j²Step-by-step explanation:
A = (5i+j)
B = (i-5j)
A × B is
( 5i + j) ( i - 5j)
Expand
We have
5i² - 25ij + ij - 5j²
The final answer is
5i² - 24ij - 5j²
Hope this helps you.
Marsha deposited $7,000 into a savings account 3 years ago. The
simple interest rate is 5%. How much money did Marsha earn in
interest?
Answer:
$1,050 in interest
Step-by-step explanation:
recall that the formula to find simple interest is as follows:
I = Prt, where
I = Interest (we are asked to find this)
P = principal amount = given as $7000
r = interest rate = 5% = 0.05
t = time = 3 years
Substituting the known values into the equation,
I = Prt
= (7000)(0.05)(3)
= $1,050 in interest
Write the following equation into logarithmic form. 5=3x
Answer:
[tex]log_35=x[/tex]
Step-by-step explanation:
I am going to assume you meant [tex]5=3^x[/tex]
When converting exponential equations into logarithmic form, remember this: [tex]y = log_bx[/tex] is equivalent to [tex]x = b^y[/tex]
P-value test and Ctitical Value test are identical. P-value and Critical value are two different names for the same steps. They can be used interchangeably.
a. true
b. false
Answer:
Option B - False
Step-by-step explanation:
Critical value is a point beyond which we normally reject the null hypothesis. Whereas, P-value is defined as the probability to the right of respective statistic which could either be Z, T or chi. Now, the benefit of using p-value is that it calculates a probability estimate which we will be able to test at any level of significance by comparing the probability directly with the significance level.
For example, let's assume that the Z-value for a particular experiment is 1.67, which will be greater than the critical value at 5% which will be 1.64. Thus, if we want to check for a different significance level of 1%, we will need to calculate a new critical value.
Whereas, if we calculate the p-value for say 1.67, it will give a value of about 0.047. This p-value can be used to reject the hypothesis at 5% significance level since 0.047 < 0.05. But with a significance level of 1%, the hypothesis can be accepted since 0.047 > 0.01.
Thus, it's clear critical values are different from P-values and they can't be used interchangeably.