Find the standard deviation. Round to one more place than the data. 10, 12, 10, 6, 18, 11, 18, 14, 10

Answers

Answer 1

The standard deviation of the data set is 3.66.

What is the standard deviation of the data set?To calculate the standard deviation, follow these steps:

The mean of the data set:

= (10 + 12 + 10 + 6 + 18 + 11 + 18 + 14 + 10) / 9

= 109 / 9

= 12.11

The difference between each data point and the mean:

(10 - 12.11), (12 - 12.11), (10 - 12.11), (6 - 12.11), (18 - 12.11), (11 - 12.11), (18 - 12.11), (14 - 12.11), (10 - 12.11)

Square each difference:

[tex](-2.11)^2, (-0.11)^2, (-2.11)^2, (-6.11)^2, (5.89)^2, (-1.11)^2, (5.89)^2, (1.89)^2, (-2.11)^2[/tex]

Calculate the sum of the squared differences:

[tex]= (-2.11)^2 + (-0.11)^2 + (-2.11)^2 + (-6.11)^2 + (5.89)^2 + (-1.11)^2 + (5.89)^2 + (1.89)^2 + (-2.11)^2\\= 120.46[/tex]

Divide the sum by the number of data points:

[tex]= 120.46 / 9\\= 13.3844[/tex]

The standard deviation:

[tex]= \sqrt{13.3844}\\= 3.66.[/tex]

Read more about standard deviation

brainly.com/question/475676

#SPJ4

Answer 2

The standard deviation of the given data set is approximately 3.60.

To find the standard deviation of a set of data, you can follow these steps:

Calculate the mean (average) of the data set.

Subtract the mean from each data point and square the result.

Calculate the mean of the squared differences.

Take the square root of the mean from step 3 to obtain the standard deviation.

Let's calculate the standard deviation for the given data set: 10, 12, 10, 6, 18, 11, 18, 14, 10.

Step 1: Calculate the mean

Mean = (10 + 12 + 10 + 6 + 18 + 11 + 18 + 14 + 10) / 9 = 109 / 9 = 12.11 (rounded to two decimal places)

Step 2: Subtract the mean and square the differences

(10 - 12.11)^2 ≈ 4.48

(12 - 12.11)^2 ≈ 0.01

(10 - 12.11)^2 ≈ 4.48

(6 - 12.11)^2 ≈ 37.02

(18 - 12.11)^2 ≈ 34.06

(11 - 12.11)^2 ≈ 1.23

(18 - 12.11)^2 ≈ 34.06

(14 - 12.11)^2 ≈ 3.56

(10 - 12.11)^2 ≈ 4.48

Step 3: Calculate the mean of the squared differences

Mean = (4.48 + 0.01 + 4.48 + 37.02 + 34.06 + 1.23 + 34.06 + 3.56 + 4.48) / 9 ≈ 12.95 (rounded to two decimal places)

Step 4: Take the square root of the mean

Standard Deviation = √12.95 ≈ 3.60 (rounded to two decimal places)

Therefore, the standard deviation of the given data set is approximately 3.60.

Learn more about standard deviation from the given link

https://brainly.com/question/475676

#SPJ11


Related Questions

The seqence an = 1 (n+4)! (4n+ 1)! is neither decreasing nor increasing and unbounded 2 decreasing and bounded 3 decreasing and unbounded increasing and unbounded 5 increasing and bounded --/5

Answers

The given sequence an = 1 (n+4)! (4n+ 1)! is decreasing and bounded. Option 2 is the correct answer.

Determining the pattern of sequence

To determine whether the sequence

[tex]an = 1/(n+4)!(4n+1)![/tex]

is increasing, decreasing, or neither, we can look at the ratio of consecutive terms:

Thus,

[tex]a(n+1)/an = [1/(n+5)!(4n+5)!] / [1/(n+4)!(4n+1)!] \\

= [(n+4)!(4n+1)!] / [(n+5)!(4n+5)!] \\

= (4n+1)/(4n+5)[/tex]

The ratio of consecutive terms is a decreasing function of n, since (4n+1)/(4n+5) < 1 for all n.

Hence, the sequence is decreasing.

To determine whether the sequence is bounded, we need to find an upper bound and a lower bound for the sequence.

Note that all terms of the sequence are positive, since the factorials and the denominator of each term are positive.

We can use the inequality

[tex](4n+1)! < (4n+1)^{4n+1/2}[/tex]

to obtain an upper bound for the sequence:

[tex]an < 1/(n+4)!(4n+1)! \\

< 1/[(n+4)/(4n+1)^{4n+1/2}] \\

< 1/[(1/4)(n^{1/2})][/tex]

Therefore, the sequence is bounded above by

[tex]4n^{1/2}.[/tex]

Therefore, the sequence is decreasing and bounded.

Learn more on bounded sequence on https://brainly.com/question/32952153

#aSPJ4

How many six-letter permutations can be formed from the first eight letters of the alphabet?
How many different signals can be made by hoisting four yellow flags, two green flags, and two red flags on a ship's mast at the same time?

Answers

There are 20,160 different six-letter permutations that can be formed from the first eight letters of the alphabet.

There are 70 different signals that can be made by hoisting four yellow flags, two green flags, and two red flags on a ship's mast at the same time.

To determine the number of six-letter permutations that can be formed from the first eight letters of the alphabet, we need to calculate the number of ways to choose 6 letters out of the available 8 and then arrange them in a specific order.

The number of ways to choose 6 letters out of 8 is given by the combination formula "8 choose 6," which can be calculated as follows:

C(8, 6) = 8! / (6! * (8 - 6)!) = 8! / (6! * 2!) = (8 * 7) / (2 * 1) = 28.

Now that we have chosen 6 letters, we can arrange them in a specific order, which is a permutation. The number of ways to arrange 6 distinct letters is given by the formula "6 factorial" (6!). Thus, the number of six-letter permutations from the first eight letters of the alphabet is:

28 * 6! = 28 * 720 = 20,160.

Therefore, there are 20,160 different six-letter permutations that can be formed from the first eight letters of the alphabet.

Now let's move on to the second question regarding the number of different signals that can be made by hoisting flags on a ship's mast. In this case, we have 4 yellow flags, 2 green flags, and 2 red flags.

To find the number of different signals, we need to calculate the number of ways to arrange these flags. We can do this using the concept of permutations with repetitions. The formula to calculate the number of permutations with repetitions is:

n! / (n₁! * n₂! * ... * nk!),

where n is the total number of objects and n₁, n₂, ..., nk are the counts of each distinct object.

In this case, we have a total of 8 flags (4 yellow flags, 2 green flags, and 2 red flags). Applying the formula, we get:

8! / (4! * 2! * 2!) = (8 * 7 * 6 * 5) / (4 * 3 * 2 * 1) = 70.

Therefore, there are 70 different signals that can be made by hoisting four yellow flags, two green flags, and two red flags on a ship's mast at the same time.

Learn more about permutations

brainly.com/question/29990226

#SPJ11

Solve the logarithmic equation. Type just the number in the answer. If more than one answer, separate the numbers with a comma. Be sure to reject any value that is not in the domain of the original logarithmic expressions. log 5x = log(2x + 9) Question 7 Solve the logarithmic equation. Type just the number in the answer. If more than one answer, separate the numbers with a comma. Be sure to reject any value that is not in the domain of the original logarithmic expressions. -6 log3(x-3) = -24

Answers

The solution to the first logarithmic equation is x = 3. The solution to the second logarithmic equation is x = 84.

For the first logarithmic equation, we have: log(5x) = log(2x + 9)

By setting the logarithms equal, we can eliminate the logarithms:5x = 2x + 9 and now we solve for x:

5x - 2x = 9

3x = 9

x = 3

Therefore, the solution to the first logarithmic equation is x = 3.

For the second logarithmic equation, we have: -6 log3(x - 3) = -24

Dividing both sides by -6, we get: log3(x - 3) = 4

By converting the logarithmic equation to exponential form, we have:

3^4 = x - 3

81 = x - 3

x = 84

Therefore, the solution to the second logarithmic equation is x = 84.

Learn more about logarithmic here:

https://brainly.com/question/29197804

#SPJ11

Find the line of intersection between the lines: <3,−1,2>+t<1,1,−1> and <−8,2,0>+t<−3,2,−7>. (3) (10.2) Show that the lines x+1=3t,y=1,z+5=2t for t∈R and x+2=s,y−3=−5s, z+4=−2s for t∈R intersect, and find the point of intersection. (10.3) Find the point of intersection between the planes: −5x+y−2z=3 and 2x−3y+5z=−7. (3)

Answers

Solving given equations, we get line of intersection as  t = -11/4, t = -1, and t = 1/4, respectively. The point of intersection between the given lines is (-8, 2, 0). The point of intersection between the two planes is (2, 2, 86/65).

(10.2) To find the line of intersection between the lines, let's set up the equations for the two lines:

Line 1: r1 = <3, -1, 2> + t<1, 1, -1>

Line 2: r2 = <-8, 2, 0> + t<-3, 2, -7>

Now, we equate the two lines to find the point of intersection:

<3, -1, 2> + t<1, 1, -1> = <-8, 2, 0> + t<-3, 2, -7>

By comparing the corresponding components, we get:

3 + t = -8 - 3t   [x-component]

-1 + t = 2 + 2t   [y-component]

2 - t = 0 - 7t    [z-component]

Simplifying these equations, we find:

4t = -11   [from the x-component equation]

-3t = 3     [from the y-component equation]

8t = 2      [from the z-component equation]

Solving these equations, we get t = -11/4, t = -1, and t = 1/4, respectively.

To find the point of intersection, substitute the values of t back into any of the original equations. Taking the y-component equation as an example, we have:

-1 + t = 2 + 2t

Substituting t = -1, we find y = 2.

Therefore, the point of intersection between the given lines is (-8, 2, 0).

(10.3) Let's solve for the point of intersection between the two given planes:

Plane 1: -5x + y - 2z = 3

Plane 2: 2x - 3y + 5z = -7

To find the point of intersection, we need to solve this system of equations simultaneously. We can use the method of substitution or elimination to find the solution.

Let's use the method of elimination:

Multiply the first equation by 2 and the second equation by -5 to eliminate the x term:

-10x + 2y - 4z = 6

-10x + 15y - 25z = 35

Now, subtract the second equation from the first equation:

0x - 13y + 21z = -29

To simplify the equation, divide through by -13:

y - (21/13)z = 29/13

Now, let's solve for y in terms of z:

y = (21/13)z + 29/13

We still need another equation to find the values of z and y. Let's use the y-component equation from the second plane:

y - 3 = -5s

Substituting y = (21/13)z + 29/13, we have:

(21/13)z + 29/13 - 3 = -5s

Simplifying, we get:

(21/13)z - (34/13) = -5s

Now, we can equate the z-components of the two equations:

(21/13)z - (34/13) = 2z + 4

Simplifying further, we have:

(21/13)z - 2z = (34/13) + 4

(5/13)z = (34/13) + 4

(5/13)z = (34 + 52)/13

(5/13)z =

86/13

Solving for z, we find z = 86/65.

Substituting this value back into the y-component equation, we can find the value of y:

y = (21/13)(86/65) + 29/13

Simplifying, we have: y = 2

Therefore, the point of intersection between the two planes is (2, 2, 86/65).

To know more about Intersection, visit

https://brainly.com/question/30915785

#SPJ11

Use the formula for future value, A=P(1+rt), and elementary algebra to find the missing quantity. A=$2,160; r=5%; 1= 4 years

Answers

Answer:

Step-by-step explanation:

To find the missing quantity in the formula for future value, A = P(1 + rt), where A = $2,160, r = 5%, and t = 4 years, we can rearrange the formula to solve for P (the initial principal or present value).

The formula becomes:

A = P(1 + rt)

Substituting the given values:

$2,160 = P(1 + 0.05 * 4)

Simplifying:

$2,160 = P(1 + 0.20)

$2,160 = P(1.20)

To isolate P, divide both sides of the equation by 1.20:

$2,160 / 1.20 = P

P ≈ $1,800

Therefore, the missing quantity, P, is approximately $1,800.



Explain why some quartic polynomials cannot be written in the form y=a(x-h)⁴+k . Give two examples.

Answers

Example 1: y = x⁴ – x³ + x² – x + 1. Example 2: y = x⁴ + 6x² + 25.These polynomials have non-zero coefficients for the terms x³ and x², which means they cannot be expressed in the required form.

Quartic polynomials of the form y = a(x – h)⁴ + k cannot represent all quartic functions. Some quartic polynomials cannot be written in this form, for various reasons, including the presence of the term x³.Here are two examples of quartic polynomials that cannot be written in the form y = a(x – h)⁴ + k:

Example 1: y = x⁴ – x³ + x² – x + 1

This quartic polynomial does not have the same form as y = a(x – h)⁴ + k. It contains a term x³, which is not present in the given form. As a result, it cannot be written in the form y = a(x – h)⁴ + k.

Example 2: y = x⁴ + 6x² + 25

This quartic polynomial also does not have the same form as y = a(x – h)⁴ + k. It does not contain any linear or cubic terms, but it does have a quadratic term 6x². This means that it cannot be written in the form y = a(x – h)⁴ + k.Therefore, some quartic polynomials cannot be expressed in the form of y = a(x-h)⁴+k, as mentioned earlier. Two such examples are as follows:Example 1: y = x⁴ – x³ + x² – x + 1

Example 2: y = x⁴ + 6x² + 25

These polynomials have non-zero coefficients for the terms x³ and x², which means they cannot be expressed in the required form. These are the simplest examples of such polynomials; there may be more complicated ones as well, but the concept is the same.

Know more about polynomials here,

https://brainly.com/question/11536910

#SPJ11

Find the volume of the hemisphere with a radius of 9 mm. Leave the answer in terms of pie

Answers

Hello !

Answer:

[tex]\Large \boxed{\sf V_{\sf hemisphere}=486\pi\ mm^3}[/tex]

Step-by-step explanation:

The volume of a sphere is given by [tex]\sf V_{\sf sphere}=\frac{4}{3} \pi r^3[/tex] where r is the radius.

Moreover, the volume of a hemisphere is half the volume of a sphere, so :

[tex]\sf V_{\sf hemisphere}=\dfrac{1}{2} V_{sphere}\\\\\sf V_{\sf hemisphere}=\dfrac{2}{3} \pi r^3[/tex]

Given :

r = 9 mm

Let's replace r with its value in the previous formula :

[tex]\sf V_{\sf hemisphere}=\frac{2}{3} \times\pi \times 9^3\\\sf V_{\sf hemisphere}=\frac{2}{3} \times 729\times\pi\\\boxed{\sf V_{\sf hemisphere}=486\pi\ mm^3}[/tex]

Have a nice day ;)

Consider a T-bond with 29 years to maturity, 5% coupon, and $100M par value. How many coupon STRIPS can be created from this T-bond?

Answers

Coupon STRIPS can be created from the given T-bond by removing the coupon payments from the bond and selling them as individual securities. Let's calculate how many coupon STRIPS can be created from this T-bond.

The bond has a 5% coupon, which means it will pay $5 million in interest every year. Over a period of 29 years, the total interest payments would be $5 million x 29 years = $145 million.

The par value of the bond is $100 million. After deducting the interest payments of $145 million, the remaining principal value is $100 million - $145 million = -$45 million.

Since there is a negative principal value, we cannot create any principal STRIPS from this bond. However, we can create coupon STRIPS equal to the number of coupon payments that will be made over the remaining life of the bond.

Therefore, we can create 29 coupon STRIPS of $5 million each from this T-bond. These coupon STRIPS will be sold separately and will not include the principal repayment of the bond.

Learn more about T-bond

https://brainly.com/question/15176473

#SPJ11

EasyFind, Inc. sells StraightShot golf balls for $22 per dozen, with a variable manufacturing cost of $14 per dozen. EasyFind is planning to introduce a lower priced ball, Duffer's Delite, that will sell for $12 per dozen with a variable manufacturing cost of $5 per dozen. The firm currently sells 50,900 StraightShot units per year and expects to sell 21,300 units of the new Duffer's Delight golf ball if it is introduced (1 unit = 12 golf balls packaged together). Management projects the fixed costs for launching Duffer's Delight golf balls to be $9,030 Another way to consider the financial impact of a product launch that may steal sales from an existing product is to include the loss due to cannibalization as a variable cost. That is, if a customer purchases Duffer's Delite ball instead of Straight Shot, the company loses the margin of Straight Shot that would have been purchased. Using the previously calculated cannibalization rate, calculate Duffer's Delite per unit contribution margin including cannibalization as a variable cost.

Answers

Duffer's Delite per unit contribution margin, including cannibalization as a variable cost, is $2.33.

The per unit contribution margin for Duffer's Delite can be calculated by subtracting the variable manufacturing cost and the cannibalization cost from the selling price. The variable manufacturing cost of Duffer's Delite is $5 per dozen, which translates to $0.42 per unit (5/12). The cannibalization cost is equal to the margin per unit of the StraightShot golf balls, which is $8 per dozen or $0.67 per unit (8/12). Therefore, the per unit contribution margin for Duffer's Delite is $12 - $0.42 - $0.67 = $10.91 - $1.09 = $9.82. However, since the per unit contribution margin is calculated based on one unit (12 golf balls), we need to divide it by 12 to get the per unit contribution margin for a single golf ball, which is $9.82/12 = $0.82. Finally, to account for the cannibalization cost, we need to subtract the cannibalization rate of 0.18 (as calculated previously) multiplied by the per unit contribution margin of the StraightShot golf balls ($0.82) from the per unit contribution margin of Duffer's Delite. Therefore, the final per unit contribution margin for Duffer's Delite, including cannibalization, is $0.82 - (0.18 * $0.82) = $0.82 - $0.1476 = $0.6724, which can be rounded to $0.67 or $2.33 per dozen.

Learn more about Delite

brainly.com/question/32462830

#SPJ11

1. Find the absolute maximum and absolute minimum over the indicated interval, and indicate the x-values at which they occur: () = 12 9 − 32 − 3 over [0, 3]

Answers

The absolute maximum and absolute minimum of the function () = 12 9 − 32 − 3 over the interval [0, 3], we need to evaluate the function at critical points and endpoints. The absolute maximum is -3 at x = 0, and the absolute minimum is approximately -3.73 at x ≈ 0.183.

Step 1: Find the critical points by setting the derivative equal to zero and solving for x.

() = 12 9 − 32 − 3

() = 27 − 96x² − 3x²

Setting the derivative equal to zero, we have:

27 − 96x² − 3x² = 0

-99x² + 27 = 0

x² = 27/99

x = ±√(27/99)

x ≈ ±0.183

Step 2: Evaluate the function at the critical points and endpoints.

() = 12 9 − 32 − 3

() = 12(0)² − 9(0) − 32(0) − 3 = -3 (endpoint)

() ≈ 12(0.183)² − 9(0.183) − 32(0.183) − 3 ≈ -3.73 (critical point)

Step 3: Compare the values to determine the absolute maximum and minimum.

The absolute maximum occurs at x = 0 with a value of -3.

The absolute minimum occurs at x ≈ 0.183 with a value of approximately -3.73.

Therefore, the absolute maximum is -3 at x = 0, and the absolute minimum is approximately -3.73 at x ≈ 0.183.

Learn more about interval here

https://brainly.com/question/30460486

#SPJ11

Please type in the answer as Empirical (E) or Theoretical (T)
1. According to worldometers.info on June 24, 2020 at 3:40 pm Vegas Time, COVID-19 has already taken 124,200 lives
2. CDC anticipates a 2nd wave of COVID cases during the flue season.
3. Older adults and people who have severe underlying medical conditions like heart or lung disease or diabetes seem to be at higher risk for developing serious complications from COVID-19 illness
4. ASU predicts lower enrollment in the upcoming semester

Answers

Empirical (E)

Theoretical (T)

Theoretical (T)

Theoretical (T)

The statement about COVID-19 deaths on a specific date is empirical because it is based on actual recorded data from worldometers.info.

The CDC's anticipation of a second wave of COVID cases during the flu season is a theoretical prediction. It is based on their understanding of viral transmission patterns and historical data from previous pandemics.

The statement about older adults and individuals with underlying medical conditions being at higher risk for serious complications from COVID-19 is a theoretical observation. It is based on analysis and studies conducted on the impact of the virus on different populations.

The prediction of lower enrollment in the upcoming semester by ASU is a theoretical projection. It is based on their analysis of various factors such as the ongoing pandemic's impact on student preferences and decisions.

Learn more about: Differentiating between empirical data and theoretical predictions

brainly.com/question/3055623

#SPJ11

Set A contains all integers from 50 to 100, inclusive, and Set B contains all integers from 69 to 13 8, exclusive. How many integers are included in both Set A and Set B

Answers

There are 32 integers included in both Set A and Set B.

To find the number of integers included in both Set A and Set B, we need to determine the overlapping range of values between the two sets. Set A contains all integers from 50 to 100 (inclusive), while Set B contains all integers from 69 to 138 (exclusive).

To calculate the number of integers included in both sets, we need to identify the common range between the two sets. The common range is the intersection of the ranges represented by Set A and Set B.

The common range can be found by determining the maximum starting point and the minimum ending point between the two sets. In this case, the maximum starting point is 69 (from Set B) and the minimum ending point is 100 (from Set A).

Therefore, the common range of integers included in both Set A and Set B is from 69 to 100 (inclusive). To find the number of integers in this range, we subtract the starting point from the ending point and add 1 (since both endpoints are inclusive).

Number of integers included in both Set A and Set B = (100 - 69) + 1 = 32.

Therefore, there are 32 integers included in both Set A and Set B.

Learn more about integers here:

brainly.com/question/33503847

#SPJ11



Determine whether the events are independent or dependent. Explain. Jeremy took the SAT on Saturday and scored 1350. The following week he took the ACT and scored 23 .

Answers

The events of Jeremy's SAT score and his ACT score are independent.

Two events are considered independent if the outcome of one event does not affect the outcome of the other. In this case, Jeremy's SAT score of 1350 and his ACT score of 23 are independent events because the scores he achieved on the SAT and ACT are separate and unrelated assessments of his academic abilities.

The SAT and ACT are two different standardized tests used for college admissions in the United States. Each test has its own scoring system and measures different aspects of a student's knowledge and skills. The fact that Jeremy scored 1350 on the SAT does not provide any information or influence his subsequent performance on the ACT. Similarly, his ACT score of 23 does not provide any information about his SAT score.

Since the SAT and ACT are distinct tests and their scores are not dependent on each other, the events of Jeremy's SAT score and ACT score are considered independent.

To know more about independent events, refer here:

https://brainly.com/question/32716243#

#SPJ11

Statements
1. ZABC is rt. 2
2. DB bisects ZABCS
3. B
4. m/ABD = m/CBD
5. m/ABD + mzCBD = 90°
6. m/CBD + m/CBD = 90°
7. D
8. m/CBD = 45°
Reasons
1. A
2. given
3. def. of rt. <
4. def. of bis.
5. C
6. subs. prop.
7. add.
8. div. prop.
Identify the missing parts in the proof.
Given: ZABC is a right angle.
DB bisects ZABC.
Prove: m/CBD = 45°
A:
B:
C
D:
>
>
7

Answers

A: ZABC is a right angle. (Given)

B: DB bisects ZABC. (Given)

C: m/ABD = m/CBD. (Definition of angle bisector)

D: m/ABD + m/CBD = 90°. (Sum of angles in a right triangle)

By substitution property, m/CBD + m/CBD = 90° should be m/ABD + m/CBD = 90°.

A: Given: ZABC is a right angle.

B: Given: DB bisects ZABC.

C: To prove: m/CBD = 45°

D: Proof:

ZABC is a right angle. (Given)

DB bisects ZABC. (Given)

m/ABD = m/CBD. (Definition of angle bisector)

m/ABD + m/CBD = 90°. (Sum of angles in a right triangle)

Substitute m/CBD with m/ABD in equation (4).

m/ABD + m/ABD = 90°.

2 [tex]\times[/tex] m/ABD = 90°. (Simplify equation (5))

Divide both sides of equation (6) by 2.

m/ABD = 45°.

Therefore, m/CBD = 45°. (Substitute m/ABD with 45°)

Thus, we have proved that m/CBD is equal to 45° based on the given statements and the reasoning provided.

Please note that in step 5, the substitution of m/CBD with m/ABD is valid because DB bisects ZABC. By definition, an angle bisector divides an angle into two congruent angles.

Therefore, m/ABD and m/CBD are equal.

For similar question on substitution property.

https://brainly.com/question/29058226  

#SPJ8

Find the Fourier series of the periodic function f(t)=31², -1≤1≤l. Find out whether the following functions are odd, even or neither: (1) 2x5-5x³ +7 (ii) x³ + x4 Find the Fourier series for f(x) = x on -L ≤ x ≤ L.

Answers

The Fourier series of f(t) = 31² is a₀ = 31² and all other coefficients are zero.

For (i)[tex]2x^5[/tex] - 5x³ + 7: even, (ii) x³ + x⁴: odd.

The Fourier series of f(x) = x is Σ(bₙsin(nπx/L)), where b₁ = 4L/π.

To find the Fourier series of the periodic function f(t) = 31² over the interval -1 ≤ t ≤ 1, we need to determine the coefficients of its Fourier series representation. Since f(t) is a constant function, all the coefficients except for the DC component will be zero. The DC component (a₀) is given by the average value of f(t) over one period, which is equal to the constant value of f(t). In this case, a₀ = 31².

For the functions (i)[tex]2x^5[/tex] - 5x³ + 7 and (ii) x³ + x⁴, we can determine their symmetry by examining their even and odd components. A function is even if f(-x) = f(x) and odd if f(-x) = -f(x).

(i) For[tex]2x^5[/tex] - 5x³ + 7, we observe that the even powers of x (x⁰, x², x⁴) are present, while the odd powers (x¹, x³, x⁵) are absent. Thus, the function is even.

(ii) For x³ + x⁴, both even and odd powers of x are present. By testing f(-x), we find that f(-x) = -x³ + x⁴ = -(x³ - x⁴) = -f(x). Hence, the function is odd.

For the function f(x) = x over the interval -L ≤ x ≤ L, we can determine its Fourier series by finding the coefficients of its sine terms. The Fourier series representation of f(x) is given by f(x) = a₀/2 + Σ(aₙcos(nπx/L) + bₙsin(nπx/L)), where a₀ = 0 and aₙ = 0 for all n > 0.

Since f(x) = x is an odd function, only the sine terms will be present in its Fourier series. The coefficient b₁ can be determined by integrating f(x) multiplied by sin(πx/L) over the interval -L to L and then dividing by L.

The Fourier series for f(x) = x over -L ≤ x ≤ L is given by f(x) = Σ(bₙsin(nπx/L)), where b₁ = 4L/π.

Learn more about Fourier series

brainly.com/question/31046635

#SPJ11

A box contains 12 distinct colored balls (for instance, we could label them as 1, 2, ..., 12 to distinguish them). Three of them are red, four are yellow, and five are green. Three balls are selected at random from the box, with replacement. Determine the number of sequences that satisfy the following conditions:
(a) There are no restrictions.
(b) The first ball is red, the second is yellow, and the third is green.
(c) The first ball is red, and the second and third balls are green.
(d) Exactly two balls are yellow.
(e) All three balls are green.
(f) All three balls are the same color.
(g) At least one of the three balls is red.

Answers

To determine the number of sequences that satisfy the given conditions, we can use the concept of combinations and permutations.

(a) There are no restrictions:

Since there are no restrictions, we can select any of the 12 balls for each of the three positions, with replacement. Therefore, the number of sequences is 12^3 = 1728.

(b) The first ball is red, the second is yellow, and the third is green:

For this condition, we need to select one of the three red balls, one of the four yellow balls, and one of the five green balls, in that order. The number of sequences is 3 * 4 * 5 = 60.

(c) The first ball is red, and the second and third balls are green:

For this condition, we need to select one of the three red balls and two of the five green balls, in that order. The number of sequences is 3 * 5C2 = 3 * (5 * 4) / (2 * 1) = 30.

(d) Exactly two balls are yellow:

We can select two of the four yellow balls and one of the eight remaining balls (red or green) in any order. The number of sequences is 4C2 * 8 = (4 * 3) / (2 * 1) * 8 = 48.

(e) All three balls are green:

Since there are five green balls, we can select any three of them in any order. The number of sequences is 5C3 = (5 * 4) / (2 * 1) = 10.

(f) All three balls are the same color:

We can choose any of the three colors (red, yellow, or green), and then select one ball of that color in any order. The number of sequences is 3 * 1 = 3.

(g) At least one of the three balls is red:

To find the number of sequences where at least one ball is red, we can subtract the number of sequences where none of the balls are red from the total number of sequences. The number of sequences with no red balls is 8^3 = 512. Therefore, the number of sequences with at least one red ball is 1728 - 512 = 1216.

In summary:

(a) 1728 sequences

(b) 60 sequences

(c) 30 sequences

(d) 48 sequences

(e) 10 sequences

(f) 3 sequences

(g) 1216 sequences

Learn more about sequences

https://brainly.com/question/30262438

#SPJ11

A circle has a diameter with endpoints at A (-1. -9) and B (-11, 5). The point M (-6, -2) lies on the diameter. Prove or disprove that point M is the center of the circle by answering the following questions. Round answers to the nearest tenth (one decimal place). What is the distance from A to M? What is the distance from B to M? Is M the center of the circle? Yes or no?​

Answers

Answer:

AM: 8.6 units

BM: 8.6 units

M is the center

Step-by-step explanation:

Pre-Solving

We are given that the diameter of a circle is AB, where point A is at (-1, -9) and point B is (-11, 5).

We know that point M, which is at (-6, -2) is on AB. We want to know if it is the center of the circle.

If it is the center, then it means that the distance (measure) of AM is the same as the distance (measure) of BM.

Recall that the distance formula is [tex]\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex], where [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] are points.

SolvingLength of AM

The endpoints are point A and point M. We can label the values of the points to get:

[tex]x_1=-1\\y_1=-9\\x_2=-6\\y_2=-2[/tex]

Now, plug them into the formula.

[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

[tex]d=\sqrt{(-6--1)^2+(-2--9)^2}[/tex]

[tex]d=\sqrt{(-6+1)^2+(-2+9)^2}[/tex]

[tex]d=\sqrt{(-5)^2+(7)^2}[/tex]

[tex]d=\sqrt{25+49}[/tex]

[tex]d=\sqrt{74}[/tex] ≈ 8.6 units

Length of BM

The endpoints are point B and point M. We can label the values and get:

[tex]x_1=-11\\y_1=5\\x_2=-6\\y_2=-2[/tex]

Now, plug them into the formula.

[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

[tex]d=\sqrt{(-6--11)^2+(-2-5)^2}[/tex]

[tex]d=\sqrt{(-6+11)^2+(-2-5)^2}[/tex]

[tex]d=\sqrt{(5)^2+(-7)^2}[/tex]

[tex]d=\sqrt{25+49}[/tex]

[tex]d=\sqrt{74}[/tex] ≈ 8.6 units.

Since the length of AM an BM are the same, M is the center of the circle.

Joining the points (2, 16) and (8,4).​

Answers

To join the points (2, 16) and (8, 4), we can use the slope-intercept form of a linear equation, which is y = mx + b, where m is the slope and b is the y-intercept.

First, let's calculate the slope (m) using the formula:

m = (y2 - y1) / (x2 - x1)

Substituting the coordinates of the two points:

m = (4 - 16) / (8 - 2)

m = -12 / 6

m = -2

Now that we have the slope, we can choose either of the two points and substitute its coordinates into the slope-intercept form to find the y-intercept (b).

Let's choose the point (2, 16):

16 = -2(2) + b

16 = -4 + b

b = 20

Now we have the slope (m = -2) and the y-intercept (b = 20), we can write the equation of the line:

y = -2x + 20

This equation represents the line passing through the points (2, 16) and (8, 4).

[tex]\huge{\mathfrak{\colorbox{black}{\textcolor{lime}{I\:hope\:this\:helps\:!\:\:}}}}[/tex]

♥️ [tex]\large{\underline{\textcolor{red}{\mathcal{SUMIT\:\:ROY\:\:(:\:\:}}}}[/tex]

Which of the following expressions is equivalent to (10n - 8) - (4n + 3) Explain why you choose the answer. SHOW ALL STEPS:

A. 6n - 11

B. 6n + 5

C. 14n + 5

Answers

Answer: A. 6n-11

Step-by-step explanation:

First, ignore the parenthesis because it is addition and subtraction so they are commutative. 10n-4n = 6n and -8-3 is the same as -8+-3 which is -11. Combining the answer gives 6n-11.

Express the following as a linear combination of u =(4, 1, 6), v = (1, -1, 5) and w=(4, 2, 8). (17, 9, 17) = i u- i V+ i W

Answers

The given vector as a linear combination are

4i + j + 4k = 17 (Equation 1)i - j + 2k = 9 (Equation 2)6i + 5j + 8k = 17 (Equation 3)

To express the vector (17, 9, 17) as a linear combination of u, v, and w, we need to find the coefficients (i, j, k) such that:

(i)u + (j)v + (k)w = (17, 9, 17)

Substituting the given values for u, v, and w:

(i)(4, 1, 6) + (j)(1, -1, 5) + (k)(4, 2, 8) = (17, 9, 17)

Expanding the equation component-wise:

(4i + j + 4k, i - j + 2k, 6i + 5j + 8k) = (17, 9, 17)

By equating the corresponding components, we can solve for i, j, and k:

4i + j + 4k = 17 (Equation 1)

i - j + 2k = 9 (Equation 2)

6i + 5j + 8k = 17 (Equation 3)

Know more about linear combination here:

brainly.com/question/30341410

#SPJ11

2. f(x) = 4x² x²-9 a) Find the x- and y-intercepts of y = f(x). b) Find the equation of all vertical asymptotes (if they exist). c) Find the equation of all horizontal asymptotes (if they exist). d)

Answers

To solve the given questions, let's analyze each part one by one:

a) The y-intercept is (0, 0).

Find the x- and y-intercepts of y = f(x):

The x-intercepts are the points where the graph of the function intersects the x-axis, meaning the y-coordinate is zero. To find the x-intercepts, set y = 0 and solve for x:

0 = 4x²(x² - 9)

This equation can be factored as:

0 = 4x²(x + 3)(x - 3)

From this factorization, we can see that there are three possible solutions for x:

x = 0 (gives the x-intercept at the origin, (0, 0))

x = -3 (gives an x-intercept at (-3, 0))

x = 3 (gives an x-intercept at (3, 0))

The y-intercept is the point where the graph intersects the y-axis, meaning the x-coordinate is zero. To find the y-intercept, substitute x = 0 into the equation:

y = 4(0)²(0² - 9)

y = 4(0)(-9)

y = 0

Therefore, the y-intercept is (0, 0).

b) Find the equation of all vertical asymptotes (if they exist):

Vertical asymptotes occur when the function approaches infinity or negative infinity as x approaches a particular value. To find vertical asymptotes, we need to check where the function is undefined.

In this case, the function is undefined when the denominator of a fraction is equal to zero. The denominator in our case is (x² - 9), so we set it equal to zero:

x² - 9 = 0

This equation can be factored as the difference of squares:

(x - 3)(x + 3) = 0

From this factorization, we find that x = 3 and x = -3 are the values that make the denominator zero. These values represent vertical asymptotes.

Therefore, the equations of the vertical asymptotes are x = 3 and x = -3.

c) Find the equation of all horizontal asymptotes (if they exist):

To determine horizontal asymptotes, we need to analyze the behavior of the function as x approaches positive or negative infinity.

Given that the highest power of x in the numerator and denominator is the same (both are x²), we can compare their coefficients to find horizontal asymptotes. In this case, the coefficient of x² in the numerator is 4, and the coefficient of x² in the denominator is 1.

Since the coefficient of the highest power of x is greater in the numerator, there are no horizontal asymptotes in this case.

Learn more about vertical asymptotes here: brainly.com/question/4138300

#SPJ11

help me pls!! (screenshot) ​

Answers

Answer: f(-6) = 44

Step-by-step explanation:

You replace every x with -6

2(-6) squared +  5(-6) - -6/3

36 x 2 -30 + 2

72 - 30 + 2

42 + 2

44

TIME REMAINING
01:34:01
Parallelogram R S T U is shown. Angle S is 70 degrees.

What are the missing angle measures in parallelogram RSTU?

m∠R = 70°, m∠T = 110°, m∠U = 110°
m∠R = 110°, m∠T = 110°, m∠U = 70°
m∠R = 110°, m∠T = 70°, m∠U = 110°
m∠R = 70°, m∠T = 110°, m∠U = 70°

Answers

The missing angle measures in parallelogram RSTU are:

m∠R = 110°, m∠T = 110°, m∠U = 70°

How to find the missing angle measures

The opposite angles of the parallelogram are the same.

From the diagram:

∠S = ∠U and ∠R = ∠T

Given:

∠S = 70°Since ∠S = ∠U, hence ∠U = 70°

Since the sum of angles in a quadrilateral is 360 degrees, hence:

[tex]\angle\text{R}+\angle\text{S}+\angle\text{T}+\angle\text{U} = 360[/tex]

Since ∠R = ∠T, then:

[tex]\angle\text{Y}+\angle\text{S}+\angle\text{T}+\angle\text{U} = 360[/tex]

[tex]2\angle\text{T} + 70+70 = 360[/tex]

[tex]2\angle\text{T} =360-140[/tex]

[tex]2\angle\text{T} = 220[/tex]

[tex]\angle\text{T} = \dfrac{220}{2}[/tex]

[tex]\bold{\angle T = 110^\circ}[/tex]

Since ∠T = ∠R, then ∠R = 110°

Hence, m∠R = 110°, m∠T = 110°, m∠U = 70°. Option B is correct.

To solve more questions on angles, refer:

https://brainly.com/question/30377304

A single fair four-sided die is rolled. Find the probability of getting a 2 or 1. What is the total number of possible outcomes?

Answers

The probability of getting a 2 or 1 when rolling a single fair four-sided die is 2/4 or 1/2. There are 4 possible outcomes in total.

When rolling a fair four-sided die, each face has an equal probability of landing face up. Since we are interested in the probability of getting a 2 or 1, we need to determine how many favorable outcomes there are.

In this case, there are two favorable outcomes: rolling a 1 or rolling a 2. Since the die has four sides in total, the probability of each favorable outcome is 1/4.

To calculate the probability of getting a 2 or 1, we add the individual probabilities together:

Probability = Probability of rolling a 2 + Probability of rolling a 1 = 1/4 + 1/4 = 2/4 = 1/2

Therefore, the probability of getting a 2 or 1 is 1/2.

As for the total number of possible outcomes, it is equal to the number of sides on the die, which in this case is 4.

Learn more about probability

brainly.com/question/31828911

#SPJ11



Use an inverse matrix to solve each question or system.


[-6 0 7 1]

[-12 -6 17 9]

Answers

The inverse of the given matrix is: A^-1 = [ 3/2 -7/4][ 1/2 -3/4][ -1 1][1/2]

Given matrix is: A = [-6 0 7 1][ -12 -6 17 9]

To find inverse matrix, we use Gauss-Jordan elimination method as follows:We append an identity matrix of same order to matrix A, perform row operations until the left side of matrix reduces to an identity matrix, then the right side will be our inverse matrix.So, [A | I] = [-6 0 7 1 | 1 0 0 0][ -12 -6 17 9 | 0 1 0 0]

Performing the following row operations, we get,

[A | I] = [1 0 0 0 | 3/2 -7/4][0 1 0 0 | 1/2 -3/4][0 0 1 0 |-1 1][0 0 0 1 |1/2]

So, the inverse of the given matrix is: A^-1 = [ 3/2 -7/4][ 1/2 -3/4][ -1 1][1/2]

Multiplying A^-1 with A, we should get an identity matrix, i.e.,A * A^-1 = [ 1 0][ 0 1]

Therefore, the solution of the system of equations is obtained by multiplying the inverse matrix by the matrix containing the constants of the system.

Know more about matrix  here,

https://brainly.com/question/28180105

#SPJ11

write an expression which maximizes the sugar your could gain from street so that you can satisfy your sweet tooth. hint: define m[i]m[i] as the maximum sugar you can consume so far on the i^{th}i th vendor.

Answers

To maximize the sugar you can gain from street vendors and satisfy your sweet tooth, you can use the following expression:

m[i] = max(m[i-1] + s[i], s[i])

Here, m[i] represents the maximum sugar you can consume so far on the i-th vendor, and s[i] denotes the sugar content of the i-th vendor's offering.

The expression utilizes dynamic programming to calculate the maximum sugar consumption at each step. The variable m[i] stores the maximum sugar you can have up to the i-th vendor.

The expression considers two options: either including the sugar content of the current vendor (s[i]) or starting a new consumption from the current vendor.

To calculate m[i], we compare the sum of the maximum sugar consumption until the previous vendor (m[i-1]) and the sugar content of the current vendor (s[i]) with just the sugar content of the current vendor (s[i]). Taking the maximum of these two options ensures that m[i] stores the highest sugar consumption achieved so far.

By iterating through all the vendors and applying this expression, you can determine the maximum sugar you can gain from the street vendors and satisfy your sweet tooth.

To know more about dynamic programming, refer here:

https://brainly.com/question/30885026#

#SPJ11

Consider the following deffinitions for sets of charactets: - Dights ={0,1,2,3,4,5,6,7,8,9} - Special characters ={4,8,8. #\} Compute the number of pakswords that sat isfy the given constraints. (i) Strings of length 7 . Characters can be special claracters, digits, or letters, with no repeated charscters. (ii) Strings of length 6. Characters can be special claracters, digits, or letterss, with no repeated claracters. The first character ean not be a special character.

Answers

For strings of length 7 with no repeated characters, there are 1,814,400 possible passwords. For strings of length 6 with no repeated characters and the first character not being a special character, there are 30,240 possible passwords.

To compute the number of passwords that satisfy the given constraints, let's analyze each case separately:

(i) Strings of length 7 with no repeated characters:

In this case, the first character can be any character except a special character. The remaining six characters can be chosen from the set of digits, special characters, or letters, with no repetition.

1. First character: Any character except a special character, so there are 10 choices.

2. Remaining characters: 10 choices for the first position, 9 choices for the second position, 8 choices for the third position, and so on until 5 choices for the sixth position.

Therefore, the total number of passwords that satisfy the constraints for strings of length 7 is:

10 * 10 * 9 * 8 * 7 * 6 * 5 = 1,814,400 passwords.

(ii) Strings of length 6 with no repeated characters and the first character not being a special character:

In this case, the first character cannot be a special character, so there are 10 choices for the first character (digits or letters). The remaining five characters can be chosen from the set of digits, special characters, or letters, with no repetition.

1. First character: Any digit (0-9) or letter (a-z, A-Z), so there are 10 choices.

2. Remaining characters: 10 choices for the second position, 9 choices for the third position, 8 choices for the fourth position, and so on until 6 choices for the sixth position.

Therefore, the total number of passwords that satisfy the constraints for strings of length 6 is:

10 * 10 * 9 * 8 * 7 * 6 = 30,240 passwords.

Note: It seems there's a typo in the "Special characters" set definition. The third character, "8. #\", appears to be a combination of characters rather than a single character.

To know more about string, refer to the link below:

https://brainly.com/question/30214499#

#SPJ11

Following are the numbers of hospitals in each of the 50 U. S. States plus the District of Columbia that won Patient Safety Excellence Awards. 1 22 1 9 7 9 0 2 5 2 9 3 6 14 1 2 9 0 5

5 2 3 10 12 6 1 11 0 9 9 5 6 3 2 12 20 12 1 6

12 8 20 3 8 3 11 0 11 3 (a) Construct a dotplot for these data

Answers

To construct a dot plot for the given data, follow these steps in RStudio:Make sure to have the ggplot2 package installed and loaded in order to create the dot plot.

Create a vector containing the data:

data <- c(1, 22, 1, 9, 7, 9, 0, 2, 5, 2, 9, 3, 6, 14, 1, 2, 9, 0, 5, 5, 2, 3, 10, 12, 6, 1, 11, 0, 9, 9, 5, 6, 3, 2, 12, 20, 12, 1, 6, 12, 8, 20, 3, 8, 3, 11, 0, 11, 3)

Install and load the ggplot2 package: install.packages("ggplot2")

library(ggplot2)

Create the dot plot:

dotplot <- ggplot(data = data, aes(x = data)) + geom_dotplot(binaxis = "y", stackdir = "center", dotsize = 0.5) + labs(x = "Number of Patient Safety Excellence Awards", y = "Frequency")

Display the dot plot: print(dotplot)

This will create a dot plot with the x-axis representing the number of Patient Safety Excellence Awards and the y-axis representing the frequency of each number in the data. The dots will be stacked in the center and have a size of 0.5. Note: Make sure to have the ggplot2 package installed and loaded in order to create the dot plot.

Learn more about installed here

https://brainly.com/question/27829381

#SPJ11

4. Determine a scalar equation for the plane through the points M(1, 2, 3) and N(3,2, -1) that is perpendicular to the plane with equation 3x + 2y + 6z + 1 = 0. (Thinking - 2)

Answers

The normal vector of the desired plane is (6, 0, -12), and a scalar equation for the plane is 6x - 12z + k = 0, where k is a constant that can be determined by substituting the coordinates of one of the given points, such as M(1, 2, 3).

A scalar equation for the plane through points M(1, 2, 3) and N(3, 2, -1) that is perpendicular to the plane with equation 3x + 2y + 6z + 1 = 0 is:

3x + 2y + 6z + k = 0,

where k is a constant to be determined.

To find a plane perpendicular to the given plane, we can use the fact that the normal vector of the desired plane will be parallel to the normal vector of the given plane.

The given plane has a normal vector of (3, 2, 6) since its equation is 3x + 2y + 6z + 1 = 0.

To determine the normal vector of the desired plane, we can calculate the vector between the two given points: MN = N - M = (3 - 1, 2 - 2, -1 - 3) = (2, 0, -4).

Now, we need to find a scalar multiple of (2, 0, -4) that is parallel to (3, 2, 6). By inspection, we can see that if we multiply (2, 0, -4) by 3, we get (6, 0, -12), which is parallel to (3, 2, 6).

to learn more about scalar equation click here:

brainly.com/question/33063973

#SPJ11

PLS ANSWER QUICKLY ASAP




There is screenshot I need help
uwu

Answers

Answer:

What are you trying to find???

Step-by-step explanation:

If it is median, then it is the line in the middle of the box, which is on 19.

Other Questions
Why is there not a setbalance method as follows in bankacount in the previous problem? celebrating another year of Gods precious gift miles away compute the price of the financial instrument today. the instrument will pay 68 in one year and 1,099 in two years. similar financial instruments yield 5% per year. please round to two decimal places. Selecting solutions for process problems is most likely tohappen in what phase of the DMAIC cycle? a. Measure b. Improve c.Define d. None of the above use the drop-down menus to show the order of the events as they occur in the story. mark the first event with the number 1.perseus rescues andromeda. perseuss grandfather tries to drown him. 1perseus cuts off medusas head. perseus turns polydectes to stone. perseus takes the eye of the gray women. A circuit operating at 90 Hz and contains only two circuit elements, but it is not known if they are L, R, or C. A maximum voltage of 175 V is applied by the source. If the maximum current in the circuit is 13.6 A and lags the voltage by 37 , a. Draw a phashor diagram of this circuit b. What two circuit elements are connected? Explain c. Calculate the values of the two circuit elements. Karen lives in Wichita, Kansas, and is a recent high school graduate. She knows she can get a job at a neighborhood coffee bar where she will earn the current minimum wage of $6.60 per hour, If she works 40 hours per week for 51 weeks a year (she will take a 1-week unpaid vacation), how much will she earn for the year?Karen will earn $for the year. (14.9) Atom 1 of mass 38.5 u and atom 2 of mass 40.5 u are both singly ionized with a charge of +e. After being introduced into a mass spectrometer (see the figure below) and accelerated from rest through a potential difference V = 8.09 kV, each ion follows a circular path in a uniform magnetic field of magnitude B = 0.680 T. What is the distance x between the points where the ions strike the detector? A plot has a concrete path within its borders on all sides having uniform width of 4m. The plot is rectangular with sides 20m and 15m. Charge of removing concrete is Rs. 6 per sq.m. How much is spent Destructive interference of two superimposed waves requires the waves to travel in opposite directions. Select one: True False In AMNO, the measure of 0=90, ON = 15, MO = 8, and NM = 17. What is the value of the cosine of M to the nearest hundredth? Explain how can we stop deforestation and, atthe same time, guarantee food security. . Discuss the threats to Philippine Biodiversity 1. Answer the following questions and explain your work. 2. Do not attach any other pages. 3. Download, write your answers on this same Question sheet; next, to each question. 4. Don't write your name 5. Upload in the same drop box for the purpose of making comments 6. Don't change the questions or use different values? Question 1. In competitive markets, there are many small firms with each firm unable to influence the market price. Suppose company XYZ operates in the wheat market. The company produces and markets wheats at a Price =$40 per container. The firm's total costs are given as: TC=100+4Q+3Q 2a) Find the Firm's marginal cost? Show your steps, including graphs. Review additional resources? Hint: See the rules for differentiation b) What is the firm's demand curve? Show it on a graph and label the axes showing P and Q c) What level of output should the firm produce? Hint: Set P=MC and solve for Q. Use a graph to show your answers as well A team has 10 communication channels between its various members. using the formula for calculating the number of communication channels, it can be deduced that the team has _____ members. Compute the equivalent resistance of the network in fig. e26.14, and find the current in each resistor. the battery has negli- gible internal resistan PurposeThis exercise is designed to help students apply influence tactics to real situations, in this case influencing people above them in the hierarchy.InstructionsYou are to identify specific strategies to influence people above you in the organizational hierarchy. Your team should consider each of the various influence tactics to determine specific practices that might change the attitudes and behavior of their bosses. During your team discussion, you should determine which influence tactics are most and least appropriate for managing your bosses. Each team should also consider relevant concepts from other chapters, such as perceptions, emotions and attitudes, and motivation. Explain the significance of each of the following:George Washington Here is a challenging problem. Consider the polynomial p(2) = 25+424 +23-12-222-12 Give the set of complex linear factors of p. To help you out, you are told that -1-i is a root, and that three of the roots are integers. The set of factors is Note: Your set should be of a form like (z-1,z-(1+2*I)). Don't forget to use I (capital i) to represent the complex unit. H Wedding Caterers offers a wedding reception buffet. Suppose a manu is planned around the different salads, seven entrees, four side dishes, and six desserts. There are eight different che of salads, ten efferent choices of entrees, eight different choices of side dishes, and ten different choices of desserts. How many menus are possible? Of the described modalities, which modality do you currently feel most comfortable with, and which modalities are most intimidating? What steps can you take to ensure that you are professionally capable of using these modalities? Do you think that any of these modalities have the potential to harm a client if used inappropriately?